2010-05-29 00:45:14 +04:00
|
|
|
/*
|
|
|
|
* CDDL HEADER START
|
|
|
|
*
|
|
|
|
* The contents of this file are subject to the terms of the
|
|
|
|
* Common Development and Distribution License (the "License").
|
|
|
|
* You may not use this file except in compliance with the License.
|
|
|
|
*
|
|
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
2022-07-12 00:16:13 +03:00
|
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
2010-05-29 00:45:14 +04:00
|
|
|
* See the License for the specific language governing permissions
|
|
|
|
* and limitations under the License.
|
|
|
|
*
|
|
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
|
|
*
|
|
|
|
* CDDL HEADER END
|
|
|
|
*/
|
|
|
|
/*
|
|
|
|
* Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
|
2019-07-26 20:54:14 +03:00
|
|
|
* Copyright (c) 2012, 2019 by Delphix. All rights reserved.
|
2015-04-02 06:44:32 +03:00
|
|
|
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
|
2010-05-29 00:45:14 +04:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/dmu.h>
|
|
|
|
#include <sys/zap.h>
|
|
|
|
#include <sys/zfs_context.h>
|
|
|
|
#include <sys/dsl_pool.h>
|
2019-07-26 20:54:14 +03:00
|
|
|
#include <sys/dsl_dataset.h>
|
2010-05-29 00:45:14 +04:00
|
|
|
|
2011-11-17 22:14:36 +04:00
|
|
|
/*
|
|
|
|
* Deadlist concurrency:
|
|
|
|
*
|
|
|
|
* Deadlists can only be modified from the syncing thread.
|
|
|
|
*
|
|
|
|
* Except for dsl_deadlist_insert(), it can only be modified with the
|
|
|
|
* dp_config_rwlock held with RW_WRITER.
|
|
|
|
*
|
|
|
|
* The accessors (dsl_deadlist_space() and dsl_deadlist_space_range()) can
|
|
|
|
* be called concurrently, from open context, with the dl_config_rwlock held
|
|
|
|
* with RW_READER.
|
|
|
|
*
|
|
|
|
* Therefore, we only need to provide locking between dsl_deadlist_insert() and
|
|
|
|
* the accessors, protecting:
|
|
|
|
* dl_phys->dl_used,comp,uncomp
|
|
|
|
* and protecting the dl_tree from being loaded.
|
|
|
|
* The locking is provided by dl_lock. Note that locking on the bpobj_t
|
|
|
|
* provides its own locking, and dl_oldfmt is immutable.
|
|
|
|
*/
|
|
|
|
|
2019-07-26 20:54:14 +03:00
|
|
|
/*
|
|
|
|
* Livelist Overview
|
|
|
|
* ================
|
|
|
|
*
|
|
|
|
* Livelists use the same 'deadlist_t' struct as deadlists and are also used
|
|
|
|
* to track blkptrs over the lifetime of a dataset. Livelists however, belong
|
|
|
|
* to clones and track the blkptrs that are clone-specific (were born after
|
|
|
|
* the clone's creation). The exception is embedded block pointers which are
|
|
|
|
* not included in livelists because they do not need to be freed.
|
|
|
|
*
|
|
|
|
* When it comes time to delete the clone, the livelist provides a quick
|
|
|
|
* reference as to what needs to be freed. For this reason, livelists also track
|
|
|
|
* when clone-specific blkptrs are freed before deletion to prevent double
|
|
|
|
* frees. Each blkptr in a livelist is marked as a FREE or an ALLOC and the
|
|
|
|
* deletion algorithm iterates backwards over the livelist, matching
|
|
|
|
* FREE/ALLOC pairs and then freeing those ALLOCs which remain. livelists
|
|
|
|
* are also updated in the case when blkptrs are remapped: the old version
|
|
|
|
* of the blkptr is cancelled out with a FREE and the new version is tracked
|
|
|
|
* with an ALLOC.
|
|
|
|
*
|
|
|
|
* To bound the amount of memory required for deletion, livelists over a
|
|
|
|
* certain size are spread over multiple entries. Entries are grouped by
|
|
|
|
* birth txg so we can be sure the ALLOC/FREE pair for a given blkptr will
|
|
|
|
* be in the same entry. This allows us to delete livelists incrementally
|
|
|
|
* over multiple syncs, one entry at a time.
|
|
|
|
*
|
|
|
|
* During the lifetime of the clone, livelists can get extremely large.
|
|
|
|
* Their size is managed by periodic condensing (preemptively cancelling out
|
|
|
|
* FREE/ALLOC pairs). Livelists are disabled when a clone is promoted or when
|
|
|
|
* the shared space between the clone and its origin is so small that it
|
|
|
|
* doesn't make sense to use livelists anymore.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The threshold sublist size at which we create a new sub-livelist for the
|
|
|
|
* next txg. However, since blkptrs of the same transaction group must be in
|
|
|
|
* the same sub-list, the actual sublist size may exceed this. When picking the
|
|
|
|
* size we had to balance the fact that larger sublists mean fewer sublists
|
|
|
|
* (decreasing the cost of insertion) against the consideration that sublists
|
|
|
|
* will be loaded into memory and shouldn't take up an inordinate amount of
|
|
|
|
* space. We settled on ~500000 entries, corresponding to roughly 128M.
|
|
|
|
*/
|
Cleanup: 64-bit kernel module parameters should use fixed width types
Various module parameters such as `zfs_arc_max` were originally
`uint64_t` on OpenSolaris/Illumos, but were changed to `unsigned long`
for Linux compatibility because Linux's kernel default module parameter
implementation did not support 64-bit types on 32-bit platforms. This
caused problems when porting OpenZFS to Windows because its LLP64 memory
model made `unsigned long` a 32-bit type on 64-bit, which created the
undesireable situation that parameters that should accept 64-bit values
could not on 64-bit Windows.
Upon inspection, it turns out that the Linux kernel module parameter
interface is extensible, such that we are allowed to define our own
types. Rather than maintaining the original type change via hacks to to
continue shrinking module parameters on 32-bit Linux, we implement
support for 64-bit module parameters on Linux.
After doing a review of all 64-bit kernel parameters (found via the man
page and also proposed changes by Andrew Innes), the kernel module
parameters fell into a few groups:
Parameters that were originally 64-bit on Illumos:
* dbuf_cache_max_bytes
* dbuf_metadata_cache_max_bytes
* l2arc_feed_min_ms
* l2arc_feed_secs
* l2arc_headroom
* l2arc_headroom_boost
* l2arc_write_boost
* l2arc_write_max
* metaslab_aliquot
* metaslab_force_ganging
* zfetch_array_rd_sz
* zfs_arc_max
* zfs_arc_meta_limit
* zfs_arc_meta_min
* zfs_arc_min
* zfs_async_block_max_blocks
* zfs_condense_max_obsolete_bytes
* zfs_condense_min_mapping_bytes
* zfs_deadman_checktime_ms
* zfs_deadman_synctime_ms
* zfs_initialize_chunk_size
* zfs_initialize_value
* zfs_lua_max_instrlimit
* zfs_lua_max_memlimit
* zil_slog_bulk
Parameters that were originally 32-bit on Illumos:
* zfs_per_txg_dirty_frees_percent
Parameters that were originally `ssize_t` on Illumos:
* zfs_immediate_write_sz
Note that `ssize_t` is `int32_t` on 32-bit and `int64_t` on 64-bit. It
has been upgraded to 64-bit.
Parameters that were `long`/`unsigned long` because of Linux/FreeBSD
influence:
* l2arc_rebuild_blocks_min_l2size
* zfs_key_max_salt_uses
* zfs_max_log_walking
* zfs_max_logsm_summary_length
* zfs_metaslab_max_size_cache_sec
* zfs_min_metaslabs_to_flush
* zfs_multihost_interval
* zfs_unflushed_log_block_max
* zfs_unflushed_log_block_min
* zfs_unflushed_log_block_pct
* zfs_unflushed_max_mem_amt
* zfs_unflushed_max_mem_ppm
New parameters that do not exist in Illumos:
* l2arc_trim_ahead
* vdev_file_logical_ashift
* vdev_file_physical_ashift
* zfs_arc_dnode_limit
* zfs_arc_dnode_limit_percent
* zfs_arc_dnode_reduce_percent
* zfs_arc_meta_limit_percent
* zfs_arc_sys_free
* zfs_deadman_ziotime_ms
* zfs_delete_blocks
* zfs_history_output_max
* zfs_livelist_max_entries
* zfs_max_async_dedup_frees
* zfs_max_nvlist_src_size
* zfs_rebuild_max_segment
* zfs_rebuild_vdev_limit
* zfs_unflushed_log_txg_max
* zfs_vdev_max_auto_ashift
* zfs_vdev_min_auto_ashift
* zfs_vnops_read_chunk_size
* zvol_max_discard_blocks
Rather than clutter the lists with commentary, the module parameters
that need comments are repeated below.
A few parameters were defined in Linux/FreeBSD specific code, where the
use of ulong/long is not an issue for portability, so we leave them
alone:
* zfs_delete_blocks
* zfs_key_max_salt_uses
* zvol_max_discard_blocks
The documentation for a few parameters was found to be incorrect:
* zfs_deadman_checktime_ms - incorrectly documented as int
* zfs_delete_blocks - not documented as Linux only
* zfs_history_output_max - incorrectly documented as int
* zfs_vnops_read_chunk_size - incorrectly documented as long
* zvol_max_discard_blocks - incorrectly documented as ulong
The documentation for these has been fixed, alongside the changes to
document the switch to fixed width types.
In addition, several kernel module parameters were percentages or held
ashift values, so being 64-bit never made sense for them. They have been
downgraded to 32-bit:
* vdev_file_logical_ashift
* vdev_file_physical_ashift
* zfs_arc_dnode_limit_percent
* zfs_arc_dnode_reduce_percent
* zfs_arc_meta_limit_percent
* zfs_per_txg_dirty_frees_percent
* zfs_unflushed_log_block_pct
* zfs_vdev_max_auto_ashift
* zfs_vdev_min_auto_ashift
Of special note are `zfs_vdev_max_auto_ashift` and
`zfs_vdev_min_auto_ashift`, which were already defined as `uint64_t`,
and passed to the kernel as `ulong`. This is inherently buggy on big
endian 32-bit Linux, since the values would not be written to the
correct locations. 32-bit FreeBSD was unaffected because its sysctl code
correctly treated this as a `uint64_t`.
Lastly, a code comment suggests that `zfs_arc_sys_free` is
Linux-specific, but there is nothing to indicate to me that it is
Linux-specific. Nothing was done about that.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Original-patch-by: Andrew Innes <andrew.c12@gmail.com>
Original-patch-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes #13984
Closes #14004
2022-10-03 22:06:54 +03:00
|
|
|
uint64_t zfs_livelist_max_entries = 500000;
|
2019-07-26 20:54:14 +03:00
|
|
|
|
|
|
|
/*
|
|
|
|
* We can approximate how much of a performance gain a livelist will give us
|
|
|
|
* based on the percentage of blocks shared between the clone and its origin.
|
|
|
|
* 0 percent shared means that the clone has completely diverged and that the
|
|
|
|
* old method is maximally effective: every read from the block tree will
|
|
|
|
* result in lots of frees. Livelists give us gains when they track blocks
|
|
|
|
* scattered across the tree, when one read in the old method might only
|
|
|
|
* result in a few frees. Once the clone has been overwritten enough,
|
|
|
|
* writes are no longer sparse and we'll no longer get much of a benefit from
|
|
|
|
* tracking them with a livelist. We chose a lower limit of 75 percent shared
|
|
|
|
* (25 percent overwritten). This means that 1/4 of all block pointers will be
|
|
|
|
* freed (e.g. each read frees 256, out of a max of 1024) so we expect livelists
|
|
|
|
* to make deletion 4x faster. Once the amount of shared space drops below this
|
|
|
|
* threshold, the clone will revert to the old deletion method.
|
|
|
|
*/
|
|
|
|
int zfs_livelist_min_percent_shared = 75;
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
static int
|
|
|
|
dsl_deadlist_compare(const void *arg1, const void *arg2)
|
|
|
|
{
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
const dsl_deadlist_entry_t *dle1 = arg1;
|
|
|
|
const dsl_deadlist_entry_t *dle2 = arg2;
|
2010-05-29 00:45:14 +04:00
|
|
|
|
Reduce loaded range tree memory usage
This patch implements a new tree structure for ZFS, and uses it to
store range trees more efficiently.
The new structure is approximately a B-tree, though there are some
small differences from the usual characterizations. The tree has core
nodes and leaf nodes; each contain data elements, which the elements
in the core nodes acting as separators between its children. The
difference between core and leaf nodes is that the core nodes have an
array of children, while leaf nodes don't. Every node in the tree may
be only partially full; in most cases, they are all at least 50% full
(in terms of element count) except for the root node, which can be
less full. Underfull nodes will steal from their neighbors or merge to
remain full enough, while overfull nodes will split in two. The data
elements are contained in tree-controlled buffers; they are copied
into these on insertion, and overwritten on deletion. This means that
the elements are not independently allocated, which reduces overhead,
but also means they can't be shared between trees (and also that
pointers to them are only valid until a side-effectful tree operation
occurs). The overhead varies based on how dense the tree is, but is
usually on the order of about 50% of the element size; the per-node
overheads are very small, and so don't make a significant difference.
The trees can accept arbitrary records; they accept a size and a
comparator to allow them to be used for a variety of purposes.
The new trees replace the AVL trees used in the range trees today.
Currently, the range_seg_t structure contains three 8 byte integers
of payload and two 24 byte avl_tree_node_ts to handle its storage in
both an offset-sorted tree and a size-sorted tree (total size: 64
bytes). In the new model, the range seg structures are usually two 4
byte integers, but a separate one needs to exist for the size-sorted
and offset-sorted tree. Between the raw size, the 50% overhead, and
the double storage, the new btrees are expected to use 8*1.5*2 = 24
bytes per record, or 33.3% as much memory as the AVL trees (this is
for the purposes of storing metaslab range trees; for other purposes,
like scrubs, they use ~50% as much memory).
We reduced the size of the payload in the range segments by teaching
range trees about starting offsets and shifts; since metaslabs have a
fixed starting offset, and they all operate in terms of disk sectors,
we can store the ranges using 4-byte integers as long as the size of
the metaslab divided by the sector size is less than 2^32. For 512-byte
sectors, this is a 2^41 (or 2TB) metaslab, which with the default
settings corresponds to a 256PB disk. 4k sector disks can handle
metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not
anticipate disks of this size in the near future, there should be
almost no cases where metaslabs need 64-byte integers to store their
ranges. We do still have the capability to store 64-byte integer ranges
to account for cases where we are storing per-vdev (or per-dnode) trees,
which could reasonably go above the limits discussed. We also do not
store fill information in the compact version of the node, since it
is only used for sorted scrub.
We also optimized the metaslab loading process in various other ways
to offset some inefficiencies in the btree model. While individual
operations (find, insert, remove_from) are faster for the btree than
they are for the avl tree, remove usually requires a find operation,
while in the AVL tree model the element itself suffices. Some clever
changes actually caused an overall speedup in metaslab loading; we use
approximately 40% less cpu to load metaslabs in our tests on Illumos.
Another memory and performance optimization was achieved by changing
what is stored in the size-sorted trees. When a disk is heavily
fragmented, the df algorithm used by default in ZFS will almost always
find a number of small regions in its initial cursor-based search; it
will usually only fall back to the size-sorted tree to find larger
regions. If we increase the size of the cursor-based search slightly,
and don't store segments that are smaller than a tunable size floor
in the size-sorted tree, we can further cut memory usage down to
below 20% of what the AVL trees store. This also results in further
reductions in CPU time spent loading metaslabs.
The 16KiB size floor was chosen because it results in substantial memory
usage reduction while not usually resulting in situations where we can't
find an appropriate chunk with the cursor and are forced to use an
oversized chunk from the size-sorted tree. In addition, even if we do
have to use an oversized chunk from the size-sorted tree, the chunk
would be too small to use for ZIL allocations, so it isn't as big of a
loss as it might otherwise be. And often, more small allocations will
follow the initial one, and the cursor search will now find the
remainder of the chunk we didn't use all of and use it for subsequent
allocations. Practical testing has shown little or no change in
fragmentation as a result of this change.
If the size-sorted tree becomes empty while the offset sorted one still
has entries, it will load all the entries from the offset sorted tree
and disregard the size floor until it is unloaded again. This operation
occurs rarely with the default setting, only on incredibly thoroughly
fragmented pools.
There are some other small changes to zdb to teach it to handle btrees,
but nothing major.
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed by: Sebastien Roy seb@delphix.com
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #9181
2019-10-09 20:36:03 +03:00
|
|
|
return (TREE_CMP(dle1->dle_mintxg, dle2->dle_mintxg));
|
2010-05-29 00:45:14 +04:00
|
|
|
}
|
|
|
|
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
static int
|
|
|
|
dsl_deadlist_cache_compare(const void *arg1, const void *arg2)
|
|
|
|
{
|
|
|
|
const dsl_deadlist_cache_entry_t *dlce1 = arg1;
|
|
|
|
const dsl_deadlist_cache_entry_t *dlce2 = arg2;
|
|
|
|
|
Reduce loaded range tree memory usage
This patch implements a new tree structure for ZFS, and uses it to
store range trees more efficiently.
The new structure is approximately a B-tree, though there are some
small differences from the usual characterizations. The tree has core
nodes and leaf nodes; each contain data elements, which the elements
in the core nodes acting as separators between its children. The
difference between core and leaf nodes is that the core nodes have an
array of children, while leaf nodes don't. Every node in the tree may
be only partially full; in most cases, they are all at least 50% full
(in terms of element count) except for the root node, which can be
less full. Underfull nodes will steal from their neighbors or merge to
remain full enough, while overfull nodes will split in two. The data
elements are contained in tree-controlled buffers; they are copied
into these on insertion, and overwritten on deletion. This means that
the elements are not independently allocated, which reduces overhead,
but also means they can't be shared between trees (and also that
pointers to them are only valid until a side-effectful tree operation
occurs). The overhead varies based on how dense the tree is, but is
usually on the order of about 50% of the element size; the per-node
overheads are very small, and so don't make a significant difference.
The trees can accept arbitrary records; they accept a size and a
comparator to allow them to be used for a variety of purposes.
The new trees replace the AVL trees used in the range trees today.
Currently, the range_seg_t structure contains three 8 byte integers
of payload and two 24 byte avl_tree_node_ts to handle its storage in
both an offset-sorted tree and a size-sorted tree (total size: 64
bytes). In the new model, the range seg structures are usually two 4
byte integers, but a separate one needs to exist for the size-sorted
and offset-sorted tree. Between the raw size, the 50% overhead, and
the double storage, the new btrees are expected to use 8*1.5*2 = 24
bytes per record, or 33.3% as much memory as the AVL trees (this is
for the purposes of storing metaslab range trees; for other purposes,
like scrubs, they use ~50% as much memory).
We reduced the size of the payload in the range segments by teaching
range trees about starting offsets and shifts; since metaslabs have a
fixed starting offset, and they all operate in terms of disk sectors,
we can store the ranges using 4-byte integers as long as the size of
the metaslab divided by the sector size is less than 2^32. For 512-byte
sectors, this is a 2^41 (or 2TB) metaslab, which with the default
settings corresponds to a 256PB disk. 4k sector disks can handle
metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not
anticipate disks of this size in the near future, there should be
almost no cases where metaslabs need 64-byte integers to store their
ranges. We do still have the capability to store 64-byte integer ranges
to account for cases where we are storing per-vdev (or per-dnode) trees,
which could reasonably go above the limits discussed. We also do not
store fill information in the compact version of the node, since it
is only used for sorted scrub.
We also optimized the metaslab loading process in various other ways
to offset some inefficiencies in the btree model. While individual
operations (find, insert, remove_from) are faster for the btree than
they are for the avl tree, remove usually requires a find operation,
while in the AVL tree model the element itself suffices. Some clever
changes actually caused an overall speedup in metaslab loading; we use
approximately 40% less cpu to load metaslabs in our tests on Illumos.
Another memory and performance optimization was achieved by changing
what is stored in the size-sorted trees. When a disk is heavily
fragmented, the df algorithm used by default in ZFS will almost always
find a number of small regions in its initial cursor-based search; it
will usually only fall back to the size-sorted tree to find larger
regions. If we increase the size of the cursor-based search slightly,
and don't store segments that are smaller than a tunable size floor
in the size-sorted tree, we can further cut memory usage down to
below 20% of what the AVL trees store. This also results in further
reductions in CPU time spent loading metaslabs.
The 16KiB size floor was chosen because it results in substantial memory
usage reduction while not usually resulting in situations where we can't
find an appropriate chunk with the cursor and are forced to use an
oversized chunk from the size-sorted tree. In addition, even if we do
have to use an oversized chunk from the size-sorted tree, the chunk
would be too small to use for ZIL allocations, so it isn't as big of a
loss as it might otherwise be. And often, more small allocations will
follow the initial one, and the cursor search will now find the
remainder of the chunk we didn't use all of and use it for subsequent
allocations. Practical testing has shown little or no change in
fragmentation as a result of this change.
If the size-sorted tree becomes empty while the offset sorted one still
has entries, it will load all the entries from the offset sorted tree
and disregard the size floor until it is unloaded again. This operation
occurs rarely with the default setting, only on incredibly thoroughly
fragmented pools.
There are some other small changes to zdb to teach it to handle btrees,
but nothing major.
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed by: Sebastien Roy seb@delphix.com
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #9181
2019-10-09 20:36:03 +03:00
|
|
|
return (TREE_CMP(dlce1->dlce_mintxg, dlce2->dlce_mintxg));
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
}
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
static void
|
|
|
|
dsl_deadlist_load_tree(dsl_deadlist_t *dl)
|
|
|
|
{
|
|
|
|
zap_cursor_t zc;
|
|
|
|
zap_attribute_t za;
|
Fix i/o error handling of livelists and zap iteration
Pool-wide metadata is stored in the MOS (Meta Object Set). This
metadata is stored in triplicate, in addition to any pool-level
reduncancy (e.g. RAIDZ). However, if all 3+ copies of this metadata are
not available, we can still get EIO/ECKSUM when reading from the MOS.
If we encounter such an error in syncing context, we have typically
already committed to making a change that we now can't do because of the
corrupt/missing metadata. We typically "handle" this with a `VERIFY()`
or `zfs_panic_recover()`. This prevents the system from continuing on
in an undefined state, while minimizing the amount of error-handling
code.
However, there are some code paths that ignore these i/o errors, or
`ASSERT()` that they don't happen. Since assertions are disabled on
non-debug builds, they effectively ignore them as well. This can lead
to ZFS continuing on in an incorrect state, potentially leading to
on-disk inconsistencies.
This commit adds handling for these i/o errors on MOS metadata,
typically with a `VERIFY()`:
* Handle error return from `zap_cursor_retrieve()` in 4 places in
`dsl_deadlist.c`.
* Handle error return from `zap_contains()` in `dsl_dir_hold_obj()`.
Turns out this call isn't necessary because we can always call
`zap_lookup()`.
* Handle error return from `zap_lookup()` in `dsl_fs_ss_limit_check()`.
* Handle error return from `zap_remove()` in `dsl_dir_rename_sync()`.
* Handle error return from `zap_lookup()` in
`dsl_dir_remove_livelist()`.
* Handle error return from `dsl_process_sub_livelist()` in
`spa_livelist_delete_cb()`.
Additionally:
* Augment the internal history log message for `zfs destroy` to note
which method is used (e.g. bptree, livelist, or, synchronous) and the
mintxg.
* Correct a comment in `dbuf_init()`.
* Correct indentation in `dsl_dir_remove_livelist()`.
Reviewed by: Sara Hartse <sara.hartse@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #10643
2020-08-05 20:22:09 +03:00
|
|
|
int error;
|
2010-05-29 00:45:14 +04:00
|
|
|
|
2017-02-09 21:19:12 +03:00
|
|
|
ASSERT(MUTEX_HELD(&dl->dl_lock));
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
ASSERT(!dl->dl_oldfmt);
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
if (dl->dl_havecache) {
|
|
|
|
/*
|
|
|
|
* After loading the tree, the caller may modify the tree,
|
|
|
|
* e.g. to add or remove nodes, or to make a node no longer
|
|
|
|
* refer to the empty_bpobj. These changes would make the
|
|
|
|
* dl_cache incorrect. Therefore we discard the cache here,
|
|
|
|
* so that it can't become incorrect.
|
|
|
|
*/
|
|
|
|
dsl_deadlist_cache_entry_t *dlce;
|
|
|
|
void *cookie = NULL;
|
|
|
|
while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie))
|
|
|
|
!= NULL) {
|
|
|
|
kmem_free(dlce, sizeof (*dlce));
|
|
|
|
}
|
|
|
|
avl_destroy(&dl->dl_cache);
|
|
|
|
dl->dl_havecache = B_FALSE;
|
|
|
|
}
|
2010-05-29 00:45:14 +04:00
|
|
|
if (dl->dl_havetree)
|
|
|
|
return;
|
|
|
|
|
|
|
|
avl_create(&dl->dl_tree, dsl_deadlist_compare,
|
|
|
|
sizeof (dsl_deadlist_entry_t),
|
|
|
|
offsetof(dsl_deadlist_entry_t, dle_node));
|
|
|
|
for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
|
Fix i/o error handling of livelists and zap iteration
Pool-wide metadata is stored in the MOS (Meta Object Set). This
metadata is stored in triplicate, in addition to any pool-level
reduncancy (e.g. RAIDZ). However, if all 3+ copies of this metadata are
not available, we can still get EIO/ECKSUM when reading from the MOS.
If we encounter such an error in syncing context, we have typically
already committed to making a change that we now can't do because of the
corrupt/missing metadata. We typically "handle" this with a `VERIFY()`
or `zfs_panic_recover()`. This prevents the system from continuing on
in an undefined state, while minimizing the amount of error-handling
code.
However, there are some code paths that ignore these i/o errors, or
`ASSERT()` that they don't happen. Since assertions are disabled on
non-debug builds, they effectively ignore them as well. This can lead
to ZFS continuing on in an incorrect state, potentially leading to
on-disk inconsistencies.
This commit adds handling for these i/o errors on MOS metadata,
typically with a `VERIFY()`:
* Handle error return from `zap_cursor_retrieve()` in 4 places in
`dsl_deadlist.c`.
* Handle error return from `zap_contains()` in `dsl_dir_hold_obj()`.
Turns out this call isn't necessary because we can always call
`zap_lookup()`.
* Handle error return from `zap_lookup()` in `dsl_fs_ss_limit_check()`.
* Handle error return from `zap_remove()` in `dsl_dir_rename_sync()`.
* Handle error return from `zap_lookup()` in
`dsl_dir_remove_livelist()`.
* Handle error return from `dsl_process_sub_livelist()` in
`spa_livelist_delete_cb()`.
Additionally:
* Augment the internal history log message for `zfs destroy` to note
which method is used (e.g. bptree, livelist, or, synchronous) and the
mintxg.
* Correct a comment in `dbuf_init()`.
* Correct indentation in `dsl_dir_remove_livelist()`.
Reviewed by: Sara Hartse <sara.hartse@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #10643
2020-08-05 20:22:09 +03:00
|
|
|
(error = zap_cursor_retrieve(&zc, &za)) == 0;
|
2010-05-29 00:45:14 +04:00
|
|
|
zap_cursor_advance(&zc)) {
|
2017-06-13 06:16:28 +03:00
|
|
|
dsl_deadlist_entry_t *dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
|
|
|
|
dle->dle_mintxg = zfs_strtonum(za.za_name, NULL);
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Prefetch all the bpobj's so that we do that i/o
|
|
|
|
* in parallel. Then open them all in a second pass.
|
|
|
|
*/
|
|
|
|
dle->dle_bpobj.bpo_object = za.za_first_integer;
|
2023-08-07 23:54:41 +03:00
|
|
|
dmu_prefetch_dnode(dl->dl_os, dle->dle_bpobj.bpo_object,
|
|
|
|
ZIO_PRIORITY_SYNC_READ);
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
avl_add(&dl->dl_tree, dle);
|
|
|
|
}
|
Fix i/o error handling of livelists and zap iteration
Pool-wide metadata is stored in the MOS (Meta Object Set). This
metadata is stored in triplicate, in addition to any pool-level
reduncancy (e.g. RAIDZ). However, if all 3+ copies of this metadata are
not available, we can still get EIO/ECKSUM when reading from the MOS.
If we encounter such an error in syncing context, we have typically
already committed to making a change that we now can't do because of the
corrupt/missing metadata. We typically "handle" this with a `VERIFY()`
or `zfs_panic_recover()`. This prevents the system from continuing on
in an undefined state, while minimizing the amount of error-handling
code.
However, there are some code paths that ignore these i/o errors, or
`ASSERT()` that they don't happen. Since assertions are disabled on
non-debug builds, they effectively ignore them as well. This can lead
to ZFS continuing on in an incorrect state, potentially leading to
on-disk inconsistencies.
This commit adds handling for these i/o errors on MOS metadata,
typically with a `VERIFY()`:
* Handle error return from `zap_cursor_retrieve()` in 4 places in
`dsl_deadlist.c`.
* Handle error return from `zap_contains()` in `dsl_dir_hold_obj()`.
Turns out this call isn't necessary because we can always call
`zap_lookup()`.
* Handle error return from `zap_lookup()` in `dsl_fs_ss_limit_check()`.
* Handle error return from `zap_remove()` in `dsl_dir_rename_sync()`.
* Handle error return from `zap_lookup()` in
`dsl_dir_remove_livelist()`.
* Handle error return from `dsl_process_sub_livelist()` in
`spa_livelist_delete_cb()`.
Additionally:
* Augment the internal history log message for `zfs destroy` to note
which method is used (e.g. bptree, livelist, or, synchronous) and the
mintxg.
* Correct a comment in `dbuf_init()`.
* Correct indentation in `dsl_dir_remove_livelist()`.
Reviewed by: Sara Hartse <sara.hartse@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #10643
2020-08-05 20:22:09 +03:00
|
|
|
VERIFY3U(error, ==, ENOENT);
|
2010-05-29 00:45:14 +04:00
|
|
|
zap_cursor_fini(&zc);
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
|
|
|
|
for (dsl_deadlist_entry_t *dle = avl_first(&dl->dl_tree);
|
|
|
|
dle != NULL; dle = AVL_NEXT(&dl->dl_tree, dle)) {
|
|
|
|
VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os,
|
|
|
|
dle->dle_bpobj.bpo_object));
|
|
|
|
}
|
2010-05-29 00:45:14 +04:00
|
|
|
dl->dl_havetree = B_TRUE;
|
|
|
|
}
|
|
|
|
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
/*
|
|
|
|
* Load only the non-empty bpobj's into the dl_cache. The cache is an analog
|
|
|
|
* of the dl_tree, but contains only non-empty_bpobj nodes from the ZAP. It
|
|
|
|
* is used only for gathering space statistics. The dl_cache has two
|
|
|
|
* advantages over the dl_tree:
|
|
|
|
*
|
|
|
|
* 1. Loading the dl_cache is ~5x faster than loading the dl_tree (if it's
|
|
|
|
* mostly empty_bpobj's), due to less CPU overhead to open the empty_bpobj
|
|
|
|
* many times and to inquire about its (zero) space stats many times.
|
|
|
|
*
|
|
|
|
* 2. The dl_cache uses less memory than the dl_tree. We only need to load
|
|
|
|
* the dl_tree of snapshots when deleting a snapshot, after which we free the
|
|
|
|
* dl_tree with dsl_deadlist_discard_tree
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
dsl_deadlist_load_cache(dsl_deadlist_t *dl)
|
|
|
|
{
|
|
|
|
zap_cursor_t zc;
|
|
|
|
zap_attribute_t za;
|
Fix i/o error handling of livelists and zap iteration
Pool-wide metadata is stored in the MOS (Meta Object Set). This
metadata is stored in triplicate, in addition to any pool-level
reduncancy (e.g. RAIDZ). However, if all 3+ copies of this metadata are
not available, we can still get EIO/ECKSUM when reading from the MOS.
If we encounter such an error in syncing context, we have typically
already committed to making a change that we now can't do because of the
corrupt/missing metadata. We typically "handle" this with a `VERIFY()`
or `zfs_panic_recover()`. This prevents the system from continuing on
in an undefined state, while minimizing the amount of error-handling
code.
However, there are some code paths that ignore these i/o errors, or
`ASSERT()` that they don't happen. Since assertions are disabled on
non-debug builds, they effectively ignore them as well. This can lead
to ZFS continuing on in an incorrect state, potentially leading to
on-disk inconsistencies.
This commit adds handling for these i/o errors on MOS metadata,
typically with a `VERIFY()`:
* Handle error return from `zap_cursor_retrieve()` in 4 places in
`dsl_deadlist.c`.
* Handle error return from `zap_contains()` in `dsl_dir_hold_obj()`.
Turns out this call isn't necessary because we can always call
`zap_lookup()`.
* Handle error return from `zap_lookup()` in `dsl_fs_ss_limit_check()`.
* Handle error return from `zap_remove()` in `dsl_dir_rename_sync()`.
* Handle error return from `zap_lookup()` in
`dsl_dir_remove_livelist()`.
* Handle error return from `dsl_process_sub_livelist()` in
`spa_livelist_delete_cb()`.
Additionally:
* Augment the internal history log message for `zfs destroy` to note
which method is used (e.g. bptree, livelist, or, synchronous) and the
mintxg.
* Correct a comment in `dbuf_init()`.
* Correct indentation in `dsl_dir_remove_livelist()`.
Reviewed by: Sara Hartse <sara.hartse@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #10643
2020-08-05 20:22:09 +03:00
|
|
|
int error;
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
|
|
|
|
ASSERT(MUTEX_HELD(&dl->dl_lock));
|
|
|
|
|
|
|
|
ASSERT(!dl->dl_oldfmt);
|
|
|
|
if (dl->dl_havecache)
|
|
|
|
return;
|
|
|
|
|
|
|
|
uint64_t empty_bpobj = dmu_objset_pool(dl->dl_os)->dp_empty_bpobj;
|
|
|
|
|
|
|
|
avl_create(&dl->dl_cache, dsl_deadlist_cache_compare,
|
|
|
|
sizeof (dsl_deadlist_cache_entry_t),
|
|
|
|
offsetof(dsl_deadlist_cache_entry_t, dlce_node));
|
|
|
|
for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
|
Fix i/o error handling of livelists and zap iteration
Pool-wide metadata is stored in the MOS (Meta Object Set). This
metadata is stored in triplicate, in addition to any pool-level
reduncancy (e.g. RAIDZ). However, if all 3+ copies of this metadata are
not available, we can still get EIO/ECKSUM when reading from the MOS.
If we encounter such an error in syncing context, we have typically
already committed to making a change that we now can't do because of the
corrupt/missing metadata. We typically "handle" this with a `VERIFY()`
or `zfs_panic_recover()`. This prevents the system from continuing on
in an undefined state, while minimizing the amount of error-handling
code.
However, there are some code paths that ignore these i/o errors, or
`ASSERT()` that they don't happen. Since assertions are disabled on
non-debug builds, they effectively ignore them as well. This can lead
to ZFS continuing on in an incorrect state, potentially leading to
on-disk inconsistencies.
This commit adds handling for these i/o errors on MOS metadata,
typically with a `VERIFY()`:
* Handle error return from `zap_cursor_retrieve()` in 4 places in
`dsl_deadlist.c`.
* Handle error return from `zap_contains()` in `dsl_dir_hold_obj()`.
Turns out this call isn't necessary because we can always call
`zap_lookup()`.
* Handle error return from `zap_lookup()` in `dsl_fs_ss_limit_check()`.
* Handle error return from `zap_remove()` in `dsl_dir_rename_sync()`.
* Handle error return from `zap_lookup()` in
`dsl_dir_remove_livelist()`.
* Handle error return from `dsl_process_sub_livelist()` in
`spa_livelist_delete_cb()`.
Additionally:
* Augment the internal history log message for `zfs destroy` to note
which method is used (e.g. bptree, livelist, or, synchronous) and the
mintxg.
* Correct a comment in `dbuf_init()`.
* Correct indentation in `dsl_dir_remove_livelist()`.
Reviewed by: Sara Hartse <sara.hartse@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #10643
2020-08-05 20:22:09 +03:00
|
|
|
(error = zap_cursor_retrieve(&zc, &za)) == 0;
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
zap_cursor_advance(&zc)) {
|
|
|
|
if (za.za_first_integer == empty_bpobj)
|
|
|
|
continue;
|
|
|
|
dsl_deadlist_cache_entry_t *dlce =
|
|
|
|
kmem_zalloc(sizeof (*dlce), KM_SLEEP);
|
|
|
|
dlce->dlce_mintxg = zfs_strtonum(za.za_name, NULL);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Prefetch all the bpobj's so that we do that i/o
|
|
|
|
* in parallel. Then open them all in a second pass.
|
|
|
|
*/
|
|
|
|
dlce->dlce_bpobj = za.za_first_integer;
|
2023-08-07 23:54:41 +03:00
|
|
|
dmu_prefetch_dnode(dl->dl_os, dlce->dlce_bpobj,
|
|
|
|
ZIO_PRIORITY_SYNC_READ);
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
avl_add(&dl->dl_cache, dlce);
|
|
|
|
}
|
Fix i/o error handling of livelists and zap iteration
Pool-wide metadata is stored in the MOS (Meta Object Set). This
metadata is stored in triplicate, in addition to any pool-level
reduncancy (e.g. RAIDZ). However, if all 3+ copies of this metadata are
not available, we can still get EIO/ECKSUM when reading from the MOS.
If we encounter such an error in syncing context, we have typically
already committed to making a change that we now can't do because of the
corrupt/missing metadata. We typically "handle" this with a `VERIFY()`
or `zfs_panic_recover()`. This prevents the system from continuing on
in an undefined state, while minimizing the amount of error-handling
code.
However, there are some code paths that ignore these i/o errors, or
`ASSERT()` that they don't happen. Since assertions are disabled on
non-debug builds, they effectively ignore them as well. This can lead
to ZFS continuing on in an incorrect state, potentially leading to
on-disk inconsistencies.
This commit adds handling for these i/o errors on MOS metadata,
typically with a `VERIFY()`:
* Handle error return from `zap_cursor_retrieve()` in 4 places in
`dsl_deadlist.c`.
* Handle error return from `zap_contains()` in `dsl_dir_hold_obj()`.
Turns out this call isn't necessary because we can always call
`zap_lookup()`.
* Handle error return from `zap_lookup()` in `dsl_fs_ss_limit_check()`.
* Handle error return from `zap_remove()` in `dsl_dir_rename_sync()`.
* Handle error return from `zap_lookup()` in
`dsl_dir_remove_livelist()`.
* Handle error return from `dsl_process_sub_livelist()` in
`spa_livelist_delete_cb()`.
Additionally:
* Augment the internal history log message for `zfs destroy` to note
which method is used (e.g. bptree, livelist, or, synchronous) and the
mintxg.
* Correct a comment in `dbuf_init()`.
* Correct indentation in `dsl_dir_remove_livelist()`.
Reviewed by: Sara Hartse <sara.hartse@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #10643
2020-08-05 20:22:09 +03:00
|
|
|
VERIFY3U(error, ==, ENOENT);
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
zap_cursor_fini(&zc);
|
|
|
|
|
|
|
|
for (dsl_deadlist_cache_entry_t *dlce = avl_first(&dl->dl_cache);
|
|
|
|
dlce != NULL; dlce = AVL_NEXT(&dl->dl_cache, dlce)) {
|
|
|
|
bpobj_t bpo;
|
|
|
|
VERIFY0(bpobj_open(&bpo, dl->dl_os, dlce->dlce_bpobj));
|
|
|
|
|
|
|
|
VERIFY0(bpobj_space(&bpo,
|
|
|
|
&dlce->dlce_bytes, &dlce->dlce_comp, &dlce->dlce_uncomp));
|
|
|
|
bpobj_close(&bpo);
|
|
|
|
}
|
|
|
|
dl->dl_havecache = B_TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Discard the tree to save memory.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
dsl_deadlist_discard_tree(dsl_deadlist_t *dl)
|
|
|
|
{
|
|
|
|
mutex_enter(&dl->dl_lock);
|
|
|
|
|
|
|
|
if (!dl->dl_havetree) {
|
|
|
|
mutex_exit(&dl->dl_lock);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
dsl_deadlist_entry_t *dle;
|
|
|
|
void *cookie = NULL;
|
|
|
|
while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie)) != NULL) {
|
|
|
|
bpobj_close(&dle->dle_bpobj);
|
|
|
|
kmem_free(dle, sizeof (*dle));
|
|
|
|
}
|
|
|
|
avl_destroy(&dl->dl_tree);
|
|
|
|
|
|
|
|
dl->dl_havetree = B_FALSE;
|
|
|
|
mutex_exit(&dl->dl_lock);
|
|
|
|
}
|
|
|
|
|
2019-07-26 20:54:14 +03:00
|
|
|
void
|
|
|
|
dsl_deadlist_iterate(dsl_deadlist_t *dl, deadlist_iter_t func, void *args)
|
|
|
|
{
|
|
|
|
dsl_deadlist_entry_t *dle;
|
|
|
|
|
|
|
|
ASSERT(dsl_deadlist_is_open(dl));
|
|
|
|
|
|
|
|
mutex_enter(&dl->dl_lock);
|
|
|
|
dsl_deadlist_load_tree(dl);
|
|
|
|
mutex_exit(&dl->dl_lock);
|
|
|
|
for (dle = avl_first(&dl->dl_tree); dle != NULL;
|
|
|
|
dle = AVL_NEXT(&dl->dl_tree, dle)) {
|
|
|
|
if (func(args, dle) != 0)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
void
|
|
|
|
dsl_deadlist_open(dsl_deadlist_t *dl, objset_t *os, uint64_t object)
|
|
|
|
{
|
|
|
|
dmu_object_info_t doi;
|
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
ASSERT(!dsl_deadlist_is_open(dl));
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
mutex_init(&dl->dl_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
dl->dl_os = os;
|
|
|
|
dl->dl_object = object;
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(dmu_bonus_hold(os, object, dl, &dl->dl_dbuf));
|
2010-05-29 00:45:14 +04:00
|
|
|
dmu_object_info_from_db(dl->dl_dbuf, &doi);
|
|
|
|
if (doi.doi_type == DMU_OT_BPOBJ) {
|
|
|
|
dmu_buf_rele(dl->dl_dbuf, dl);
|
|
|
|
dl->dl_dbuf = NULL;
|
|
|
|
dl->dl_oldfmt = B_TRUE;
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(bpobj_open(&dl->dl_bpobj, os, object));
|
2010-05-29 00:45:14 +04:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
dl->dl_oldfmt = B_FALSE;
|
|
|
|
dl->dl_phys = dl->dl_dbuf->db_data;
|
|
|
|
dl->dl_havetree = B_FALSE;
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
dl->dl_havecache = B_FALSE;
|
2010-05-29 00:45:14 +04:00
|
|
|
}
|
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
boolean_t
|
|
|
|
dsl_deadlist_is_open(dsl_deadlist_t *dl)
|
|
|
|
{
|
|
|
|
return (dl->dl_os != NULL);
|
|
|
|
}
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
void
|
|
|
|
dsl_deadlist_close(dsl_deadlist_t *dl)
|
|
|
|
{
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
ASSERT(dsl_deadlist_is_open(dl));
|
2016-11-26 23:30:44 +03:00
|
|
|
mutex_destroy(&dl->dl_lock);
|
2015-04-02 06:44:32 +03:00
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
if (dl->dl_oldfmt) {
|
|
|
|
dl->dl_oldfmt = B_FALSE;
|
|
|
|
bpobj_close(&dl->dl_bpobj);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
dl->dl_os = NULL;
|
|
|
|
dl->dl_object = 0;
|
2010-05-29 00:45:14 +04:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dl->dl_havetree) {
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
dsl_deadlist_entry_t *dle;
|
|
|
|
void *cookie = NULL;
|
2010-05-29 00:45:14 +04:00
|
|
|
while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie))
|
|
|
|
!= NULL) {
|
|
|
|
bpobj_close(&dle->dle_bpobj);
|
|
|
|
kmem_free(dle, sizeof (*dle));
|
|
|
|
}
|
|
|
|
avl_destroy(&dl->dl_tree);
|
|
|
|
}
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
if (dl->dl_havecache) {
|
|
|
|
dsl_deadlist_cache_entry_t *dlce;
|
|
|
|
void *cookie = NULL;
|
|
|
|
while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie))
|
|
|
|
!= NULL) {
|
|
|
|
kmem_free(dlce, sizeof (*dlce));
|
|
|
|
}
|
|
|
|
avl_destroy(&dl->dl_cache);
|
|
|
|
}
|
2010-05-29 00:45:14 +04:00
|
|
|
dmu_buf_rele(dl->dl_dbuf, dl);
|
|
|
|
dl->dl_dbuf = NULL;
|
|
|
|
dl->dl_phys = NULL;
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
dl->dl_os = NULL;
|
|
|
|
dl->dl_object = 0;
|
2010-05-29 00:45:14 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t
|
|
|
|
dsl_deadlist_alloc(objset_t *os, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
if (spa_version(dmu_objset_spa(os)) < SPA_VERSION_DEADLISTS)
|
2014-11-03 23:15:08 +03:00
|
|
|
return (bpobj_alloc(os, SPA_OLD_MAXBLOCKSIZE, tx));
|
2010-05-29 00:45:14 +04:00
|
|
|
return (zap_create(os, DMU_OT_DEADLIST, DMU_OT_DEADLIST_HDR,
|
|
|
|
sizeof (dsl_deadlist_phys_t), tx));
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
dsl_deadlist_free(objset_t *os, uint64_t dlobj, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
dmu_object_info_t doi;
|
|
|
|
zap_cursor_t zc;
|
|
|
|
zap_attribute_t za;
|
Fix i/o error handling of livelists and zap iteration
Pool-wide metadata is stored in the MOS (Meta Object Set). This
metadata is stored in triplicate, in addition to any pool-level
reduncancy (e.g. RAIDZ). However, if all 3+ copies of this metadata are
not available, we can still get EIO/ECKSUM when reading from the MOS.
If we encounter such an error in syncing context, we have typically
already committed to making a change that we now can't do because of the
corrupt/missing metadata. We typically "handle" this with a `VERIFY()`
or `zfs_panic_recover()`. This prevents the system from continuing on
in an undefined state, while minimizing the amount of error-handling
code.
However, there are some code paths that ignore these i/o errors, or
`ASSERT()` that they don't happen. Since assertions are disabled on
non-debug builds, they effectively ignore them as well. This can lead
to ZFS continuing on in an incorrect state, potentially leading to
on-disk inconsistencies.
This commit adds handling for these i/o errors on MOS metadata,
typically with a `VERIFY()`:
* Handle error return from `zap_cursor_retrieve()` in 4 places in
`dsl_deadlist.c`.
* Handle error return from `zap_contains()` in `dsl_dir_hold_obj()`.
Turns out this call isn't necessary because we can always call
`zap_lookup()`.
* Handle error return from `zap_lookup()` in `dsl_fs_ss_limit_check()`.
* Handle error return from `zap_remove()` in `dsl_dir_rename_sync()`.
* Handle error return from `zap_lookup()` in
`dsl_dir_remove_livelist()`.
* Handle error return from `dsl_process_sub_livelist()` in
`spa_livelist_delete_cb()`.
Additionally:
* Augment the internal history log message for `zfs destroy` to note
which method is used (e.g. bptree, livelist, or, synchronous) and the
mintxg.
* Correct a comment in `dbuf_init()`.
* Correct indentation in `dsl_dir_remove_livelist()`.
Reviewed by: Sara Hartse <sara.hartse@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #10643
2020-08-05 20:22:09 +03:00
|
|
|
int error;
|
2010-05-29 00:45:14 +04:00
|
|
|
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(dmu_object_info(os, dlobj, &doi));
|
2010-05-29 00:45:14 +04:00
|
|
|
if (doi.doi_type == DMU_OT_BPOBJ) {
|
|
|
|
bpobj_free(os, dlobj, tx);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (zap_cursor_init(&zc, os, dlobj);
|
Fix i/o error handling of livelists and zap iteration
Pool-wide metadata is stored in the MOS (Meta Object Set). This
metadata is stored in triplicate, in addition to any pool-level
reduncancy (e.g. RAIDZ). However, if all 3+ copies of this metadata are
not available, we can still get EIO/ECKSUM when reading from the MOS.
If we encounter such an error in syncing context, we have typically
already committed to making a change that we now can't do because of the
corrupt/missing metadata. We typically "handle" this with a `VERIFY()`
or `zfs_panic_recover()`. This prevents the system from continuing on
in an undefined state, while minimizing the amount of error-handling
code.
However, there are some code paths that ignore these i/o errors, or
`ASSERT()` that they don't happen. Since assertions are disabled on
non-debug builds, they effectively ignore them as well. This can lead
to ZFS continuing on in an incorrect state, potentially leading to
on-disk inconsistencies.
This commit adds handling for these i/o errors on MOS metadata,
typically with a `VERIFY()`:
* Handle error return from `zap_cursor_retrieve()` in 4 places in
`dsl_deadlist.c`.
* Handle error return from `zap_contains()` in `dsl_dir_hold_obj()`.
Turns out this call isn't necessary because we can always call
`zap_lookup()`.
* Handle error return from `zap_lookup()` in `dsl_fs_ss_limit_check()`.
* Handle error return from `zap_remove()` in `dsl_dir_rename_sync()`.
* Handle error return from `zap_lookup()` in
`dsl_dir_remove_livelist()`.
* Handle error return from `dsl_process_sub_livelist()` in
`spa_livelist_delete_cb()`.
Additionally:
* Augment the internal history log message for `zfs destroy` to note
which method is used (e.g. bptree, livelist, or, synchronous) and the
mintxg.
* Correct a comment in `dbuf_init()`.
* Correct indentation in `dsl_dir_remove_livelist()`.
Reviewed by: Sara Hartse <sara.hartse@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #10643
2020-08-05 20:22:09 +03:00
|
|
|
(error = zap_cursor_retrieve(&zc, &za)) == 0;
|
2012-12-24 03:57:14 +04:00
|
|
|
zap_cursor_advance(&zc)) {
|
|
|
|
uint64_t obj = za.za_first_integer;
|
|
|
|
if (obj == dmu_objset_pool(os)->dp_empty_bpobj)
|
|
|
|
bpobj_decr_empty(os, tx);
|
|
|
|
else
|
|
|
|
bpobj_free(os, obj, tx);
|
|
|
|
}
|
Fix i/o error handling of livelists and zap iteration
Pool-wide metadata is stored in the MOS (Meta Object Set). This
metadata is stored in triplicate, in addition to any pool-level
reduncancy (e.g. RAIDZ). However, if all 3+ copies of this metadata are
not available, we can still get EIO/ECKSUM when reading from the MOS.
If we encounter such an error in syncing context, we have typically
already committed to making a change that we now can't do because of the
corrupt/missing metadata. We typically "handle" this with a `VERIFY()`
or `zfs_panic_recover()`. This prevents the system from continuing on
in an undefined state, while minimizing the amount of error-handling
code.
However, there are some code paths that ignore these i/o errors, or
`ASSERT()` that they don't happen. Since assertions are disabled on
non-debug builds, they effectively ignore them as well. This can lead
to ZFS continuing on in an incorrect state, potentially leading to
on-disk inconsistencies.
This commit adds handling for these i/o errors on MOS metadata,
typically with a `VERIFY()`:
* Handle error return from `zap_cursor_retrieve()` in 4 places in
`dsl_deadlist.c`.
* Handle error return from `zap_contains()` in `dsl_dir_hold_obj()`.
Turns out this call isn't necessary because we can always call
`zap_lookup()`.
* Handle error return from `zap_lookup()` in `dsl_fs_ss_limit_check()`.
* Handle error return from `zap_remove()` in `dsl_dir_rename_sync()`.
* Handle error return from `zap_lookup()` in
`dsl_dir_remove_livelist()`.
* Handle error return from `dsl_process_sub_livelist()` in
`spa_livelist_delete_cb()`.
Additionally:
* Augment the internal history log message for `zfs destroy` to note
which method is used (e.g. bptree, livelist, or, synchronous) and the
mintxg.
* Correct a comment in `dbuf_init()`.
* Correct indentation in `dsl_dir_remove_livelist()`.
Reviewed by: Sara Hartse <sara.hartse@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #10643
2020-08-05 20:22:09 +03:00
|
|
|
VERIFY3U(error, ==, ENOENT);
|
2010-05-29 00:45:14 +04:00
|
|
|
zap_cursor_fini(&zc);
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(dmu_object_free(os, dlobj, tx));
|
2010-05-29 00:45:14 +04:00
|
|
|
}
|
|
|
|
|
2012-12-24 03:57:14 +04:00
|
|
|
static void
|
|
|
|
dle_enqueue(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
|
2019-07-26 20:54:14 +03:00
|
|
|
const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
|
2012-12-24 03:57:14 +04:00
|
|
|
{
|
2017-02-09 21:19:12 +03:00
|
|
|
ASSERT(MUTEX_HELD(&dl->dl_lock));
|
2012-12-24 03:57:14 +04:00
|
|
|
if (dle->dle_bpobj.bpo_object ==
|
|
|
|
dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) {
|
2014-11-03 23:15:08 +03:00
|
|
|
uint64_t obj = bpobj_alloc(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
|
2012-12-24 03:57:14 +04:00
|
|
|
bpobj_close(&dle->dle_bpobj);
|
|
|
|
bpobj_decr_empty(dl->dl_os, tx);
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
|
|
|
|
VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object,
|
2012-12-24 03:57:14 +04:00
|
|
|
dle->dle_mintxg, obj, tx));
|
|
|
|
}
|
2019-07-26 20:54:14 +03:00
|
|
|
bpobj_enqueue(&dle->dle_bpobj, bp, bp_freed, tx);
|
2012-12-24 03:57:14 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
dle_enqueue_subobj(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
|
|
|
|
uint64_t obj, dmu_tx_t *tx)
|
|
|
|
{
|
2017-02-09 21:19:12 +03:00
|
|
|
ASSERT(MUTEX_HELD(&dl->dl_lock));
|
2012-12-24 03:57:14 +04:00
|
|
|
if (dle->dle_bpobj.bpo_object !=
|
|
|
|
dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) {
|
|
|
|
bpobj_enqueue_subobj(&dle->dle_bpobj, obj, tx);
|
|
|
|
} else {
|
|
|
|
bpobj_close(&dle->dle_bpobj);
|
|
|
|
bpobj_decr_empty(dl->dl_os, tx);
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
|
|
|
|
VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object,
|
2012-12-24 03:57:14 +04:00
|
|
|
dle->dle_mintxg, obj, tx));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-01-25 22:30:24 +03:00
|
|
|
/*
|
|
|
|
* Prefetch metadata required for dle_enqueue_subobj().
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
dle_prefetch_subobj(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
|
|
|
|
uint64_t obj)
|
|
|
|
{
|
|
|
|
if (dle->dle_bpobj.bpo_object !=
|
|
|
|
dmu_objset_pool(dl->dl_os)->dp_empty_bpobj)
|
|
|
|
bpobj_prefetch_subobj(&dle->dle_bpobj, obj);
|
|
|
|
}
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
void
|
2019-07-26 20:54:14 +03:00
|
|
|
dsl_deadlist_insert(dsl_deadlist_t *dl, const blkptr_t *bp, boolean_t bp_freed,
|
|
|
|
dmu_tx_t *tx)
|
2010-05-29 00:45:14 +04:00
|
|
|
{
|
|
|
|
dsl_deadlist_entry_t dle_tofind;
|
|
|
|
dsl_deadlist_entry_t *dle;
|
|
|
|
avl_index_t where;
|
|
|
|
|
|
|
|
if (dl->dl_oldfmt) {
|
2019-07-26 20:54:14 +03:00
|
|
|
bpobj_enqueue(&dl->dl_bpobj, bp, bp_freed, tx);
|
2010-05-29 00:45:14 +04:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2017-02-09 21:19:12 +03:00
|
|
|
mutex_enter(&dl->dl_lock);
|
2010-05-29 00:45:14 +04:00
|
|
|
dsl_deadlist_load_tree(dl);
|
|
|
|
|
|
|
|
dmu_buf_will_dirty(dl->dl_dbuf, tx);
|
2019-07-26 20:54:14 +03:00
|
|
|
|
|
|
|
int sign = bp_freed ? -1 : +1;
|
2010-05-29 00:45:14 +04:00
|
|
|
dl->dl_phys->dl_used +=
|
2019-07-26 20:54:14 +03:00
|
|
|
sign * bp_get_dsize_sync(dmu_objset_spa(dl->dl_os), bp);
|
|
|
|
dl->dl_phys->dl_comp += sign * BP_GET_PSIZE(bp);
|
|
|
|
dl->dl_phys->dl_uncomp += sign * BP_GET_UCSIZE(bp);
|
2010-05-29 00:45:14 +04:00
|
|
|
|
2024-03-26 01:01:54 +03:00
|
|
|
dle_tofind.dle_mintxg = BP_GET_LOGICAL_BIRTH(bp);
|
2010-05-29 00:45:14 +04:00
|
|
|
dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
|
|
|
|
if (dle == NULL)
|
|
|
|
dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
|
|
|
|
else
|
|
|
|
dle = AVL_PREV(&dl->dl_tree, dle);
|
2015-12-11 22:09:41 +03:00
|
|
|
|
|
|
|
if (dle == NULL) {
|
|
|
|
zfs_panic_recover("blkptr at %p has invalid BLK_BIRTH %llu",
|
2024-03-26 01:01:54 +03:00
|
|
|
bp, (longlong_t)BP_GET_LOGICAL_BIRTH(bp));
|
2015-12-11 22:09:41 +03:00
|
|
|
dle = avl_first(&dl->dl_tree);
|
|
|
|
}
|
|
|
|
|
|
|
|
ASSERT3P(dle, !=, NULL);
|
2019-07-26 20:54:14 +03:00
|
|
|
dle_enqueue(dl, dle, bp, bp_freed, tx);
|
2017-02-09 21:19:12 +03:00
|
|
|
mutex_exit(&dl->dl_lock);
|
2010-05-29 00:45:14 +04:00
|
|
|
}
|
|
|
|
|
2019-07-26 20:54:14 +03:00
|
|
|
int
|
|
|
|
dsl_deadlist_insert_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
dsl_deadlist_t *dl = arg;
|
|
|
|
dsl_deadlist_insert(dl, bp, B_FALSE, tx);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
dsl_deadlist_insert_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
dsl_deadlist_t *dl = arg;
|
|
|
|
dsl_deadlist_insert(dl, bp, B_TRUE, tx);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
/*
|
|
|
|
* Insert new key in deadlist, which must be > all current entries.
|
|
|
|
* mintxg is not inclusive.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
dsl_deadlist_add_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
uint64_t obj;
|
|
|
|
dsl_deadlist_entry_t *dle;
|
|
|
|
|
|
|
|
if (dl->dl_oldfmt)
|
|
|
|
return;
|
|
|
|
|
2014-11-21 03:09:39 +03:00
|
|
|
dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
|
2010-05-29 00:45:14 +04:00
|
|
|
dle->dle_mintxg = mintxg;
|
2017-02-09 21:19:12 +03:00
|
|
|
|
|
|
|
mutex_enter(&dl->dl_lock);
|
|
|
|
dsl_deadlist_load_tree(dl);
|
|
|
|
|
2014-11-03 23:15:08 +03:00
|
|
|
obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
|
2010-05-29 00:45:14 +04:00
|
|
|
avl_add(&dl->dl_tree, dle);
|
|
|
|
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(zap_add_int_key(dl->dl_os, dl->dl_object,
|
2010-05-29 00:45:14 +04:00
|
|
|
mintxg, obj, tx));
|
2017-02-09 21:19:12 +03:00
|
|
|
mutex_exit(&dl->dl_lock);
|
2010-05-29 00:45:14 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Remove this key, merging its entries into the previous key.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
dsl_deadlist_remove_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
dsl_deadlist_entry_t dle_tofind;
|
|
|
|
dsl_deadlist_entry_t *dle, *dle_prev;
|
|
|
|
|
|
|
|
if (dl->dl_oldfmt)
|
|
|
|
return;
|
2017-02-09 21:19:12 +03:00
|
|
|
mutex_enter(&dl->dl_lock);
|
2010-05-29 00:45:14 +04:00
|
|
|
dsl_deadlist_load_tree(dl);
|
|
|
|
|
|
|
|
dle_tofind.dle_mintxg = mintxg;
|
|
|
|
dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
ASSERT3P(dle, !=, NULL);
|
2010-05-29 00:45:14 +04:00
|
|
|
dle_prev = AVL_PREV(&dl->dl_tree, dle);
|
2022-10-12 21:25:18 +03:00
|
|
|
ASSERT3P(dle_prev, !=, NULL);
|
2010-05-29 00:45:14 +04:00
|
|
|
|
2012-12-24 03:57:14 +04:00
|
|
|
dle_enqueue_subobj(dl, dle_prev, dle->dle_bpobj.bpo_object, tx);
|
2010-05-29 00:45:14 +04:00
|
|
|
|
|
|
|
avl_remove(&dl->dl_tree, dle);
|
|
|
|
bpobj_close(&dle->dle_bpobj);
|
|
|
|
kmem_free(dle, sizeof (*dle));
|
|
|
|
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object, mintxg, tx));
|
2017-02-09 21:19:12 +03:00
|
|
|
mutex_exit(&dl->dl_lock);
|
2010-05-29 00:45:14 +04:00
|
|
|
}
|
|
|
|
|
2019-07-26 20:54:14 +03:00
|
|
|
/*
|
|
|
|
* Remove a deadlist entry and all of its contents by removing the entry from
|
|
|
|
* the deadlist's avl tree, freeing the entry's bpobj and adjusting the
|
|
|
|
* deadlist's space accounting accordingly.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
dsl_deadlist_remove_entry(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
uint64_t used, comp, uncomp;
|
|
|
|
dsl_deadlist_entry_t dle_tofind;
|
|
|
|
dsl_deadlist_entry_t *dle;
|
|
|
|
objset_t *os = dl->dl_os;
|
|
|
|
|
|
|
|
if (dl->dl_oldfmt)
|
|
|
|
return;
|
|
|
|
|
|
|
|
mutex_enter(&dl->dl_lock);
|
|
|
|
dsl_deadlist_load_tree(dl);
|
|
|
|
|
|
|
|
dle_tofind.dle_mintxg = mintxg;
|
|
|
|
dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
|
|
|
|
VERIFY3P(dle, !=, NULL);
|
|
|
|
|
|
|
|
avl_remove(&dl->dl_tree, dle);
|
|
|
|
VERIFY0(zap_remove_int(os, dl->dl_object, mintxg, tx));
|
|
|
|
VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp));
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
dmu_buf_will_dirty(dl->dl_dbuf, tx);
|
2019-07-26 20:54:14 +03:00
|
|
|
dl->dl_phys->dl_used -= used;
|
|
|
|
dl->dl_phys->dl_comp -= comp;
|
|
|
|
dl->dl_phys->dl_uncomp -= uncomp;
|
|
|
|
if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj) {
|
|
|
|
bpobj_decr_empty(os, tx);
|
|
|
|
} else {
|
|
|
|
bpobj_free(os, dle->dle_bpobj.bpo_object, tx);
|
|
|
|
}
|
|
|
|
bpobj_close(&dle->dle_bpobj);
|
|
|
|
kmem_free(dle, sizeof (*dle));
|
|
|
|
mutex_exit(&dl->dl_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Clear out the contents of a deadlist_entry by freeing its bpobj,
|
|
|
|
* replacing it with an empty bpobj and adjusting the deadlist's
|
|
|
|
* space accounting
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
dsl_deadlist_clear_entry(dsl_deadlist_entry_t *dle, dsl_deadlist_t *dl,
|
|
|
|
dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
uint64_t new_obj, used, comp, uncomp;
|
|
|
|
objset_t *os = dl->dl_os;
|
|
|
|
|
|
|
|
mutex_enter(&dl->dl_lock);
|
|
|
|
VERIFY0(zap_remove_int(os, dl->dl_object, dle->dle_mintxg, tx));
|
|
|
|
VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp));
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
dmu_buf_will_dirty(dl->dl_dbuf, tx);
|
2019-07-26 20:54:14 +03:00
|
|
|
dl->dl_phys->dl_used -= used;
|
|
|
|
dl->dl_phys->dl_comp -= comp;
|
|
|
|
dl->dl_phys->dl_uncomp -= uncomp;
|
|
|
|
if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj)
|
|
|
|
bpobj_decr_empty(os, tx);
|
|
|
|
else
|
|
|
|
bpobj_free(os, dle->dle_bpobj.bpo_object, tx);
|
|
|
|
bpobj_close(&dle->dle_bpobj);
|
|
|
|
new_obj = bpobj_alloc_empty(os, SPA_OLD_MAXBLOCKSIZE, tx);
|
|
|
|
VERIFY0(bpobj_open(&dle->dle_bpobj, os, new_obj));
|
|
|
|
VERIFY0(zap_add_int_key(os, dl->dl_object, dle->dle_mintxg,
|
|
|
|
new_obj, tx));
|
|
|
|
ASSERT(bpobj_is_empty(&dle->dle_bpobj));
|
|
|
|
mutex_exit(&dl->dl_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Return the first entry in deadlist's avl tree
|
|
|
|
*/
|
|
|
|
dsl_deadlist_entry_t *
|
|
|
|
dsl_deadlist_first(dsl_deadlist_t *dl)
|
|
|
|
{
|
|
|
|
dsl_deadlist_entry_t *dle;
|
|
|
|
|
|
|
|
mutex_enter(&dl->dl_lock);
|
|
|
|
dsl_deadlist_load_tree(dl);
|
|
|
|
dle = avl_first(&dl->dl_tree);
|
|
|
|
mutex_exit(&dl->dl_lock);
|
|
|
|
|
|
|
|
return (dle);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Return the last entry in deadlist's avl tree
|
|
|
|
*/
|
|
|
|
dsl_deadlist_entry_t *
|
|
|
|
dsl_deadlist_last(dsl_deadlist_t *dl)
|
|
|
|
{
|
|
|
|
dsl_deadlist_entry_t *dle;
|
|
|
|
|
|
|
|
mutex_enter(&dl->dl_lock);
|
|
|
|
dsl_deadlist_load_tree(dl);
|
|
|
|
dle = avl_last(&dl->dl_tree);
|
|
|
|
mutex_exit(&dl->dl_lock);
|
|
|
|
|
|
|
|
return (dle);
|
|
|
|
}
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
/*
|
|
|
|
* Walk ds's snapshots to regenerate generate ZAP & AVL.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
dsl_deadlist_regenerate(objset_t *os, uint64_t dlobj,
|
|
|
|
uint64_t mrs_obj, dmu_tx_t *tx)
|
|
|
|
{
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
dsl_deadlist_t dl = { 0 };
|
2010-05-29 00:45:14 +04:00
|
|
|
dsl_pool_t *dp = dmu_objset_pool(os);
|
|
|
|
|
|
|
|
dsl_deadlist_open(&dl, os, dlobj);
|
|
|
|
if (dl.dl_oldfmt) {
|
|
|
|
dsl_deadlist_close(&dl);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
while (mrs_obj != 0) {
|
|
|
|
dsl_dataset_t *ds;
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(dsl_dataset_hold_obj(dp, mrs_obj, FTAG, &ds));
|
2015-04-01 18:14:34 +03:00
|
|
|
dsl_deadlist_add_key(&dl,
|
|
|
|
dsl_dataset_phys(ds)->ds_prev_snap_txg, tx);
|
|
|
|
mrs_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
|
2010-05-29 00:45:14 +04:00
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
}
|
|
|
|
dsl_deadlist_close(&dl);
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t
|
|
|
|
dsl_deadlist_clone(dsl_deadlist_t *dl, uint64_t maxtxg,
|
|
|
|
uint64_t mrs_obj, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
dsl_deadlist_entry_t *dle;
|
|
|
|
uint64_t newobj;
|
|
|
|
|
|
|
|
newobj = dsl_deadlist_alloc(dl->dl_os, tx);
|
|
|
|
|
|
|
|
if (dl->dl_oldfmt) {
|
|
|
|
dsl_deadlist_regenerate(dl->dl_os, newobj, mrs_obj, tx);
|
|
|
|
return (newobj);
|
|
|
|
}
|
|
|
|
|
2017-02-09 21:19:12 +03:00
|
|
|
mutex_enter(&dl->dl_lock);
|
2010-05-29 00:45:14 +04:00
|
|
|
dsl_deadlist_load_tree(dl);
|
|
|
|
|
|
|
|
for (dle = avl_first(&dl->dl_tree); dle;
|
|
|
|
dle = AVL_NEXT(&dl->dl_tree, dle)) {
|
|
|
|
uint64_t obj;
|
|
|
|
|
|
|
|
if (dle->dle_mintxg >= maxtxg)
|
|
|
|
break;
|
|
|
|
|
2014-11-03 23:15:08 +03:00
|
|
|
obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(zap_add_int_key(dl->dl_os, newobj,
|
2010-05-29 00:45:14 +04:00
|
|
|
dle->dle_mintxg, obj, tx));
|
|
|
|
}
|
2017-02-09 21:19:12 +03:00
|
|
|
mutex_exit(&dl->dl_lock);
|
2010-05-29 00:45:14 +04:00
|
|
|
return (newobj);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
dsl_deadlist_space(dsl_deadlist_t *dl,
|
|
|
|
uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
|
|
|
|
{
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
ASSERT(dsl_deadlist_is_open(dl));
|
2010-05-29 00:45:14 +04:00
|
|
|
if (dl->dl_oldfmt) {
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(bpobj_space(&dl->dl_bpobj,
|
2010-05-29 00:45:14 +04:00
|
|
|
usedp, compp, uncompp));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
mutex_enter(&dl->dl_lock);
|
|
|
|
*usedp = dl->dl_phys->dl_used;
|
|
|
|
*compp = dl->dl_phys->dl_comp;
|
|
|
|
*uncompp = dl->dl_phys->dl_uncomp;
|
|
|
|
mutex_exit(&dl->dl_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* return space used in the range (mintxg, maxtxg].
|
|
|
|
* Includes maxtxg, does not include mintxg.
|
|
|
|
* mintxg and maxtxg must both be keys in the deadlist (unless maxtxg is
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
* UINT64_MAX).
|
2010-05-29 00:45:14 +04:00
|
|
|
*/
|
|
|
|
void
|
|
|
|
dsl_deadlist_space_range(dsl_deadlist_t *dl, uint64_t mintxg, uint64_t maxtxg,
|
|
|
|
uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
|
|
|
|
{
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
dsl_deadlist_cache_entry_t *dlce;
|
|
|
|
dsl_deadlist_cache_entry_t dlce_tofind;
|
2010-05-29 00:45:14 +04:00
|
|
|
avl_index_t where;
|
|
|
|
|
|
|
|
if (dl->dl_oldfmt) {
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(bpobj_space_range(&dl->dl_bpobj,
|
2010-05-29 00:45:14 +04:00
|
|
|
mintxg, maxtxg, usedp, compp, uncompp));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
*usedp = *compp = *uncompp = 0;
|
|
|
|
|
2011-11-17 22:14:36 +04:00
|
|
|
mutex_enter(&dl->dl_lock);
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
dsl_deadlist_load_cache(dl);
|
|
|
|
dlce_tofind.dlce_mintxg = mintxg;
|
|
|
|
dlce = avl_find(&dl->dl_cache, &dlce_tofind, &where);
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
/*
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
* If this mintxg doesn't exist, it may be an empty_bpobj which
|
|
|
|
* is omitted from the sparse tree. Start at the next non-empty
|
|
|
|
* entry.
|
2010-05-29 00:45:14 +04:00
|
|
|
*/
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
if (dlce == NULL)
|
|
|
|
dlce = avl_nearest(&dl->dl_cache, where, AVL_AFTER);
|
|
|
|
|
|
|
|
for (; dlce && dlce->dlce_mintxg < maxtxg;
|
|
|
|
dlce = AVL_NEXT(&dl->dl_tree, dlce)) {
|
|
|
|
*usedp += dlce->dlce_bytes;
|
|
|
|
*compp += dlce->dlce_comp;
|
|
|
|
*uncompp += dlce->dlce_uncomp;
|
2010-05-29 00:45:14 +04:00
|
|
|
}
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
|
2011-11-17 22:14:36 +04:00
|
|
|
mutex_exit(&dl->dl_lock);
|
2010-05-29 00:45:14 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
dsl_deadlist_insert_bpobj(dsl_deadlist_t *dl, uint64_t obj, uint64_t birth,
|
|
|
|
dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
dsl_deadlist_entry_t dle_tofind;
|
|
|
|
dsl_deadlist_entry_t *dle;
|
|
|
|
avl_index_t where;
|
|
|
|
uint64_t used, comp, uncomp;
|
|
|
|
bpobj_t bpo;
|
|
|
|
|
2017-02-09 21:19:12 +03:00
|
|
|
ASSERT(MUTEX_HELD(&dl->dl_lock));
|
|
|
|
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
|
|
|
|
VERIFY0(bpobj_space(&bpo, &used, &comp, &uncomp));
|
2010-05-29 00:45:14 +04:00
|
|
|
bpobj_close(&bpo);
|
|
|
|
|
|
|
|
dsl_deadlist_load_tree(dl);
|
|
|
|
|
|
|
|
dmu_buf_will_dirty(dl->dl_dbuf, tx);
|
|
|
|
dl->dl_phys->dl_used += used;
|
|
|
|
dl->dl_phys->dl_comp += comp;
|
|
|
|
dl->dl_phys->dl_uncomp += uncomp;
|
|
|
|
|
|
|
|
dle_tofind.dle_mintxg = birth;
|
|
|
|
dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
|
|
|
|
if (dle == NULL)
|
|
|
|
dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
|
2012-12-24 03:57:14 +04:00
|
|
|
dle_enqueue_subobj(dl, dle, obj, tx);
|
2010-05-29 00:45:14 +04:00
|
|
|
}
|
|
|
|
|
2023-01-25 22:30:24 +03:00
|
|
|
/*
|
|
|
|
* Prefetch metadata required for dsl_deadlist_insert_bpobj().
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
dsl_deadlist_prefetch_bpobj(dsl_deadlist_t *dl, uint64_t obj, uint64_t birth)
|
|
|
|
{
|
|
|
|
dsl_deadlist_entry_t dle_tofind;
|
|
|
|
dsl_deadlist_entry_t *dle;
|
|
|
|
avl_index_t where;
|
|
|
|
|
|
|
|
ASSERT(MUTEX_HELD(&dl->dl_lock));
|
|
|
|
|
|
|
|
dsl_deadlist_load_tree(dl);
|
|
|
|
|
|
|
|
dle_tofind.dle_mintxg = birth;
|
|
|
|
dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
|
|
|
|
if (dle == NULL)
|
|
|
|
dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
|
|
|
|
dle_prefetch_subobj(dl, dle, obj);
|
|
|
|
}
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
static int
|
2019-07-26 20:54:14 +03:00
|
|
|
dsl_deadlist_insert_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
|
|
|
|
dmu_tx_t *tx)
|
2010-05-29 00:45:14 +04:00
|
|
|
{
|
|
|
|
dsl_deadlist_t *dl = arg;
|
2019-07-26 20:54:14 +03:00
|
|
|
dsl_deadlist_insert(dl, bp, bp_freed, tx);
|
2010-05-29 00:45:14 +04:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Merge the deadlist pointed to by 'obj' into dl. obj will be left as
|
|
|
|
* an empty deadlist.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
dsl_deadlist_merge(dsl_deadlist_t *dl, uint64_t obj, dmu_tx_t *tx)
|
|
|
|
{
|
2023-01-25 22:30:24 +03:00
|
|
|
zap_cursor_t zc, pzc;
|
2023-02-28 01:27:58 +03:00
|
|
|
zap_attribute_t *za, *pza;
|
2010-05-29 00:45:14 +04:00
|
|
|
dmu_buf_t *bonus;
|
|
|
|
dsl_deadlist_phys_t *dlp;
|
|
|
|
dmu_object_info_t doi;
|
2023-01-25 22:30:24 +03:00
|
|
|
int error, perror, i;
|
2010-05-29 00:45:14 +04:00
|
|
|
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(dmu_object_info(dl->dl_os, obj, &doi));
|
2010-05-29 00:45:14 +04:00
|
|
|
if (doi.doi_type == DMU_OT_BPOBJ) {
|
|
|
|
bpobj_t bpo;
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
|
|
|
|
VERIFY0(bpobj_iterate(&bpo, dsl_deadlist_insert_cb, dl, tx));
|
2010-05-29 00:45:14 +04:00
|
|
|
bpobj_close(&bpo);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2023-02-28 01:27:58 +03:00
|
|
|
za = kmem_alloc(sizeof (*za), KM_SLEEP);
|
|
|
|
pza = kmem_alloc(sizeof (*pza), KM_SLEEP);
|
|
|
|
|
2017-02-09 21:19:12 +03:00
|
|
|
mutex_enter(&dl->dl_lock);
|
2023-01-25 22:30:24 +03:00
|
|
|
/*
|
|
|
|
* Prefetch up to 128 deadlists first and then more as we progress.
|
|
|
|
* The limit is a balance between ARC use and diminishing returns.
|
|
|
|
*/
|
|
|
|
for (zap_cursor_init(&pzc, dl->dl_os, obj), i = 0;
|
2023-02-28 01:27:58 +03:00
|
|
|
(perror = zap_cursor_retrieve(&pzc, pza)) == 0 && i < 128;
|
2023-01-25 22:30:24 +03:00
|
|
|
zap_cursor_advance(&pzc), i++) {
|
2023-02-28 01:27:58 +03:00
|
|
|
dsl_deadlist_prefetch_bpobj(dl, pza->za_first_integer,
|
|
|
|
zfs_strtonum(pza->za_name, NULL));
|
2023-01-25 22:30:24 +03:00
|
|
|
}
|
2010-05-29 00:45:14 +04:00
|
|
|
for (zap_cursor_init(&zc, dl->dl_os, obj);
|
2023-02-28 01:27:58 +03:00
|
|
|
(error = zap_cursor_retrieve(&zc, za)) == 0;
|
2010-05-29 00:45:14 +04:00
|
|
|
zap_cursor_advance(&zc)) {
|
2023-07-15 02:11:46 +03:00
|
|
|
dsl_deadlist_insert_bpobj(dl, za->za_first_integer,
|
|
|
|
zfs_strtonum(za->za_name, NULL), tx);
|
|
|
|
VERIFY0(zap_remove(dl->dl_os, obj, za->za_name, tx));
|
2023-01-25 22:30:24 +03:00
|
|
|
if (perror == 0) {
|
2023-02-28 01:27:58 +03:00
|
|
|
dsl_deadlist_prefetch_bpobj(dl, pza->za_first_integer,
|
|
|
|
zfs_strtonum(pza->za_name, NULL));
|
2023-01-25 22:30:24 +03:00
|
|
|
zap_cursor_advance(&pzc);
|
2023-02-28 01:27:58 +03:00
|
|
|
perror = zap_cursor_retrieve(&pzc, pza);
|
2023-01-25 22:30:24 +03:00
|
|
|
}
|
2010-05-29 00:45:14 +04:00
|
|
|
}
|
Fix i/o error handling of livelists and zap iteration
Pool-wide metadata is stored in the MOS (Meta Object Set). This
metadata is stored in triplicate, in addition to any pool-level
reduncancy (e.g. RAIDZ). However, if all 3+ copies of this metadata are
not available, we can still get EIO/ECKSUM when reading from the MOS.
If we encounter such an error in syncing context, we have typically
already committed to making a change that we now can't do because of the
corrupt/missing metadata. We typically "handle" this with a `VERIFY()`
or `zfs_panic_recover()`. This prevents the system from continuing on
in an undefined state, while minimizing the amount of error-handling
code.
However, there are some code paths that ignore these i/o errors, or
`ASSERT()` that they don't happen. Since assertions are disabled on
non-debug builds, they effectively ignore them as well. This can lead
to ZFS continuing on in an incorrect state, potentially leading to
on-disk inconsistencies.
This commit adds handling for these i/o errors on MOS metadata,
typically with a `VERIFY()`:
* Handle error return from `zap_cursor_retrieve()` in 4 places in
`dsl_deadlist.c`.
* Handle error return from `zap_contains()` in `dsl_dir_hold_obj()`.
Turns out this call isn't necessary because we can always call
`zap_lookup()`.
* Handle error return from `zap_lookup()` in `dsl_fs_ss_limit_check()`.
* Handle error return from `zap_remove()` in `dsl_dir_rename_sync()`.
* Handle error return from `zap_lookup()` in
`dsl_dir_remove_livelist()`.
* Handle error return from `dsl_process_sub_livelist()` in
`spa_livelist_delete_cb()`.
Additionally:
* Augment the internal history log message for `zfs destroy` to note
which method is used (e.g. bptree, livelist, or, synchronous) and the
mintxg.
* Correct a comment in `dbuf_init()`.
* Correct indentation in `dsl_dir_remove_livelist()`.
Reviewed by: Sara Hartse <sara.hartse@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #10643
2020-08-05 20:22:09 +03:00
|
|
|
VERIFY3U(error, ==, ENOENT);
|
2010-05-29 00:45:14 +04:00
|
|
|
zap_cursor_fini(&zc);
|
2023-01-25 22:30:24 +03:00
|
|
|
zap_cursor_fini(&pzc);
|
2010-05-29 00:45:14 +04:00
|
|
|
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(dmu_bonus_hold(dl->dl_os, obj, FTAG, &bonus));
|
2010-05-29 00:45:14 +04:00
|
|
|
dlp = bonus->db_data;
|
|
|
|
dmu_buf_will_dirty(bonus, tx);
|
2022-02-25 16:26:54 +03:00
|
|
|
memset(dlp, 0, sizeof (*dlp));
|
2010-05-29 00:45:14 +04:00
|
|
|
dmu_buf_rele(bonus, FTAG);
|
2017-02-09 21:19:12 +03:00
|
|
|
mutex_exit(&dl->dl_lock);
|
2023-02-28 01:27:58 +03:00
|
|
|
|
|
|
|
kmem_free(za, sizeof (*za));
|
|
|
|
kmem_free(pza, sizeof (*pza));
|
2010-05-29 00:45:14 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
* Remove entries on dl that are born > mintxg, and put them on the bpobj.
|
2010-05-29 00:45:14 +04:00
|
|
|
*/
|
|
|
|
void
|
|
|
|
dsl_deadlist_move_bpobj(dsl_deadlist_t *dl, bpobj_t *bpo, uint64_t mintxg,
|
|
|
|
dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
dsl_deadlist_entry_t dle_tofind;
|
2023-01-25 22:30:24 +03:00
|
|
|
dsl_deadlist_entry_t *dle, *pdle;
|
2010-05-29 00:45:14 +04:00
|
|
|
avl_index_t where;
|
2023-01-25 22:30:24 +03:00
|
|
|
int i;
|
2010-05-29 00:45:14 +04:00
|
|
|
|
|
|
|
ASSERT(!dl->dl_oldfmt);
|
2017-02-09 21:19:12 +03:00
|
|
|
|
|
|
|
mutex_enter(&dl->dl_lock);
|
2010-05-29 00:45:14 +04:00
|
|
|
dmu_buf_will_dirty(dl->dl_dbuf, tx);
|
|
|
|
dsl_deadlist_load_tree(dl);
|
|
|
|
|
|
|
|
dle_tofind.dle_mintxg = mintxg;
|
|
|
|
dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
|
|
|
|
if (dle == NULL)
|
|
|
|
dle = avl_nearest(&dl->dl_tree, where, AVL_AFTER);
|
2023-01-25 22:30:24 +03:00
|
|
|
/*
|
|
|
|
* Prefetch up to 128 deadlists first and then more as we progress.
|
|
|
|
* The limit is a balance between ARC use and diminishing returns.
|
|
|
|
*/
|
2023-03-05 02:42:01 +03:00
|
|
|
for (pdle = dle, i = 0; pdle && i < 128; i++) {
|
2023-01-25 22:30:24 +03:00
|
|
|
bpobj_prefetch_subobj(bpo, pdle->dle_bpobj.bpo_object);
|
|
|
|
pdle = AVL_NEXT(&dl->dl_tree, pdle);
|
|
|
|
}
|
2010-05-29 00:45:14 +04:00
|
|
|
while (dle) {
|
|
|
|
uint64_t used, comp, uncomp;
|
|
|
|
dsl_deadlist_entry_t *dle_next;
|
|
|
|
|
|
|
|
bpobj_enqueue_subobj(bpo, dle->dle_bpobj.bpo_object, tx);
|
2023-01-25 22:30:24 +03:00
|
|
|
if (pdle) {
|
|
|
|
bpobj_prefetch_subobj(bpo, pdle->dle_bpobj.bpo_object);
|
|
|
|
pdle = AVL_NEXT(&dl->dl_tree, pdle);
|
|
|
|
}
|
2010-05-29 00:45:14 +04:00
|
|
|
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(bpobj_space(&dle->dle_bpobj,
|
2010-05-29 00:45:14 +04:00
|
|
|
&used, &comp, &uncomp));
|
|
|
|
ASSERT3U(dl->dl_phys->dl_used, >=, used);
|
|
|
|
ASSERT3U(dl->dl_phys->dl_comp, >=, comp);
|
|
|
|
ASSERT3U(dl->dl_phys->dl_uncomp, >=, uncomp);
|
|
|
|
dl->dl_phys->dl_used -= used;
|
|
|
|
dl->dl_phys->dl_comp -= comp;
|
|
|
|
dl->dl_phys->dl_uncomp -= uncomp;
|
|
|
|
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object,
|
2010-05-29 00:45:14 +04:00
|
|
|
dle->dle_mintxg, tx));
|
|
|
|
|
|
|
|
dle_next = AVL_NEXT(&dl->dl_tree, dle);
|
|
|
|
avl_remove(&dl->dl_tree, dle);
|
|
|
|
bpobj_close(&dle->dle_bpobj);
|
|
|
|
kmem_free(dle, sizeof (*dle));
|
|
|
|
dle = dle_next;
|
|
|
|
}
|
2017-02-09 21:19:12 +03:00
|
|
|
mutex_exit(&dl->dl_lock);
|
2010-05-29 00:45:14 +04:00
|
|
|
}
|
2019-07-26 20:54:14 +03:00
|
|
|
|
|
|
|
typedef struct livelist_entry {
|
2021-06-07 22:09:07 +03:00
|
|
|
blkptr_t le_bp;
|
|
|
|
uint32_t le_refcnt;
|
2019-07-26 20:54:14 +03:00
|
|
|
avl_node_t le_node;
|
|
|
|
} livelist_entry_t;
|
|
|
|
|
|
|
|
static int
|
|
|
|
livelist_compare(const void *larg, const void *rarg)
|
|
|
|
{
|
2021-06-07 22:09:07 +03:00
|
|
|
const blkptr_t *l = &((livelist_entry_t *)larg)->le_bp;
|
|
|
|
const blkptr_t *r = &((livelist_entry_t *)rarg)->le_bp;
|
2019-07-26 20:54:14 +03:00
|
|
|
|
|
|
|
/* Sort them according to dva[0] */
|
|
|
|
uint64_t l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]);
|
|
|
|
uint64_t r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]);
|
|
|
|
|
|
|
|
if (l_dva0_vdev != r_dva0_vdev)
|
Reduce loaded range tree memory usage
This patch implements a new tree structure for ZFS, and uses it to
store range trees more efficiently.
The new structure is approximately a B-tree, though there are some
small differences from the usual characterizations. The tree has core
nodes and leaf nodes; each contain data elements, which the elements
in the core nodes acting as separators between its children. The
difference between core and leaf nodes is that the core nodes have an
array of children, while leaf nodes don't. Every node in the tree may
be only partially full; in most cases, they are all at least 50% full
(in terms of element count) except for the root node, which can be
less full. Underfull nodes will steal from their neighbors or merge to
remain full enough, while overfull nodes will split in two. The data
elements are contained in tree-controlled buffers; they are copied
into these on insertion, and overwritten on deletion. This means that
the elements are not independently allocated, which reduces overhead,
but also means they can't be shared between trees (and also that
pointers to them are only valid until a side-effectful tree operation
occurs). The overhead varies based on how dense the tree is, but is
usually on the order of about 50% of the element size; the per-node
overheads are very small, and so don't make a significant difference.
The trees can accept arbitrary records; they accept a size and a
comparator to allow them to be used for a variety of purposes.
The new trees replace the AVL trees used in the range trees today.
Currently, the range_seg_t structure contains three 8 byte integers
of payload and two 24 byte avl_tree_node_ts to handle its storage in
both an offset-sorted tree and a size-sorted tree (total size: 64
bytes). In the new model, the range seg structures are usually two 4
byte integers, but a separate one needs to exist for the size-sorted
and offset-sorted tree. Between the raw size, the 50% overhead, and
the double storage, the new btrees are expected to use 8*1.5*2 = 24
bytes per record, or 33.3% as much memory as the AVL trees (this is
for the purposes of storing metaslab range trees; for other purposes,
like scrubs, they use ~50% as much memory).
We reduced the size of the payload in the range segments by teaching
range trees about starting offsets and shifts; since metaslabs have a
fixed starting offset, and they all operate in terms of disk sectors,
we can store the ranges using 4-byte integers as long as the size of
the metaslab divided by the sector size is less than 2^32. For 512-byte
sectors, this is a 2^41 (or 2TB) metaslab, which with the default
settings corresponds to a 256PB disk. 4k sector disks can handle
metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not
anticipate disks of this size in the near future, there should be
almost no cases where metaslabs need 64-byte integers to store their
ranges. We do still have the capability to store 64-byte integer ranges
to account for cases where we are storing per-vdev (or per-dnode) trees,
which could reasonably go above the limits discussed. We also do not
store fill information in the compact version of the node, since it
is only used for sorted scrub.
We also optimized the metaslab loading process in various other ways
to offset some inefficiencies in the btree model. While individual
operations (find, insert, remove_from) are faster for the btree than
they are for the avl tree, remove usually requires a find operation,
while in the AVL tree model the element itself suffices. Some clever
changes actually caused an overall speedup in metaslab loading; we use
approximately 40% less cpu to load metaslabs in our tests on Illumos.
Another memory and performance optimization was achieved by changing
what is stored in the size-sorted trees. When a disk is heavily
fragmented, the df algorithm used by default in ZFS will almost always
find a number of small regions in its initial cursor-based search; it
will usually only fall back to the size-sorted tree to find larger
regions. If we increase the size of the cursor-based search slightly,
and don't store segments that are smaller than a tunable size floor
in the size-sorted tree, we can further cut memory usage down to
below 20% of what the AVL trees store. This also results in further
reductions in CPU time spent loading metaslabs.
The 16KiB size floor was chosen because it results in substantial memory
usage reduction while not usually resulting in situations where we can't
find an appropriate chunk with the cursor and are forced to use an
oversized chunk from the size-sorted tree. In addition, even if we do
have to use an oversized chunk from the size-sorted tree, the chunk
would be too small to use for ZIL allocations, so it isn't as big of a
loss as it might otherwise be. And often, more small allocations will
follow the initial one, and the cursor search will now find the
remainder of the chunk we didn't use all of and use it for subsequent
allocations. Practical testing has shown little or no change in
fragmentation as a result of this change.
If the size-sorted tree becomes empty while the offset sorted one still
has entries, it will load all the entries from the offset sorted tree
and disregard the size floor until it is unloaded again. This operation
occurs rarely with the default setting, only on incredibly thoroughly
fragmented pools.
There are some other small changes to zdb to teach it to handle btrees,
but nothing major.
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed by: Sebastien Roy seb@delphix.com
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #9181
2019-10-09 20:36:03 +03:00
|
|
|
return (TREE_CMP(l_dva0_vdev, r_dva0_vdev));
|
2019-07-26 20:54:14 +03:00
|
|
|
|
|
|
|
/* if vdevs are equal, sort by offsets. */
|
|
|
|
uint64_t l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]);
|
|
|
|
uint64_t r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]);
|
Reduce loaded range tree memory usage
This patch implements a new tree structure for ZFS, and uses it to
store range trees more efficiently.
The new structure is approximately a B-tree, though there are some
small differences from the usual characterizations. The tree has core
nodes and leaf nodes; each contain data elements, which the elements
in the core nodes acting as separators between its children. The
difference between core and leaf nodes is that the core nodes have an
array of children, while leaf nodes don't. Every node in the tree may
be only partially full; in most cases, they are all at least 50% full
(in terms of element count) except for the root node, which can be
less full. Underfull nodes will steal from their neighbors or merge to
remain full enough, while overfull nodes will split in two. The data
elements are contained in tree-controlled buffers; they are copied
into these on insertion, and overwritten on deletion. This means that
the elements are not independently allocated, which reduces overhead,
but also means they can't be shared between trees (and also that
pointers to them are only valid until a side-effectful tree operation
occurs). The overhead varies based on how dense the tree is, but is
usually on the order of about 50% of the element size; the per-node
overheads are very small, and so don't make a significant difference.
The trees can accept arbitrary records; they accept a size and a
comparator to allow them to be used for a variety of purposes.
The new trees replace the AVL trees used in the range trees today.
Currently, the range_seg_t structure contains three 8 byte integers
of payload and two 24 byte avl_tree_node_ts to handle its storage in
both an offset-sorted tree and a size-sorted tree (total size: 64
bytes). In the new model, the range seg structures are usually two 4
byte integers, but a separate one needs to exist for the size-sorted
and offset-sorted tree. Between the raw size, the 50% overhead, and
the double storage, the new btrees are expected to use 8*1.5*2 = 24
bytes per record, or 33.3% as much memory as the AVL trees (this is
for the purposes of storing metaslab range trees; for other purposes,
like scrubs, they use ~50% as much memory).
We reduced the size of the payload in the range segments by teaching
range trees about starting offsets and shifts; since metaslabs have a
fixed starting offset, and they all operate in terms of disk sectors,
we can store the ranges using 4-byte integers as long as the size of
the metaslab divided by the sector size is less than 2^32. For 512-byte
sectors, this is a 2^41 (or 2TB) metaslab, which with the default
settings corresponds to a 256PB disk. 4k sector disks can handle
metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not
anticipate disks of this size in the near future, there should be
almost no cases where metaslabs need 64-byte integers to store their
ranges. We do still have the capability to store 64-byte integer ranges
to account for cases where we are storing per-vdev (or per-dnode) trees,
which could reasonably go above the limits discussed. We also do not
store fill information in the compact version of the node, since it
is only used for sorted scrub.
We also optimized the metaslab loading process in various other ways
to offset some inefficiencies in the btree model. While individual
operations (find, insert, remove_from) are faster for the btree than
they are for the avl tree, remove usually requires a find operation,
while in the AVL tree model the element itself suffices. Some clever
changes actually caused an overall speedup in metaslab loading; we use
approximately 40% less cpu to load metaslabs in our tests on Illumos.
Another memory and performance optimization was achieved by changing
what is stored in the size-sorted trees. When a disk is heavily
fragmented, the df algorithm used by default in ZFS will almost always
find a number of small regions in its initial cursor-based search; it
will usually only fall back to the size-sorted tree to find larger
regions. If we increase the size of the cursor-based search slightly,
and don't store segments that are smaller than a tunable size floor
in the size-sorted tree, we can further cut memory usage down to
below 20% of what the AVL trees store. This also results in further
reductions in CPU time spent loading metaslabs.
The 16KiB size floor was chosen because it results in substantial memory
usage reduction while not usually resulting in situations where we can't
find an appropriate chunk with the cursor and are forced to use an
oversized chunk from the size-sorted tree. In addition, even if we do
have to use an oversized chunk from the size-sorted tree, the chunk
would be too small to use for ZIL allocations, so it isn't as big of a
loss as it might otherwise be. And often, more small allocations will
follow the initial one, and the cursor search will now find the
remainder of the chunk we didn't use all of and use it for subsequent
allocations. Practical testing has shown little or no change in
fragmentation as a result of this change.
If the size-sorted tree becomes empty while the offset sorted one still
has entries, it will load all the entries from the offset sorted tree
and disregard the size floor until it is unloaded again. This operation
occurs rarely with the default setting, only on incredibly thoroughly
fragmented pools.
There are some other small changes to zdb to teach it to handle btrees,
but nothing major.
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed by: Sebastien Roy seb@delphix.com
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #9181
2019-10-09 20:36:03 +03:00
|
|
|
return (TREE_CMP(l_dva0_offset, r_dva0_offset));
|
2019-07-26 20:54:14 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
struct livelist_iter_arg {
|
|
|
|
avl_tree_t *avl;
|
|
|
|
bplist_t *to_free;
|
|
|
|
zthr_t *t;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Expects an AVL tree which is incrementally filled will FREE blkptrs
|
|
|
|
* and used to match up ALLOC/FREE pairs. ALLOC'd blkptrs without a
|
|
|
|
* corresponding FREE are stored in the supplied bplist.
|
2021-06-07 22:09:07 +03:00
|
|
|
*
|
2024-01-09 20:48:40 +03:00
|
|
|
* Note that multiple FREE and ALLOC entries for the same blkptr may be
|
|
|
|
* encountered when dedup or block cloning is involved. For this reason we
|
|
|
|
* keep a refcount for all the FREE entries of each blkptr and ensure that
|
2021-06-07 22:09:07 +03:00
|
|
|
* each of those FREE entries has a corresponding ALLOC preceding it.
|
2019-07-26 20:54:14 +03:00
|
|
|
*/
|
|
|
|
static int
|
|
|
|
dsl_livelist_iterate(void *arg, const blkptr_t *bp, boolean_t bp_freed,
|
|
|
|
dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
struct livelist_iter_arg *lia = arg;
|
|
|
|
avl_tree_t *avl = lia->avl;
|
|
|
|
bplist_t *to_free = lia->to_free;
|
|
|
|
zthr_t *t = lia->t;
|
|
|
|
ASSERT(tx == NULL);
|
|
|
|
|
|
|
|
if ((t != NULL) && (zthr_has_waiters(t) || zthr_iscancelled(t)))
|
|
|
|
return (SET_ERROR(EINTR));
|
2021-06-07 22:09:07 +03:00
|
|
|
|
|
|
|
livelist_entry_t node;
|
|
|
|
node.le_bp = *bp;
|
|
|
|
livelist_entry_t *found = avl_find(avl, &node, NULL);
|
2024-01-09 20:48:40 +03:00
|
|
|
if (found) {
|
|
|
|
ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(&found->le_bp));
|
|
|
|
ASSERT3U(BP_GET_CHECKSUM(bp), ==,
|
|
|
|
BP_GET_CHECKSUM(&found->le_bp));
|
2024-03-26 01:01:54 +03:00
|
|
|
ASSERT3U(BP_GET_BIRTH(bp), ==, BP_GET_BIRTH(&found->le_bp));
|
2024-01-09 20:48:40 +03:00
|
|
|
}
|
2019-07-26 20:54:14 +03:00
|
|
|
if (bp_freed) {
|
2021-06-07 22:09:07 +03:00
|
|
|
if (found == NULL) {
|
|
|
|
/* first free entry for this blkptr */
|
|
|
|
livelist_entry_t *e =
|
|
|
|
kmem_alloc(sizeof (livelist_entry_t), KM_SLEEP);
|
|
|
|
e->le_bp = *bp;
|
|
|
|
e->le_refcnt = 1;
|
|
|
|
avl_add(avl, e);
|
2019-07-26 20:54:14 +03:00
|
|
|
} else {
|
2024-01-09 20:48:40 +03:00
|
|
|
/*
|
|
|
|
* Deduped or cloned block free. We could assert D bit
|
|
|
|
* for dedup, but there is no such one for cloning.
|
|
|
|
*/
|
2021-06-07 22:09:07 +03:00
|
|
|
ASSERT3U(found->le_refcnt + 1, >, found->le_refcnt);
|
|
|
|
found->le_refcnt++;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (found == NULL) {
|
|
|
|
/* block is currently marked as allocated */
|
2019-07-26 20:54:14 +03:00
|
|
|
bplist_append(to_free, bp);
|
2021-06-07 22:09:07 +03:00
|
|
|
} else {
|
|
|
|
/* alloc matches a free entry */
|
|
|
|
ASSERT3U(found->le_refcnt, !=, 0);
|
|
|
|
found->le_refcnt--;
|
|
|
|
if (found->le_refcnt == 0) {
|
|
|
|
/* all tracked free pairs have been matched */
|
|
|
|
avl_remove(avl, found);
|
|
|
|
kmem_free(found, sizeof (livelist_entry_t));
|
|
|
|
}
|
2019-07-26 20:54:14 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Accepts a bpobj and a bplist. Will insert into the bplist the blkptrs
|
|
|
|
* which have an ALLOC entry but no matching FREE
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
dsl_process_sub_livelist(bpobj_t *bpobj, bplist_t *to_free, zthr_t *t,
|
|
|
|
uint64_t *size)
|
|
|
|
{
|
|
|
|
avl_tree_t avl;
|
|
|
|
avl_create(&avl, livelist_compare, sizeof (livelist_entry_t),
|
|
|
|
offsetof(livelist_entry_t, le_node));
|
|
|
|
|
|
|
|
/* process the sublist */
|
|
|
|
struct livelist_iter_arg arg = {
|
|
|
|
.avl = &avl,
|
|
|
|
.to_free = to_free,
|
|
|
|
.t = t
|
|
|
|
};
|
|
|
|
int err = bpobj_iterate_nofree(bpobj, dsl_livelist_iterate, &arg, size);
|
2022-09-29 19:39:48 +03:00
|
|
|
VERIFY(err != 0 || avl_numnodes(&avl) == 0);
|
2019-07-26 20:54:14 +03:00
|
|
|
|
2022-09-29 19:39:48 +03:00
|
|
|
void *cookie = NULL;
|
|
|
|
livelist_entry_t *le = NULL;
|
|
|
|
while ((le = avl_destroy_nodes(&avl, &cookie)) != NULL) {
|
|
|
|
kmem_free(le, sizeof (livelist_entry_t));
|
|
|
|
}
|
2019-07-26 20:54:14 +03:00
|
|
|
avl_destroy(&avl);
|
|
|
|
return (err);
|
|
|
|
}
|
|
|
|
|
Cleanup: 64-bit kernel module parameters should use fixed width types
Various module parameters such as `zfs_arc_max` were originally
`uint64_t` on OpenSolaris/Illumos, but were changed to `unsigned long`
for Linux compatibility because Linux's kernel default module parameter
implementation did not support 64-bit types on 32-bit platforms. This
caused problems when porting OpenZFS to Windows because its LLP64 memory
model made `unsigned long` a 32-bit type on 64-bit, which created the
undesireable situation that parameters that should accept 64-bit values
could not on 64-bit Windows.
Upon inspection, it turns out that the Linux kernel module parameter
interface is extensible, such that we are allowed to define our own
types. Rather than maintaining the original type change via hacks to to
continue shrinking module parameters on 32-bit Linux, we implement
support for 64-bit module parameters on Linux.
After doing a review of all 64-bit kernel parameters (found via the man
page and also proposed changes by Andrew Innes), the kernel module
parameters fell into a few groups:
Parameters that were originally 64-bit on Illumos:
* dbuf_cache_max_bytes
* dbuf_metadata_cache_max_bytes
* l2arc_feed_min_ms
* l2arc_feed_secs
* l2arc_headroom
* l2arc_headroom_boost
* l2arc_write_boost
* l2arc_write_max
* metaslab_aliquot
* metaslab_force_ganging
* zfetch_array_rd_sz
* zfs_arc_max
* zfs_arc_meta_limit
* zfs_arc_meta_min
* zfs_arc_min
* zfs_async_block_max_blocks
* zfs_condense_max_obsolete_bytes
* zfs_condense_min_mapping_bytes
* zfs_deadman_checktime_ms
* zfs_deadman_synctime_ms
* zfs_initialize_chunk_size
* zfs_initialize_value
* zfs_lua_max_instrlimit
* zfs_lua_max_memlimit
* zil_slog_bulk
Parameters that were originally 32-bit on Illumos:
* zfs_per_txg_dirty_frees_percent
Parameters that were originally `ssize_t` on Illumos:
* zfs_immediate_write_sz
Note that `ssize_t` is `int32_t` on 32-bit and `int64_t` on 64-bit. It
has been upgraded to 64-bit.
Parameters that were `long`/`unsigned long` because of Linux/FreeBSD
influence:
* l2arc_rebuild_blocks_min_l2size
* zfs_key_max_salt_uses
* zfs_max_log_walking
* zfs_max_logsm_summary_length
* zfs_metaslab_max_size_cache_sec
* zfs_min_metaslabs_to_flush
* zfs_multihost_interval
* zfs_unflushed_log_block_max
* zfs_unflushed_log_block_min
* zfs_unflushed_log_block_pct
* zfs_unflushed_max_mem_amt
* zfs_unflushed_max_mem_ppm
New parameters that do not exist in Illumos:
* l2arc_trim_ahead
* vdev_file_logical_ashift
* vdev_file_physical_ashift
* zfs_arc_dnode_limit
* zfs_arc_dnode_limit_percent
* zfs_arc_dnode_reduce_percent
* zfs_arc_meta_limit_percent
* zfs_arc_sys_free
* zfs_deadman_ziotime_ms
* zfs_delete_blocks
* zfs_history_output_max
* zfs_livelist_max_entries
* zfs_max_async_dedup_frees
* zfs_max_nvlist_src_size
* zfs_rebuild_max_segment
* zfs_rebuild_vdev_limit
* zfs_unflushed_log_txg_max
* zfs_vdev_max_auto_ashift
* zfs_vdev_min_auto_ashift
* zfs_vnops_read_chunk_size
* zvol_max_discard_blocks
Rather than clutter the lists with commentary, the module parameters
that need comments are repeated below.
A few parameters were defined in Linux/FreeBSD specific code, where the
use of ulong/long is not an issue for portability, so we leave them
alone:
* zfs_delete_blocks
* zfs_key_max_salt_uses
* zvol_max_discard_blocks
The documentation for a few parameters was found to be incorrect:
* zfs_deadman_checktime_ms - incorrectly documented as int
* zfs_delete_blocks - not documented as Linux only
* zfs_history_output_max - incorrectly documented as int
* zfs_vnops_read_chunk_size - incorrectly documented as long
* zvol_max_discard_blocks - incorrectly documented as ulong
The documentation for these has been fixed, alongside the changes to
document the switch to fixed width types.
In addition, several kernel module parameters were percentages or held
ashift values, so being 64-bit never made sense for them. They have been
downgraded to 32-bit:
* vdev_file_logical_ashift
* vdev_file_physical_ashift
* zfs_arc_dnode_limit_percent
* zfs_arc_dnode_reduce_percent
* zfs_arc_meta_limit_percent
* zfs_per_txg_dirty_frees_percent
* zfs_unflushed_log_block_pct
* zfs_vdev_max_auto_ashift
* zfs_vdev_min_auto_ashift
Of special note are `zfs_vdev_max_auto_ashift` and
`zfs_vdev_min_auto_ashift`, which were already defined as `uint64_t`,
and passed to the kernel as `ulong`. This is inherently buggy on big
endian 32-bit Linux, since the values would not be written to the
correct locations. 32-bit FreeBSD was unaffected because its sysctl code
correctly treated this as a `uint64_t`.
Lastly, a code comment suggests that `zfs_arc_sys_free` is
Linux-specific, but there is nothing to indicate to me that it is
Linux-specific. Nothing was done about that.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Original-patch-by: Andrew Innes <andrew.c12@gmail.com>
Original-patch-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes #13984
Closes #14004
2022-10-03 22:06:54 +03:00
|
|
|
ZFS_MODULE_PARAM(zfs_livelist, zfs_livelist_, max_entries, U64, ZMOD_RW,
|
2019-07-26 20:54:14 +03:00
|
|
|
"Size to start the next sub-livelist in a livelist");
|
|
|
|
|
2019-09-06 00:49:49 +03:00
|
|
|
ZFS_MODULE_PARAM(zfs_livelist, zfs_livelist_, min_percent_shared, INT, ZMOD_RW,
|
2019-07-26 20:54:14 +03:00
|
|
|
"Threshold at which livelist is disabled");
|