2008-11-20 23:01:55 +03:00
|
|
|
/*
|
|
|
|
* CDDL HEADER START
|
|
|
|
*
|
|
|
|
* The contents of this file are subject to the terms of the
|
|
|
|
* Common Development and Distribution License (the "License").
|
|
|
|
* You may not use this file except in compliance with the License.
|
|
|
|
*
|
|
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
2022-07-12 00:16:13 +03:00
|
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
2008-11-20 23:01:55 +03:00
|
|
|
* See the License for the specific language governing permissions
|
|
|
|
* and limitations under the License.
|
|
|
|
*
|
|
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
|
|
*
|
|
|
|
* CDDL HEADER END
|
|
|
|
*/
|
|
|
|
/*
|
2010-05-29 00:45:14 +04:00
|
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
2018-10-02 01:13:12 +03:00
|
|
|
* Copyright (c) 2012, 2018 by Delphix. All rights reserved.
|
2008-11-20 23:01:55 +03:00
|
|
|
*/
|
|
|
|
|
|
|
|
/* Portions Copyright 2007 Jeremy Teo */
|
|
|
|
|
|
|
|
#ifdef _KERNEL
|
|
|
|
#include <sys/types.h>
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/time.h>
|
|
|
|
#include <sys/sysmacros.h>
|
|
|
|
#include <sys/mntent.h>
|
|
|
|
#include <sys/u8_textprep.h>
|
|
|
|
#include <sys/dsl_dataset.h>
|
|
|
|
#include <sys/vfs.h>
|
|
|
|
#include <sys/vnode.h>
|
|
|
|
#include <sys/file.h>
|
|
|
|
#include <sys/kmem.h>
|
|
|
|
#include <sys/errno.h>
|
|
|
|
#include <sys/atomic.h>
|
|
|
|
#include <sys/zfs_dir.h>
|
|
|
|
#include <sys/zfs_acl.h>
|
|
|
|
#include <sys/zfs_ioctl.h>
|
|
|
|
#include <sys/zfs_rlock.h>
|
|
|
|
#include <sys/zfs_fuid.h>
|
2011-02-08 22:16:06 +03:00
|
|
|
#include <sys/zfs_vnops.h>
|
2011-11-11 11:15:53 +04:00
|
|
|
#include <sys/zfs_ctldir.h>
|
2010-05-29 00:45:14 +04:00
|
|
|
#include <sys/dnode.h>
|
2008-11-20 23:01:55 +03:00
|
|
|
#include <sys/fs/zfs.h>
|
2011-02-08 22:16:06 +03:00
|
|
|
#include <sys/zpl.h>
|
2008-11-20 23:01:55 +03:00
|
|
|
#endif /* _KERNEL */
|
|
|
|
|
|
|
|
#include <sys/dmu.h>
|
2014-11-03 23:15:08 +03:00
|
|
|
#include <sys/dmu_objset.h>
|
Implement large_dnode pool feature
Justification
-------------
This feature adds support for variable length dnodes. Our motivation is
to eliminate the overhead associated with using spill blocks. Spill
blocks are used to store system attribute data (i.e. file metadata) that
does not fit in the dnode's bonus buffer. By allowing a larger bonus
buffer area the use of a spill block can be avoided. Spill blocks
potentially incur an additional read I/O for every dnode in a dnode
block. As a worst case example, reading 32 dnodes from a 16k dnode block
and all of the spill blocks could issue 33 separate reads. Now suppose
those dnodes have size 1024 and therefore don't need spill blocks. Then
the worst case number of blocks read is reduced to from 33 to two--one
per dnode block. In practice spill blocks may tend to be co-located on
disk with the dnode blocks so the reduction in I/O would not be this
drastic. In a badly fragmented pool, however, the improvement could be
significant.
ZFS-on-Linux systems that make heavy use of extended attributes would
benefit from this feature. In particular, ZFS-on-Linux supports the
xattr=sa dataset property which allows file extended attribute data
to be stored in the dnode bonus buffer as an alternative to the
traditional directory-based format. Workloads such as SELinux and the
Lustre distributed filesystem often store enough xattr data to force
spill bocks when xattr=sa is in effect. Large dnodes may therefore
provide a performance benefit to such systems.
Other use cases that may benefit from this feature include files with
large ACLs and symbolic links with long target names. Furthermore,
this feature may be desirable on other platforms in case future
applications or features are developed that could make use of a
larger bonus buffer area.
Implementation
--------------
The size of a dnode may be a multiple of 512 bytes up to the size of
a dnode block (currently 16384 bytes). A dn_extra_slots field was
added to the current on-disk dnode_phys_t structure to describe the
size of the physical dnode on disk. The 8 bits for this field were
taken from the zero filled dn_pad2 field. The field represents how
many "extra" dnode_phys_t slots a dnode consumes in its dnode block.
This convention results in a value of 0 for 512 byte dnodes which
preserves on-disk format compatibility with older software.
Similarly, the in-memory dnode_t structure has a new dn_num_slots field
to represent the total number of dnode_phys_t slots consumed on disk.
Thus dn->dn_num_slots is 1 greater than the corresponding
dnp->dn_extra_slots. This difference in convention was adopted
because, unlike on-disk structures, backward compatibility is not a
concern for in-memory objects, so we used a more natural way to
represent size for a dnode_t.
The default size for newly created dnodes is determined by the value of
a new "dnodesize" dataset property. By default the property is set to
"legacy" which is compatible with older software. Setting the property
to "auto" will allow the filesystem to choose the most suitable dnode
size. Currently this just sets the default dnode size to 1k, but future
code improvements could dynamically choose a size based on observed
workload patterns. Dnodes of varying sizes can coexist within the same
dataset and even within the same dnode block. For example, to enable
automatically-sized dnodes, run
# zfs set dnodesize=auto tank/fish
The user can also specify literal values for the dnodesize property.
These are currently limited to powers of two from 1k to 16k. The
power-of-2 limitation is only for simplicity of the user interface.
Internally the implementation can handle any multiple of 512 up to 16k,
and consumers of the DMU API can specify any legal dnode value.
The size of a new dnode is determined at object allocation time and
stored as a new field in the znode in-memory structure. New DMU
interfaces are added to allow the consumer to specify the dnode size
that a newly allocated object should use. Existing interfaces are
unchanged to avoid having to update every call site and to preserve
compatibility with external consumers such as Lustre. The new
interfaces names are given below. The versions of these functions that
don't take a dnodesize parameter now just call the _dnsize() versions
with a dnodesize of 0, which means use the legacy dnode size.
New DMU interfaces:
dmu_object_alloc_dnsize()
dmu_object_claim_dnsize()
dmu_object_reclaim_dnsize()
New ZAP interfaces:
zap_create_dnsize()
zap_create_norm_dnsize()
zap_create_flags_dnsize()
zap_create_claim_norm_dnsize()
zap_create_link_dnsize()
The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The
spa_maxdnodesize() function should be used to determine the maximum
bonus length for a pool.
These are a few noteworthy changes to key functions:
* The prototype for dnode_hold_impl() now takes a "slots" parameter.
When the DNODE_MUST_BE_FREE flag is set, this parameter is used to
ensure the hole at the specified object offset is large enough to
hold the dnode being created. The slots parameter is also used
to ensure a dnode does not span multiple dnode blocks. In both of
these cases, if a failure occurs, ENOSPC is returned. Keep in mind,
these failure cases are only possible when using DNODE_MUST_BE_FREE.
If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
dnode_hold_impl() will check if the requested dnode is already
consumed as an extra dnode slot by an large dnode, in which case
it returns ENOENT.
* The function dmu_object_alloc() advances to the next dnode block
if dnode_hold_impl() returns an error for a requested object.
This is because the beginning of the next dnode block is the only
location it can safely assume to either be a hole or a valid
starting point for a dnode.
* dnode_next_offset_level() and other functions that iterate
through dnode blocks may no longer use a simple array indexing
scheme. These now use the current dnode's dn_num_slots field to
advance to the next dnode in the block. This is to ensure we
properly skip the current dnode's bonus area and don't interpret it
as a valid dnode.
zdb
---
The zdb command was updated to display a dnode's size under the
"dnsize" column when the object is dumped.
For ZIL create log records, zdb will now display the slot count for
the object.
ztest
-----
Ztest chooses a random dnodesize for every newly created object. The
random distribution is more heavily weighted toward small dnodes to
better simulate real-world datasets.
Unused bonus buffer space is filled with non-zero values computed from
the object number, dataset id, offset, and generation number. This
helps ensure that the dnode traversal code properly skips the interior
regions of large dnodes, and that these interior regions are not
overwritten by data belonging to other dnodes. A new test visits each
object in a dataset. It verifies that the actual dnode size matches what
was stored in the ztest block tag when it was created. It also verifies
that the unused bonus buffer space is filled with the expected data
patterns.
ZFS Test Suite
--------------
Added six new large dnode-specific tests, and integrated the dnodesize
property into existing tests for zfs allow and send/recv.
Send/Receive
------------
ZFS send streams for datasets containing large dnodes cannot be received
on pools that don't support the large_dnode feature. A send stream with
large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be
unrecognized by an incompatible receiving pool so that the zfs receive
will fail gracefully.
While not implemented here, it may be possible to generate a
backward-compatible send stream from a dataset containing large
dnodes. The implementation may be tricky, however, because the send
object record for a large dnode would need to be resized to a 512
byte dnode, possibly kicking in a spill block in the process. This
means we would need to construct a new SA layout and possibly
register it in the SA layout object. The SA layout is normally just
sent as an ordinary object record. But if we are constructing new
layouts while generating the send stream we'd have to build the SA
layout object dynamically and send it at the end of the stream.
For sending and receiving between pools that do support large dnodes,
the drr_object send record type is extended with a new field to store
the dnode slot count. This field was repurposed from unused padding
in the structure.
ZIL Replay
----------
The dnode slot count is stored in the uppermost 8 bits of the lr_foid
field. The bits were unused as the object id is currently capped at
48 bits.
Resizing Dnodes
---------------
It should be possible to resize a dnode when it is dirtied if the
current dnodesize dataset property differs from the dnode's size, but
this functionality is not currently implemented. Clearly a dnode can
only grow if there are sufficient contiguous unused slots in the
dnode block, but it should always be possible to shrink a dnode.
Growing dnodes may be useful to reduce fragmentation in a pool with
many spill blocks in use. Shrinking dnodes may be useful to allow
sending a dataset to a pool that doesn't support the large_dnode
feature.
Feature Reference Counting
--------------------------
The reference count for the large_dnode pool feature tracks the
number of datasets that have ever contained a dnode of size larger
than 512 bytes. The first time a large dnode is created in a dataset
the dataset is converted to an extensible dataset. This is a one-way
operation and the only way to decrement the feature count is to
destroy the dataset, even if the dataset no longer contains any large
dnodes. The complexity of reference counting on a per-dnode basis was
too high, so we chose to track it on a per-dataset basis similarly to
the large_block feature.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #3542
2016-03-17 04:25:34 +03:00
|
|
|
#include <sys/dmu_tx.h>
|
2020-07-30 02:35:33 +03:00
|
|
|
#include <sys/zfs_refcount.h>
|
2008-11-20 23:01:55 +03:00
|
|
|
#include <sys/stat.h>
|
|
|
|
#include <sys/zap.h>
|
|
|
|
#include <sys/zfs_znode.h>
|
2010-05-29 00:45:14 +04:00
|
|
|
#include <sys/sa.h>
|
|
|
|
#include <sys/zfs_sa.h>
|
2010-08-27 01:24:34 +04:00
|
|
|
#include <sys/zfs_stat.h>
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
|
|
#include "zfs_prop.h"
|
2010-05-29 00:45:14 +04:00
|
|
|
#include "zfs_comutil.h"
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Functions needed for userland (ie: libzpool) are not put under
|
|
|
|
* #ifdef_KERNEL; the rest of the functions have dependencies
|
|
|
|
* (such as VFS logic) that will not compile easily in userland.
|
|
|
|
*/
|
|
|
|
#ifdef _KERNEL
|
2009-07-03 02:44:48 +04:00
|
|
|
|
2008-12-03 23:09:06 +03:00
|
|
|
static kmem_cache_t *znode_cache = NULL;
|
2015-12-23 00:47:38 +03:00
|
|
|
static kmem_cache_t *znode_hold_cache = NULL;
|
2015-12-18 23:19:14 +03:00
|
|
|
unsigned int zfs_object_mutex_size = ZFS_OBJ_MTX_SZ;
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2019-02-12 21:41:15 +03:00
|
|
|
/*
|
|
|
|
* This is used by the test suite so that it can delay znodes from being
|
|
|
|
* freed in order to inspect the unlinked set.
|
|
|
|
*/
|
2022-01-15 02:37:55 +03:00
|
|
|
static int zfs_unlink_suspend_progress = 0;
|
2019-02-12 21:41:15 +03:00
|
|
|
|
2018-10-02 01:13:12 +03:00
|
|
|
/*
|
|
|
|
* This callback is invoked when acquiring a RL_WRITER or RL_APPEND lock on
|
|
|
|
* z_rangelock. It will modify the offset and length of the lock to reflect
|
|
|
|
* znode-specific information, and convert RL_APPEND to RL_WRITER. This is
|
|
|
|
* called with the rangelock_t's rl_lock held, which avoids races.
|
|
|
|
*/
|
|
|
|
static void
|
2019-11-01 20:37:33 +03:00
|
|
|
zfs_rangelock_cb(zfs_locked_range_t *new, void *arg)
|
2018-10-02 01:13:12 +03:00
|
|
|
{
|
|
|
|
znode_t *zp = arg;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If in append mode, convert to writer and lock starting at the
|
|
|
|
* current end of file.
|
|
|
|
*/
|
|
|
|
if (new->lr_type == RL_APPEND) {
|
|
|
|
new->lr_offset = zp->z_size;
|
|
|
|
new->lr_type = RL_WRITER;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we need to grow the block size then lock the whole file range.
|
|
|
|
*/
|
|
|
|
uint64_t end_size = MAX(zp->z_size, new->lr_offset + new->lr_length);
|
|
|
|
if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) ||
|
|
|
|
zp->z_blksz < ZTOZSB(zp)->z_max_blksz)) {
|
|
|
|
new->lr_offset = 0;
|
|
|
|
new->lr_length = UINT64_MAX;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
static int
|
2008-12-03 23:09:06 +03:00
|
|
|
zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
|
2008-11-20 23:01:55 +03:00
|
|
|
{
|
2022-02-16 04:38:43 +03:00
|
|
|
(void) arg, (void) kmflags;
|
2008-11-20 23:01:55 +03:00
|
|
|
znode_t *zp = buf;
|
|
|
|
|
2011-02-08 22:16:06 +03:00
|
|
|
inode_init_once(ZTOI(zp));
|
2008-12-03 23:09:06 +03:00
|
|
|
list_link_init(&zp->z_link_node);
|
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
|
Identify locks flagged by lockdep
When running a kernel with CONFIG_LOCKDEP=y, lockdep reports possible
recursive locking in some cases and possible circular locking dependency
in others, within the SPL and ZFS modules.
This patch uses a mutex type defined in SPL, MUTEX_NOLOCKDEP, to mark
such mutexes when they are initialized. This mutex type causes
attempts to take or release those locks to be wrapped in lockdep_off()
and lockdep_on() calls to silence the dependency checker and allow the
use of lock_stats to examine contention.
For RW locks, it uses an analogous lock type, RW_NOLOCKDEP.
The goal is that these locks are ultimately changed back to type
MUTEX_DEFAULT or RW_DEFAULT, after the locks are annotated to reflect
their relationship (e.g. z_name_lock below) or any real problem with the
lock dependencies are fixed.
Some of the affected locks are:
tc_open_lock:
=============
This is an array of locks, all with same name, which txg_quiesce must
take all of in order to move txg to next state. All default to the same
lockdep class, and so to lockdep appears recursive.
zp->z_name_lock:
================
In zfs_rmdir,
dzp = znode for the directory (input to zfs_dirent_lock)
zp = znode for the entry being removed (output of zfs_dirent_lock)
zfs_rmdir()->zfs_dirent_lock() takes z_name_lock in dzp
zfs_rmdir() takes z_name_lock in zp
Since both dzp and zp are type znode_t, the locks have the same default
class, and lockdep considers it a possible recursive lock attempt.
l->l_rwlock:
============
zap_expand_leaf() sometimes creates two new zap leaf structures, via
these call paths:
zap_deref_leaf()->zap_get_leaf_byblk()->zap_leaf_open()
zap_expand_leaf()->zap_create_leaf()->zap_expand_leaf()->zap_create_leaf()
Because both zap_leaf_open() and zap_create_leaf() initialize
l->l_rwlock in their (separate) leaf structures, the lockdep class is
the same, and the linux kernel believes these might both be the same
lock, and emits a possible recursive lock warning.
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #3895
2015-10-15 23:08:27 +03:00
|
|
|
rw_init(&zp->z_name_lock, NULL, RW_NOLOCKDEP, NULL);
|
2008-11-20 23:01:55 +03:00
|
|
|
mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
|
2011-10-25 03:55:20 +04:00
|
|
|
rw_init(&zp->z_xattr_lock, NULL, RW_DEFAULT, NULL);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2019-10-04 01:54:29 +03:00
|
|
|
zfs_rangelock_init(&zp->z_rangelock, zfs_rangelock_cb, zp);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2008-12-03 23:09:06 +03:00
|
|
|
zp->z_dirlocks = NULL;
|
2009-08-18 22:43:27 +04:00
|
|
|
zp->z_acl_cached = NULL;
|
2011-10-25 03:55:20 +04:00
|
|
|
zp->z_xattr_cached = NULL;
|
2016-10-13 03:30:46 +03:00
|
|
|
zp->z_xattr_parent = 0;
|
2022-05-03 23:23:26 +03:00
|
|
|
zp->z_sync_writes_cnt = 0;
|
|
|
|
zp->z_async_writes_cnt = 0;
|
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2008-12-03 23:09:06 +03:00
|
|
|
zfs_znode_cache_destructor(void *buf, void *arg)
|
2008-11-20 23:01:55 +03:00
|
|
|
{
|
2022-02-16 04:38:43 +03:00
|
|
|
(void) arg;
|
2008-11-20 23:01:55 +03:00
|
|
|
znode_t *zp = buf;
|
|
|
|
|
2008-12-03 23:09:06 +03:00
|
|
|
ASSERT(!list_link_active(&zp->z_link_node));
|
2008-11-20 23:01:55 +03:00
|
|
|
mutex_destroy(&zp->z_lock);
|
|
|
|
rw_destroy(&zp->z_parent_lock);
|
|
|
|
rw_destroy(&zp->z_name_lock);
|
|
|
|
mutex_destroy(&zp->z_acl_lock);
|
2011-10-25 03:55:20 +04:00
|
|
|
rw_destroy(&zp->z_xattr_lock);
|
2019-10-04 01:54:29 +03:00
|
|
|
zfs_rangelock_fini(&zp->z_rangelock);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2021-05-01 02:39:07 +03:00
|
|
|
ASSERT3P(zp->z_dirlocks, ==, NULL);
|
|
|
|
ASSERT3P(zp->z_acl_cached, ==, NULL);
|
|
|
|
ASSERT3P(zp->z_xattr_cached, ==, NULL);
|
2022-05-03 23:23:26 +03:00
|
|
|
|
|
|
|
ASSERT0(atomic_load_32(&zp->z_sync_writes_cnt));
|
|
|
|
ASSERT0(atomic_load_32(&zp->z_async_writes_cnt));
|
2008-12-03 23:09:06 +03:00
|
|
|
}
|
|
|
|
|
2015-12-23 00:47:38 +03:00
|
|
|
static int
|
|
|
|
zfs_znode_hold_cache_constructor(void *buf, void *arg, int kmflags)
|
|
|
|
{
|
2022-02-16 04:38:43 +03:00
|
|
|
(void) arg, (void) kmflags;
|
2015-12-23 00:47:38 +03:00
|
|
|
znode_hold_t *zh = buf;
|
|
|
|
|
|
|
|
mutex_init(&zh->zh_lock, NULL, MUTEX_DEFAULT, NULL);
|
2022-11-28 22:36:53 +03:00
|
|
|
zh->zh_refcount = 0;
|
2015-12-23 00:47:38 +03:00
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
zfs_znode_hold_cache_destructor(void *buf, void *arg)
|
|
|
|
{
|
2022-02-16 04:38:43 +03:00
|
|
|
(void) arg;
|
2015-12-23 00:47:38 +03:00
|
|
|
znode_hold_t *zh = buf;
|
|
|
|
|
|
|
|
mutex_destroy(&zh->zh_lock);
|
|
|
|
}
|
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
void
|
|
|
|
zfs_znode_init(void)
|
|
|
|
{
|
|
|
|
/*
|
2015-04-14 08:06:40 +03:00
|
|
|
* Initialize zcache. The KMC_SLAB hint is used in order that it be
|
|
|
|
* backed by kmalloc() when on the Linux slab in order that any
|
|
|
|
* wait_on_bit() operations on the related inode operate properly.
|
2008-11-20 23:01:55 +03:00
|
|
|
*/
|
|
|
|
ASSERT(znode_cache == NULL);
|
|
|
|
znode_cache = kmem_cache_create("zfs_znode_cache",
|
|
|
|
sizeof (znode_t), 0, zfs_znode_cache_constructor,
|
2024-07-30 21:40:47 +03:00
|
|
|
zfs_znode_cache_destructor, NULL, NULL, NULL,
|
|
|
|
KMC_SLAB | KMC_RECLAIMABLE);
|
2015-12-23 00:47:38 +03:00
|
|
|
|
|
|
|
ASSERT(znode_hold_cache == NULL);
|
|
|
|
znode_hold_cache = kmem_cache_create("zfs_znode_hold_cache",
|
|
|
|
sizeof (znode_hold_t), 0, zfs_znode_hold_cache_constructor,
|
|
|
|
zfs_znode_hold_cache_destructor, NULL, NULL, NULL, 0);
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
zfs_znode_fini(void)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Cleanup zcache
|
|
|
|
*/
|
|
|
|
if (znode_cache)
|
|
|
|
kmem_cache_destroy(znode_cache);
|
|
|
|
znode_cache = NULL;
|
2015-12-23 00:47:38 +03:00
|
|
|
|
|
|
|
if (znode_hold_cache)
|
|
|
|
kmem_cache_destroy(znode_hold_cache);
|
|
|
|
znode_hold_cache = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The zfs_znode_hold_enter() / zfs_znode_hold_exit() functions are used to
|
|
|
|
* serialize access to a znode and its SA buffer while the object is being
|
|
|
|
* created or destroyed. This kind of locking would normally reside in the
|
|
|
|
* znode itself but in this case that's impossible because the znode and SA
|
|
|
|
* buffer may not yet exist. Therefore the locking is handled externally
|
2021-04-03 04:38:53 +03:00
|
|
|
* with an array of mutexes and AVLs trees which contain per-object locks.
|
2015-12-23 00:47:38 +03:00
|
|
|
*
|
|
|
|
* In zfs_znode_hold_enter() a per-object lock is created as needed, inserted
|
|
|
|
* in to the correct AVL tree and finally the per-object lock is held. In
|
|
|
|
* zfs_znode_hold_exit() the process is reversed. The per-object lock is
|
|
|
|
* released, removed from the AVL tree and destroyed if there are no waiters.
|
|
|
|
*
|
|
|
|
* This scheme has two important properties:
|
|
|
|
*
|
|
|
|
* 1) No memory allocations are performed while holding one of the z_hold_locks.
|
|
|
|
* This ensures evict(), which can be called from direct memory reclaim, will
|
|
|
|
* never block waiting on a z_hold_locks which just happens to have hashed
|
|
|
|
* to the same index.
|
|
|
|
*
|
|
|
|
* 2) All locks used to serialize access to an object are per-object and never
|
|
|
|
* shared. This minimizes lock contention without creating a large number
|
|
|
|
* of dedicated locks.
|
|
|
|
*
|
|
|
|
* On the downside it does require znode_lock_t structures to be frequently
|
|
|
|
* allocated and freed. However, because these are backed by a kmem cache
|
|
|
|
* and very short lived this cost is minimal.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
zfs_znode_hold_compare(const void *a, const void *b)
|
|
|
|
{
|
2016-08-27 21:12:53 +03:00
|
|
|
const znode_hold_t *zh_a = (const znode_hold_t *)a;
|
|
|
|
const znode_hold_t *zh_b = (const znode_hold_t *)b;
|
|
|
|
|
Reduce loaded range tree memory usage
This patch implements a new tree structure for ZFS, and uses it to
store range trees more efficiently.
The new structure is approximately a B-tree, though there are some
small differences from the usual characterizations. The tree has core
nodes and leaf nodes; each contain data elements, which the elements
in the core nodes acting as separators between its children. The
difference between core and leaf nodes is that the core nodes have an
array of children, while leaf nodes don't. Every node in the tree may
be only partially full; in most cases, they are all at least 50% full
(in terms of element count) except for the root node, which can be
less full. Underfull nodes will steal from their neighbors or merge to
remain full enough, while overfull nodes will split in two. The data
elements are contained in tree-controlled buffers; they are copied
into these on insertion, and overwritten on deletion. This means that
the elements are not independently allocated, which reduces overhead,
but also means they can't be shared between trees (and also that
pointers to them are only valid until a side-effectful tree operation
occurs). The overhead varies based on how dense the tree is, but is
usually on the order of about 50% of the element size; the per-node
overheads are very small, and so don't make a significant difference.
The trees can accept arbitrary records; they accept a size and a
comparator to allow them to be used for a variety of purposes.
The new trees replace the AVL trees used in the range trees today.
Currently, the range_seg_t structure contains three 8 byte integers
of payload and two 24 byte avl_tree_node_ts to handle its storage in
both an offset-sorted tree and a size-sorted tree (total size: 64
bytes). In the new model, the range seg structures are usually two 4
byte integers, but a separate one needs to exist for the size-sorted
and offset-sorted tree. Between the raw size, the 50% overhead, and
the double storage, the new btrees are expected to use 8*1.5*2 = 24
bytes per record, or 33.3% as much memory as the AVL trees (this is
for the purposes of storing metaslab range trees; for other purposes,
like scrubs, they use ~50% as much memory).
We reduced the size of the payload in the range segments by teaching
range trees about starting offsets and shifts; since metaslabs have a
fixed starting offset, and they all operate in terms of disk sectors,
we can store the ranges using 4-byte integers as long as the size of
the metaslab divided by the sector size is less than 2^32. For 512-byte
sectors, this is a 2^41 (or 2TB) metaslab, which with the default
settings corresponds to a 256PB disk. 4k sector disks can handle
metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not
anticipate disks of this size in the near future, there should be
almost no cases where metaslabs need 64-byte integers to store their
ranges. We do still have the capability to store 64-byte integer ranges
to account for cases where we are storing per-vdev (or per-dnode) trees,
which could reasonably go above the limits discussed. We also do not
store fill information in the compact version of the node, since it
is only used for sorted scrub.
We also optimized the metaslab loading process in various other ways
to offset some inefficiencies in the btree model. While individual
operations (find, insert, remove_from) are faster for the btree than
they are for the avl tree, remove usually requires a find operation,
while in the AVL tree model the element itself suffices. Some clever
changes actually caused an overall speedup in metaslab loading; we use
approximately 40% less cpu to load metaslabs in our tests on Illumos.
Another memory and performance optimization was achieved by changing
what is stored in the size-sorted trees. When a disk is heavily
fragmented, the df algorithm used by default in ZFS will almost always
find a number of small regions in its initial cursor-based search; it
will usually only fall back to the size-sorted tree to find larger
regions. If we increase the size of the cursor-based search slightly,
and don't store segments that are smaller than a tunable size floor
in the size-sorted tree, we can further cut memory usage down to
below 20% of what the AVL trees store. This also results in further
reductions in CPU time spent loading metaslabs.
The 16KiB size floor was chosen because it results in substantial memory
usage reduction while not usually resulting in situations where we can't
find an appropriate chunk with the cursor and are forced to use an
oversized chunk from the size-sorted tree. In addition, even if we do
have to use an oversized chunk from the size-sorted tree, the chunk
would be too small to use for ZIL allocations, so it isn't as big of a
loss as it might otherwise be. And often, more small allocations will
follow the initial one, and the cursor search will now find the
remainder of the chunk we didn't use all of and use it for subsequent
allocations. Practical testing has shown little or no change in
fragmentation as a result of this change.
If the size-sorted tree becomes empty while the offset sorted one still
has entries, it will load all the entries from the offset sorted tree
and disregard the size floor until it is unloaded again. This operation
occurs rarely with the default setting, only on incredibly thoroughly
fragmented pools.
There are some other small changes to zdb to teach it to handle btrees,
but nothing major.
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed by: Sebastien Roy seb@delphix.com
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #9181
2019-10-09 20:36:03 +03:00
|
|
|
return (TREE_CMP(zh_a->zh_obj, zh_b->zh_obj));
|
2015-12-23 00:47:38 +03:00
|
|
|
}
|
|
|
|
|
2020-06-15 21:30:37 +03:00
|
|
|
static boolean_t __maybe_unused
|
2017-03-08 03:21:37 +03:00
|
|
|
zfs_znode_held(zfsvfs_t *zfsvfs, uint64_t obj)
|
2015-12-23 00:47:38 +03:00
|
|
|
{
|
|
|
|
znode_hold_t *zh, search;
|
2017-03-08 03:21:37 +03:00
|
|
|
int i = ZFS_OBJ_HASH(zfsvfs, obj);
|
2016-01-19 21:41:21 +03:00
|
|
|
boolean_t held;
|
2015-12-23 00:47:38 +03:00
|
|
|
|
|
|
|
search.zh_obj = obj;
|
|
|
|
|
2017-03-08 03:21:37 +03:00
|
|
|
mutex_enter(&zfsvfs->z_hold_locks[i]);
|
|
|
|
zh = avl_find(&zfsvfs->z_hold_trees[i], &search, NULL);
|
2016-01-19 21:41:21 +03:00
|
|
|
held = (zh && MUTEX_HELD(&zh->zh_lock)) ? B_TRUE : B_FALSE;
|
2017-03-08 03:21:37 +03:00
|
|
|
mutex_exit(&zfsvfs->z_hold_locks[i]);
|
2015-12-23 00:47:38 +03:00
|
|
|
|
2016-01-19 21:41:21 +03:00
|
|
|
return (held);
|
2015-12-23 00:47:38 +03:00
|
|
|
}
|
|
|
|
|
2023-01-20 03:59:05 +03:00
|
|
|
znode_hold_t *
|
2017-03-08 03:21:37 +03:00
|
|
|
zfs_znode_hold_enter(zfsvfs_t *zfsvfs, uint64_t obj)
|
2015-12-23 00:47:38 +03:00
|
|
|
{
|
|
|
|
znode_hold_t *zh, *zh_new, search;
|
2017-03-08 03:21:37 +03:00
|
|
|
int i = ZFS_OBJ_HASH(zfsvfs, obj);
|
2015-12-23 00:47:38 +03:00
|
|
|
boolean_t found = B_FALSE;
|
|
|
|
|
|
|
|
zh_new = kmem_cache_alloc(znode_hold_cache, KM_SLEEP);
|
|
|
|
search.zh_obj = obj;
|
|
|
|
|
2017-03-08 03:21:37 +03:00
|
|
|
mutex_enter(&zfsvfs->z_hold_locks[i]);
|
|
|
|
zh = avl_find(&zfsvfs->z_hold_trees[i], &search, NULL);
|
2015-12-23 00:47:38 +03:00
|
|
|
if (likely(zh == NULL)) {
|
|
|
|
zh = zh_new;
|
2022-11-28 22:36:53 +03:00
|
|
|
zh->zh_obj = obj;
|
2017-03-08 03:21:37 +03:00
|
|
|
avl_add(&zfsvfs->z_hold_trees[i], zh);
|
2015-12-23 00:47:38 +03:00
|
|
|
} else {
|
|
|
|
ASSERT3U(zh->zh_obj, ==, obj);
|
|
|
|
found = B_TRUE;
|
|
|
|
}
|
2022-11-28 22:36:53 +03:00
|
|
|
zh->zh_refcount++;
|
|
|
|
ASSERT3S(zh->zh_refcount, >, 0);
|
2017-03-08 03:21:37 +03:00
|
|
|
mutex_exit(&zfsvfs->z_hold_locks[i]);
|
2015-12-23 00:47:38 +03:00
|
|
|
|
|
|
|
if (found == B_TRUE)
|
|
|
|
kmem_cache_free(znode_hold_cache, zh_new);
|
|
|
|
|
|
|
|
ASSERT(MUTEX_NOT_HELD(&zh->zh_lock));
|
|
|
|
mutex_enter(&zh->zh_lock);
|
|
|
|
|
|
|
|
return (zh);
|
|
|
|
}
|
|
|
|
|
2023-01-20 03:59:05 +03:00
|
|
|
void
|
2017-03-08 03:21:37 +03:00
|
|
|
zfs_znode_hold_exit(zfsvfs_t *zfsvfs, znode_hold_t *zh)
|
2015-12-23 00:47:38 +03:00
|
|
|
{
|
2017-03-08 03:21:37 +03:00
|
|
|
int i = ZFS_OBJ_HASH(zfsvfs, zh->zh_obj);
|
2015-12-23 00:47:38 +03:00
|
|
|
boolean_t remove = B_FALSE;
|
|
|
|
|
2017-03-08 03:21:37 +03:00
|
|
|
ASSERT(zfs_znode_held(zfsvfs, zh->zh_obj));
|
2015-12-23 00:47:38 +03:00
|
|
|
mutex_exit(&zh->zh_lock);
|
|
|
|
|
2017-03-08 03:21:37 +03:00
|
|
|
mutex_enter(&zfsvfs->z_hold_locks[i]);
|
2022-11-28 22:36:53 +03:00
|
|
|
ASSERT3S(zh->zh_refcount, >, 0);
|
|
|
|
if (--zh->zh_refcount == 0) {
|
2017-03-08 03:21:37 +03:00
|
|
|
avl_remove(&zfsvfs->z_hold_trees[i], zh);
|
2015-12-23 00:47:38 +03:00
|
|
|
remove = B_TRUE;
|
|
|
|
}
|
2017-03-08 03:21:37 +03:00
|
|
|
mutex_exit(&zfsvfs->z_hold_locks[i]);
|
2015-12-23 00:47:38 +03:00
|
|
|
|
|
|
|
if (remove == B_TRUE)
|
|
|
|
kmem_cache_free(znode_hold_cache, zh);
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
|
|
|
|
2019-12-13 18:54:10 +03:00
|
|
|
dev_t
|
|
|
|
zfs_cmpldev(uint64_t dev)
|
|
|
|
{
|
|
|
|
return (dev);
|
|
|
|
}
|
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
static void
|
2017-03-08 03:21:37 +03:00
|
|
|
zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp,
|
2010-05-29 00:45:14 +04:00
|
|
|
dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl)
|
2008-11-20 23:01:55 +03:00
|
|
|
{
|
2017-03-08 03:21:37 +03:00
|
|
|
ASSERT(zfs_znode_held(zfsvfs, zp->z_id));
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
|
|
mutex_enter(&zp->z_lock);
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
ASSERT(zp->z_sa_hdl == NULL);
|
|
|
|
ASSERT(zp->z_acl_cached == NULL);
|
|
|
|
if (sa_hdl == NULL) {
|
2017-03-08 03:21:37 +03:00
|
|
|
VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp,
|
2010-05-29 00:45:14 +04:00
|
|
|
SA_HDL_SHARED, &zp->z_sa_hdl));
|
|
|
|
} else {
|
|
|
|
zp->z_sa_hdl = sa_hdl;
|
|
|
|
sa_set_userp(sa_hdl, zp);
|
|
|
|
}
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE;
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
|
|
mutex_exit(&zp->z_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
zfs_znode_dmu_fini(znode_t *zp)
|
|
|
|
{
|
2023-01-20 03:59:05 +03:00
|
|
|
ASSERT(zfs_znode_held(ZTOZSB(zp), zp->z_id) ||
|
2011-02-08 22:16:06 +03:00
|
|
|
RW_WRITE_HELD(&ZTOZSB(zp)->z_teardown_inactive_lock));
|
2010-05-29 00:45:14 +04:00
|
|
|
|
|
|
|
sa_handle_destroy(zp->z_sa_hdl);
|
|
|
|
zp->z_sa_hdl = NULL;
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2011-02-08 22:16:06 +03:00
|
|
|
* Called by new_inode() to allocate a new inode.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
zfs_inode_alloc(struct super_block *sb, struct inode **ip)
|
|
|
|
{
|
|
|
|
znode_t *zp;
|
|
|
|
|
2014-11-21 03:09:39 +03:00
|
|
|
zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
|
2011-02-08 22:16:06 +03:00
|
|
|
*ip = ZTOI(zp);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Called in multiple places when an inode should be destroyed.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
zfs_inode_destroy(struct inode *ip)
|
|
|
|
{
|
|
|
|
znode_t *zp = ITOZ(ip);
|
2017-03-08 03:21:37 +03:00
|
|
|
zfsvfs_t *zfsvfs = ZTOZSB(zp);
|
2011-02-08 22:16:06 +03:00
|
|
|
|
2017-03-08 03:21:37 +03:00
|
|
|
mutex_enter(&zfsvfs->z_znodes_lock);
|
2013-01-16 04:41:09 +04:00
|
|
|
if (list_link_active(&zp->z_link_node)) {
|
2017-03-08 03:21:37 +03:00
|
|
|
list_remove(&zfsvfs->z_all_znodes, zp);
|
2013-01-16 04:41:09 +04:00
|
|
|
}
|
2017-03-08 03:21:37 +03:00
|
|
|
mutex_exit(&zfsvfs->z_znodes_lock);
|
2011-02-08 22:16:06 +03:00
|
|
|
|
|
|
|
if (zp->z_acl_cached) {
|
|
|
|
zfs_acl_free(zp->z_acl_cached);
|
|
|
|
zp->z_acl_cached = NULL;
|
|
|
|
}
|
|
|
|
|
2011-10-25 03:55:20 +04:00
|
|
|
if (zp->z_xattr_cached) {
|
|
|
|
nvlist_free(zp->z_xattr_cached);
|
|
|
|
zp->z_xattr_cached = NULL;
|
|
|
|
}
|
|
|
|
|
2011-02-08 22:16:06 +03:00
|
|
|
kmem_cache_free(znode_cache, zp);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2017-03-08 03:21:37 +03:00
|
|
|
zfs_inode_set_ops(zfsvfs_t *zfsvfs, struct inode *ip)
|
2011-02-08 22:16:06 +03:00
|
|
|
{
|
2011-05-09 23:31:56 +04:00
|
|
|
uint64_t rdev = 0;
|
2011-02-08 22:16:06 +03:00
|
|
|
|
|
|
|
switch (ip->i_mode & S_IFMT) {
|
|
|
|
case S_IFREG:
|
|
|
|
ip->i_op = &zpl_inode_operations;
|
|
|
|
ip->i_fop = &zpl_file_operations;
|
|
|
|
ip->i_mapping->a_ops = &zpl_address_space_operations;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case S_IFDIR:
|
|
|
|
ip->i_op = &zpl_dir_inode_operations;
|
|
|
|
ip->i_fop = &zpl_dir_file_operations;
|
|
|
|
ITOZ(ip)->z_zn_prefetch = B_TRUE;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case S_IFLNK:
|
|
|
|
ip->i_op = &zpl_symlink_inode_operations;
|
|
|
|
break;
|
|
|
|
|
2011-05-09 23:31:56 +04:00
|
|
|
/*
|
|
|
|
* rdev is only stored in a SA only for device files.
|
|
|
|
*/
|
2011-02-08 22:16:06 +03:00
|
|
|
case S_IFCHR:
|
|
|
|
case S_IFBLK:
|
2017-03-08 03:21:37 +03:00
|
|
|
(void) sa_lookup(ITOZ(ip)->z_sa_hdl, SA_ZPL_RDEV(zfsvfs), &rdev,
|
2015-07-14 00:51:59 +03:00
|
|
|
sizeof (rdev));
|
2022-02-15 19:58:59 +03:00
|
|
|
zfs_fallthrough;
|
2011-05-09 23:31:56 +04:00
|
|
|
case S_IFIFO:
|
|
|
|
case S_IFSOCK:
|
2011-02-08 22:16:06 +03:00
|
|
|
init_special_inode(ip, ip->i_mode, rdev);
|
|
|
|
ip->i_op = &zpl_special_inode_operations;
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
2015-07-14 00:51:59 +03:00
|
|
|
zfs_panic_recover("inode %llu has invalid mode: 0x%x\n",
|
|
|
|
(u_longlong_t)ip->i_ino, ip->i_mode);
|
|
|
|
|
|
|
|
/* Assume the inode is a file and attempt to continue */
|
|
|
|
ip->i_mode = S_IFREG | 0644;
|
|
|
|
ip->i_op = &zpl_inode_operations;
|
|
|
|
ip->i_fop = &zpl_file_operations;
|
|
|
|
ip->i_mapping->a_ops = &zpl_address_space_operations;
|
|
|
|
break;
|
2011-02-08 22:16:06 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-06-15 21:30:37 +03:00
|
|
|
static void
|
2016-12-15 01:18:53 +03:00
|
|
|
zfs_set_inode_flags(znode_t *zp, struct inode *ip)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Linux and Solaris have different sets of file attributes, so we
|
|
|
|
* restrict this conversion to the intersection of the two.
|
|
|
|
*/
|
2016-12-17 00:54:51 +03:00
|
|
|
unsigned int flags = 0;
|
|
|
|
if (zp->z_pflags & ZFS_IMMUTABLE)
|
|
|
|
flags |= S_IMMUTABLE;
|
|
|
|
if (zp->z_pflags & ZFS_APPENDONLY)
|
|
|
|
flags |= S_APPEND;
|
2016-12-15 01:18:53 +03:00
|
|
|
|
2016-12-17 00:54:51 +03:00
|
|
|
inode_set_flags(ip, flags, S_IMMUTABLE|S_APPEND);
|
2016-12-15 01:18:53 +03:00
|
|
|
}
|
|
|
|
|
2016-04-01 02:52:03 +03:00
|
|
|
/*
|
2021-02-09 22:17:29 +03:00
|
|
|
* Update the embedded inode given the znode.
|
2016-04-01 02:52:03 +03:00
|
|
|
*/
|
2016-08-01 23:02:25 +03:00
|
|
|
void
|
2021-02-09 22:17:29 +03:00
|
|
|
zfs_znode_update_vfs(znode_t *zp)
|
2016-04-01 02:52:03 +03:00
|
|
|
{
|
|
|
|
struct inode *ip;
|
|
|
|
uint32_t blksize;
|
|
|
|
u_longlong_t i_blocks;
|
|
|
|
|
|
|
|
ASSERT(zp != NULL);
|
|
|
|
ip = ZTOI(zp);
|
|
|
|
|
|
|
|
/* Skip .zfs control nodes which do not exist on disk. */
|
|
|
|
if (zfsctl_is_node(ip))
|
|
|
|
return;
|
|
|
|
|
|
|
|
dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &blksize, &i_blocks);
|
|
|
|
|
|
|
|
spin_lock(&ip->i_lock);
|
2020-10-22 00:08:06 +03:00
|
|
|
ip->i_mode = zp->z_mode;
|
2016-04-01 02:52:03 +03:00
|
|
|
ip->i_blocks = i_blocks;
|
|
|
|
i_size_write(ip, zp->z_size);
|
|
|
|
spin_unlock(&ip->i_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2011-02-08 22:16:06 +03:00
|
|
|
/*
|
|
|
|
* Construct a znode+inode and initialize.
|
2008-11-20 23:01:55 +03:00
|
|
|
*
|
|
|
|
* This does not do a call to dmu_set_user() that is
|
|
|
|
* up to the caller to do, in case you don't want to
|
|
|
|
* return the znode
|
|
|
|
*/
|
|
|
|
static znode_t *
|
2017-03-08 03:21:37 +03:00
|
|
|
zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz,
|
2019-06-06 00:18:46 +03:00
|
|
|
dmu_object_type_t obj_type, sa_handle_t *hdl)
|
2008-11-20 23:01:55 +03:00
|
|
|
{
|
|
|
|
znode_t *zp;
|
2011-02-08 22:16:06 +03:00
|
|
|
struct inode *ip;
|
2014-01-08 02:16:46 +04:00
|
|
|
uint64_t mode;
|
2010-05-29 00:45:14 +04:00
|
|
|
uint64_t parent;
|
2016-04-18 22:08:53 +03:00
|
|
|
uint64_t tmp_gen;
|
2016-07-14 17:44:38 +03:00
|
|
|
uint64_t links;
|
2016-05-22 14:15:57 +03:00
|
|
|
uint64_t z_uid, z_gid;
|
2019-03-17 03:43:13 +03:00
|
|
|
uint64_t atime[2], mtime[2], ctime[2], btime[2];
|
2023-12-16 14:31:32 +03:00
|
|
|
inode_timespec_t tmp_ts;
|
2018-02-14 01:54:54 +03:00
|
|
|
uint64_t projid = ZFS_DEFAULT_PROJID;
|
2019-03-17 03:43:13 +03:00
|
|
|
sa_bulk_attr_t bulk[12];
|
2010-05-29 00:45:14 +04:00
|
|
|
int count = 0;
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2017-03-08 03:21:37 +03:00
|
|
|
ASSERT(zfsvfs != NULL);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2017-03-08 03:21:37 +03:00
|
|
|
ip = new_inode(zfsvfs->z_sb);
|
2011-02-08 22:16:06 +03:00
|
|
|
if (ip == NULL)
|
|
|
|
return (NULL);
|
2011-01-06 00:16:12 +03:00
|
|
|
|
2011-02-08 22:16:06 +03:00
|
|
|
zp = ITOZ(ip);
|
2008-11-20 23:01:55 +03:00
|
|
|
ASSERT(zp->z_dirlocks == NULL);
|
2011-11-11 11:15:53 +04:00
|
|
|
ASSERT3P(zp->z_acl_cached, ==, NULL);
|
|
|
|
ASSERT3P(zp->z_xattr_cached, ==, NULL);
|
2019-08-13 16:58:02 +03:00
|
|
|
zp->z_unlinked = B_FALSE;
|
|
|
|
zp->z_atime_dirty = B_FALSE;
|
|
|
|
zp->z_is_ctldir = B_FALSE;
|
2019-08-27 19:55:51 +03:00
|
|
|
zp->z_suspended = B_FALSE;
|
2010-05-29 00:45:14 +04:00
|
|
|
zp->z_sa_hdl = NULL;
|
2008-11-20 23:01:55 +03:00
|
|
|
zp->z_mapcnt = 0;
|
|
|
|
zp->z_id = db->db_object;
|
|
|
|
zp->z_blksz = blksz;
|
|
|
|
zp->z_seq = 0x7A4653;
|
|
|
|
zp->z_sync_cnt = 0;
|
2022-05-03 23:23:26 +03:00
|
|
|
zp->z_sync_writes_cnt = 0;
|
|
|
|
zp->z_async_writes_cnt = 0;
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2017-03-08 03:21:37 +03:00
|
|
|
zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl);
|
2011-02-08 22:16:06 +03:00
|
|
|
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
|
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &tmp_gen, 8);
|
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
|
|
|
|
&zp->z_size, 8);
|
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
|
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
|
2010-05-29 00:45:14 +04:00
|
|
|
&zp->z_pflags, 8);
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL,
|
2011-01-06 00:16:12 +03:00
|
|
|
&parent, 8);
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, &z_uid, 8);
|
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, &z_gid, 8);
|
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
|
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
|
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
|
2019-03-17 03:43:13 +03:00
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &btime, 16);
|
2010-05-29 00:45:14 +04:00
|
|
|
|
2018-02-14 01:54:54 +03:00
|
|
|
if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || tmp_gen == 0 ||
|
|
|
|
(dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
|
|
|
|
(zp->z_pflags & ZFS_PROJID) &&
|
|
|
|
sa_lookup(zp->z_sa_hdl, SA_ZPL_PROJID(zfsvfs), &projid, 8) != 0)) {
|
2010-05-29 00:45:14 +04:00
|
|
|
if (hdl == NULL)
|
|
|
|
sa_handle_destroy(zp->z_sa_hdl);
|
2015-10-09 22:27:01 +03:00
|
|
|
zp->z_sa_hdl = NULL;
|
2011-02-08 22:16:06 +03:00
|
|
|
goto error;
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
2011-01-06 00:16:12 +03:00
|
|
|
|
2018-02-14 01:54:54 +03:00
|
|
|
zp->z_projid = projid;
|
2016-09-28 00:08:52 +03:00
|
|
|
zp->z_mode = ip->i_mode = mode;
|
2016-04-18 22:08:53 +03:00
|
|
|
ip->i_generation = (uint32_t)tmp_gen;
|
2016-07-29 20:02:59 +03:00
|
|
|
ip->i_blkbits = SPA_MINBLOCKSHIFT;
|
2016-07-14 17:44:38 +03:00
|
|
|
set_nlink(ip, (uint32_t)links);
|
2016-05-22 14:15:57 +03:00
|
|
|
zfs_uid_write(ip, z_uid);
|
|
|
|
zfs_gid_write(ip, z_gid);
|
2016-12-15 01:18:53 +03:00
|
|
|
zfs_set_inode_flags(zp, ip);
|
2014-01-08 02:16:46 +04:00
|
|
|
|
2016-10-13 03:30:46 +03:00
|
|
|
/* Cache the xattr parent id */
|
|
|
|
if (zp->z_pflags & ZFS_XATTR)
|
|
|
|
zp->z_xattr_parent = parent;
|
|
|
|
|
2023-12-16 14:31:32 +03:00
|
|
|
ZFS_TIME_DECODE(&tmp_ts, atime);
|
|
|
|
zpl_inode_set_atime_to_ts(ip, tmp_ts);
|
|
|
|
ZFS_TIME_DECODE(&tmp_ts, mtime);
|
|
|
|
zpl_inode_set_mtime_to_ts(ip, tmp_ts);
|
|
|
|
ZFS_TIME_DECODE(&tmp_ts, ctime);
|
|
|
|
zpl_inode_set_ctime_to_ts(ip, tmp_ts);
|
2019-03-17 03:43:13 +03:00
|
|
|
ZFS_TIME_DECODE(&zp->z_btime, btime);
|
2016-08-01 23:02:25 +03:00
|
|
|
|
2019-06-06 00:18:46 +03:00
|
|
|
ip->i_ino = zp->z_id;
|
2021-02-09 22:17:29 +03:00
|
|
|
zfs_znode_update_vfs(zp);
|
2017-03-08 03:21:37 +03:00
|
|
|
zfs_inode_set_ops(zfsvfs, ip);
|
2011-02-08 22:16:06 +03:00
|
|
|
|
2013-01-16 04:41:09 +04:00
|
|
|
/*
|
|
|
|
* The only way insert_inode_locked() can fail is if the ip->i_ino
|
|
|
|
* number is already hashed for this super block. This can never
|
|
|
|
* happen because the inode numbers map 1:1 with the object numbers.
|
|
|
|
*
|
2021-06-12 03:00:33 +03:00
|
|
|
* Exceptions include rolling back a mounted file system, either
|
|
|
|
* from the zfs rollback or zfs recv command.
|
|
|
|
*
|
|
|
|
* Active inodes are unhashed during the rollback, but since zrele
|
|
|
|
* can happen asynchronously, we can't guarantee they've been
|
|
|
|
* unhashed. This can cause hash collisions in unlinked drain
|
|
|
|
* processing so do not hash unlinked znodes.
|
2013-01-16 04:41:09 +04:00
|
|
|
*/
|
2021-06-12 03:00:33 +03:00
|
|
|
if (links > 0)
|
|
|
|
VERIFY3S(insert_inode_locked(ip), ==, 0);
|
2011-03-30 10:04:39 +04:00
|
|
|
|
2017-03-08 03:21:37 +03:00
|
|
|
mutex_enter(&zfsvfs->z_znodes_lock);
|
|
|
|
list_insert_tail(&zfsvfs->z_all_znodes, zp);
|
|
|
|
mutex_exit(&zfsvfs->z_znodes_lock);
|
2008-12-03 23:09:06 +03:00
|
|
|
|
2021-06-12 03:00:33 +03:00
|
|
|
if (links > 0)
|
|
|
|
unlock_new_inode(ip);
|
2008-11-20 23:01:55 +03:00
|
|
|
return (zp);
|
2011-02-08 22:16:06 +03:00
|
|
|
|
|
|
|
error:
|
|
|
|
iput(ip);
|
2013-11-01 23:26:11 +04:00
|
|
|
return (NULL);
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
|
|
|
|
2014-07-16 00:29:57 +04:00
|
|
|
/*
|
|
|
|
* Safely mark an inode dirty. Inodes which are part of a read-only
|
|
|
|
* file system or snapshot may not be dirtied.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
zfs_mark_inode_dirty(struct inode *ip)
|
|
|
|
{
|
2017-03-08 03:21:37 +03:00
|
|
|
zfsvfs_t *zfsvfs = ITOZSB(ip);
|
2014-07-16 00:29:57 +04:00
|
|
|
|
2017-03-08 03:21:37 +03:00
|
|
|
if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
|
2014-07-16 00:29:57 +04:00
|
|
|
return;
|
|
|
|
|
|
|
|
mark_inode_dirty(ip);
|
|
|
|
}
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
static uint64_t empty_xattr;
|
|
|
|
static uint64_t pad[4];
|
|
|
|
static zfs_acl_phys_t acl_phys;
|
2008-11-20 23:01:55 +03:00
|
|
|
/*
|
|
|
|
* Create a new DMU object to hold a zfs znode.
|
|
|
|
*
|
|
|
|
* IN: dzp - parent directory for new znode
|
|
|
|
* vap - file attributes for new znode
|
|
|
|
* tx - dmu transaction id for zap operations
|
|
|
|
* cr - credentials of caller
|
|
|
|
* flag - flags:
|
|
|
|
* IS_ROOT_NODE - new object will be root
|
2019-05-26 00:29:10 +03:00
|
|
|
* IS_TMPFILE - new object is of O_TMPFILE
|
2008-11-20 23:01:55 +03:00
|
|
|
* IS_XATTR - new object is an attribute
|
2019-05-26 00:29:10 +03:00
|
|
|
* acl_ids - ACL related attributes
|
2008-11-20 23:01:55 +03:00
|
|
|
*
|
2019-05-26 00:29:10 +03:00
|
|
|
* OUT: zpp - allocated znode (set to dzp if IS_ROOT_NODE)
|
2008-11-20 23:01:55 +03:00
|
|
|
*
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
|
2010-05-29 00:45:14 +04:00
|
|
|
uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids)
|
2008-11-20 23:01:55 +03:00
|
|
|
{
|
2010-05-29 00:45:14 +04:00
|
|
|
uint64_t crtime[2], atime[2], mtime[2], ctime[2];
|
|
|
|
uint64_t mode, size, links, parent, pflags;
|
2018-02-14 01:54:54 +03:00
|
|
|
uint64_t projid = ZFS_DEFAULT_PROJID;
|
2010-05-29 00:45:14 +04:00
|
|
|
uint64_t rdev = 0;
|
2017-03-08 03:21:37 +03:00
|
|
|
zfsvfs_t *zfsvfs = ZTOZSB(dzp);
|
2010-05-29 00:45:14 +04:00
|
|
|
dmu_buf_t *db;
|
2018-06-20 07:51:18 +03:00
|
|
|
inode_timespec_t now;
|
2008-11-20 23:01:55 +03:00
|
|
|
uint64_t gen, obj;
|
2010-05-29 00:45:14 +04:00
|
|
|
int bonuslen;
|
Implement large_dnode pool feature
Justification
-------------
This feature adds support for variable length dnodes. Our motivation is
to eliminate the overhead associated with using spill blocks. Spill
blocks are used to store system attribute data (i.e. file metadata) that
does not fit in the dnode's bonus buffer. By allowing a larger bonus
buffer area the use of a spill block can be avoided. Spill blocks
potentially incur an additional read I/O for every dnode in a dnode
block. As a worst case example, reading 32 dnodes from a 16k dnode block
and all of the spill blocks could issue 33 separate reads. Now suppose
those dnodes have size 1024 and therefore don't need spill blocks. Then
the worst case number of blocks read is reduced to from 33 to two--one
per dnode block. In practice spill blocks may tend to be co-located on
disk with the dnode blocks so the reduction in I/O would not be this
drastic. In a badly fragmented pool, however, the improvement could be
significant.
ZFS-on-Linux systems that make heavy use of extended attributes would
benefit from this feature. In particular, ZFS-on-Linux supports the
xattr=sa dataset property which allows file extended attribute data
to be stored in the dnode bonus buffer as an alternative to the
traditional directory-based format. Workloads such as SELinux and the
Lustre distributed filesystem often store enough xattr data to force
spill bocks when xattr=sa is in effect. Large dnodes may therefore
provide a performance benefit to such systems.
Other use cases that may benefit from this feature include files with
large ACLs and symbolic links with long target names. Furthermore,
this feature may be desirable on other platforms in case future
applications or features are developed that could make use of a
larger bonus buffer area.
Implementation
--------------
The size of a dnode may be a multiple of 512 bytes up to the size of
a dnode block (currently 16384 bytes). A dn_extra_slots field was
added to the current on-disk dnode_phys_t structure to describe the
size of the physical dnode on disk. The 8 bits for this field were
taken from the zero filled dn_pad2 field. The field represents how
many "extra" dnode_phys_t slots a dnode consumes in its dnode block.
This convention results in a value of 0 for 512 byte dnodes which
preserves on-disk format compatibility with older software.
Similarly, the in-memory dnode_t structure has a new dn_num_slots field
to represent the total number of dnode_phys_t slots consumed on disk.
Thus dn->dn_num_slots is 1 greater than the corresponding
dnp->dn_extra_slots. This difference in convention was adopted
because, unlike on-disk structures, backward compatibility is not a
concern for in-memory objects, so we used a more natural way to
represent size for a dnode_t.
The default size for newly created dnodes is determined by the value of
a new "dnodesize" dataset property. By default the property is set to
"legacy" which is compatible with older software. Setting the property
to "auto" will allow the filesystem to choose the most suitable dnode
size. Currently this just sets the default dnode size to 1k, but future
code improvements could dynamically choose a size based on observed
workload patterns. Dnodes of varying sizes can coexist within the same
dataset and even within the same dnode block. For example, to enable
automatically-sized dnodes, run
# zfs set dnodesize=auto tank/fish
The user can also specify literal values for the dnodesize property.
These are currently limited to powers of two from 1k to 16k. The
power-of-2 limitation is only for simplicity of the user interface.
Internally the implementation can handle any multiple of 512 up to 16k,
and consumers of the DMU API can specify any legal dnode value.
The size of a new dnode is determined at object allocation time and
stored as a new field in the znode in-memory structure. New DMU
interfaces are added to allow the consumer to specify the dnode size
that a newly allocated object should use. Existing interfaces are
unchanged to avoid having to update every call site and to preserve
compatibility with external consumers such as Lustre. The new
interfaces names are given below. The versions of these functions that
don't take a dnodesize parameter now just call the _dnsize() versions
with a dnodesize of 0, which means use the legacy dnode size.
New DMU interfaces:
dmu_object_alloc_dnsize()
dmu_object_claim_dnsize()
dmu_object_reclaim_dnsize()
New ZAP interfaces:
zap_create_dnsize()
zap_create_norm_dnsize()
zap_create_flags_dnsize()
zap_create_claim_norm_dnsize()
zap_create_link_dnsize()
The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The
spa_maxdnodesize() function should be used to determine the maximum
bonus length for a pool.
These are a few noteworthy changes to key functions:
* The prototype for dnode_hold_impl() now takes a "slots" parameter.
When the DNODE_MUST_BE_FREE flag is set, this parameter is used to
ensure the hole at the specified object offset is large enough to
hold the dnode being created. The slots parameter is also used
to ensure a dnode does not span multiple dnode blocks. In both of
these cases, if a failure occurs, ENOSPC is returned. Keep in mind,
these failure cases are only possible when using DNODE_MUST_BE_FREE.
If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
dnode_hold_impl() will check if the requested dnode is already
consumed as an extra dnode slot by an large dnode, in which case
it returns ENOENT.
* The function dmu_object_alloc() advances to the next dnode block
if dnode_hold_impl() returns an error for a requested object.
This is because the beginning of the next dnode block is the only
location it can safely assume to either be a hole or a valid
starting point for a dnode.
* dnode_next_offset_level() and other functions that iterate
through dnode blocks may no longer use a simple array indexing
scheme. These now use the current dnode's dn_num_slots field to
advance to the next dnode in the block. This is to ensure we
properly skip the current dnode's bonus area and don't interpret it
as a valid dnode.
zdb
---
The zdb command was updated to display a dnode's size under the
"dnsize" column when the object is dumped.
For ZIL create log records, zdb will now display the slot count for
the object.
ztest
-----
Ztest chooses a random dnodesize for every newly created object. The
random distribution is more heavily weighted toward small dnodes to
better simulate real-world datasets.
Unused bonus buffer space is filled with non-zero values computed from
the object number, dataset id, offset, and generation number. This
helps ensure that the dnode traversal code properly skips the interior
regions of large dnodes, and that these interior regions are not
overwritten by data belonging to other dnodes. A new test visits each
object in a dataset. It verifies that the actual dnode size matches what
was stored in the ztest block tag when it was created. It also verifies
that the unused bonus buffer space is filled with the expected data
patterns.
ZFS Test Suite
--------------
Added six new large dnode-specific tests, and integrated the dnodesize
property into existing tests for zfs allow and send/recv.
Send/Receive
------------
ZFS send streams for datasets containing large dnodes cannot be received
on pools that don't support the large_dnode feature. A send stream with
large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be
unrecognized by an incompatible receiving pool so that the zfs receive
will fail gracefully.
While not implemented here, it may be possible to generate a
backward-compatible send stream from a dataset containing large
dnodes. The implementation may be tricky, however, because the send
object record for a large dnode would need to be resized to a 512
byte dnode, possibly kicking in a spill block in the process. This
means we would need to construct a new SA layout and possibly
register it in the SA layout object. The SA layout is normally just
sent as an ordinary object record. But if we are constructing new
layouts while generating the send stream we'd have to build the SA
layout object dynamically and send it at the end of the stream.
For sending and receiving between pools that do support large dnodes,
the drr_object send record type is extended with a new field to store
the dnode slot count. This field was repurposed from unused padding
in the structure.
ZIL Replay
----------
The dnode slot count is stored in the uppermost 8 bits of the lr_foid
field. The bits were unused as the object id is currently capped at
48 bits.
Resizing Dnodes
---------------
It should be possible to resize a dnode when it is dirtied if the
current dnodesize dataset property differs from the dnode's size, but
this functionality is not currently implemented. Clearly a dnode can
only grow if there are sufficient contiguous unused slots in the
dnode block, but it should always be possible to shrink a dnode.
Growing dnodes may be useful to reduce fragmentation in a pool with
many spill blocks in use. Shrinking dnodes may be useful to allow
sending a dataset to a pool that doesn't support the large_dnode
feature.
Feature Reference Counting
--------------------------
The reference count for the large_dnode pool feature tracks the
number of datasets that have ever contained a dnode of size larger
than 512 bytes. The first time a large dnode is created in a dataset
the dataset is converted to an extensible dataset. This is a one-way
operation and the only way to decrement the feature count is to
destroy the dataset, even if the dataset no longer contains any large
dnodes. The complexity of reference counting on a per-dnode basis was
too high, so we chose to track it on a per-dataset basis similarly to
the large_block feature.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #3542
2016-03-17 04:25:34 +03:00
|
|
|
int dnodesize;
|
2010-05-29 00:45:14 +04:00
|
|
|
sa_handle_t *sa_hdl;
|
|
|
|
dmu_object_type_t obj_type;
|
2011-01-08 00:47:47 +03:00
|
|
|
sa_bulk_attr_t *sa_attrs;
|
2010-05-29 00:45:14 +04:00
|
|
|
int cnt = 0;
|
|
|
|
zfs_acl_locator_cb_t locate = { 0 };
|
2015-12-23 00:47:38 +03:00
|
|
|
znode_hold_t *zh;
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2017-03-08 03:21:37 +03:00
|
|
|
if (zfsvfs->z_replay) {
|
2008-11-20 23:01:55 +03:00
|
|
|
obj = vap->va_nodeid;
|
|
|
|
now = vap->va_ctime; /* see zfs_replay_create() */
|
|
|
|
gen = vap->va_nblocks; /* ditto */
|
Implement large_dnode pool feature
Justification
-------------
This feature adds support for variable length dnodes. Our motivation is
to eliminate the overhead associated with using spill blocks. Spill
blocks are used to store system attribute data (i.e. file metadata) that
does not fit in the dnode's bonus buffer. By allowing a larger bonus
buffer area the use of a spill block can be avoided. Spill blocks
potentially incur an additional read I/O for every dnode in a dnode
block. As a worst case example, reading 32 dnodes from a 16k dnode block
and all of the spill blocks could issue 33 separate reads. Now suppose
those dnodes have size 1024 and therefore don't need spill blocks. Then
the worst case number of blocks read is reduced to from 33 to two--one
per dnode block. In practice spill blocks may tend to be co-located on
disk with the dnode blocks so the reduction in I/O would not be this
drastic. In a badly fragmented pool, however, the improvement could be
significant.
ZFS-on-Linux systems that make heavy use of extended attributes would
benefit from this feature. In particular, ZFS-on-Linux supports the
xattr=sa dataset property which allows file extended attribute data
to be stored in the dnode bonus buffer as an alternative to the
traditional directory-based format. Workloads such as SELinux and the
Lustre distributed filesystem often store enough xattr data to force
spill bocks when xattr=sa is in effect. Large dnodes may therefore
provide a performance benefit to such systems.
Other use cases that may benefit from this feature include files with
large ACLs and symbolic links with long target names. Furthermore,
this feature may be desirable on other platforms in case future
applications or features are developed that could make use of a
larger bonus buffer area.
Implementation
--------------
The size of a dnode may be a multiple of 512 bytes up to the size of
a dnode block (currently 16384 bytes). A dn_extra_slots field was
added to the current on-disk dnode_phys_t structure to describe the
size of the physical dnode on disk. The 8 bits for this field were
taken from the zero filled dn_pad2 field. The field represents how
many "extra" dnode_phys_t slots a dnode consumes in its dnode block.
This convention results in a value of 0 for 512 byte dnodes which
preserves on-disk format compatibility with older software.
Similarly, the in-memory dnode_t structure has a new dn_num_slots field
to represent the total number of dnode_phys_t slots consumed on disk.
Thus dn->dn_num_slots is 1 greater than the corresponding
dnp->dn_extra_slots. This difference in convention was adopted
because, unlike on-disk structures, backward compatibility is not a
concern for in-memory objects, so we used a more natural way to
represent size for a dnode_t.
The default size for newly created dnodes is determined by the value of
a new "dnodesize" dataset property. By default the property is set to
"legacy" which is compatible with older software. Setting the property
to "auto" will allow the filesystem to choose the most suitable dnode
size. Currently this just sets the default dnode size to 1k, but future
code improvements could dynamically choose a size based on observed
workload patterns. Dnodes of varying sizes can coexist within the same
dataset and even within the same dnode block. For example, to enable
automatically-sized dnodes, run
# zfs set dnodesize=auto tank/fish
The user can also specify literal values for the dnodesize property.
These are currently limited to powers of two from 1k to 16k. The
power-of-2 limitation is only for simplicity of the user interface.
Internally the implementation can handle any multiple of 512 up to 16k,
and consumers of the DMU API can specify any legal dnode value.
The size of a new dnode is determined at object allocation time and
stored as a new field in the znode in-memory structure. New DMU
interfaces are added to allow the consumer to specify the dnode size
that a newly allocated object should use. Existing interfaces are
unchanged to avoid having to update every call site and to preserve
compatibility with external consumers such as Lustre. The new
interfaces names are given below. The versions of these functions that
don't take a dnodesize parameter now just call the _dnsize() versions
with a dnodesize of 0, which means use the legacy dnode size.
New DMU interfaces:
dmu_object_alloc_dnsize()
dmu_object_claim_dnsize()
dmu_object_reclaim_dnsize()
New ZAP interfaces:
zap_create_dnsize()
zap_create_norm_dnsize()
zap_create_flags_dnsize()
zap_create_claim_norm_dnsize()
zap_create_link_dnsize()
The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The
spa_maxdnodesize() function should be used to determine the maximum
bonus length for a pool.
These are a few noteworthy changes to key functions:
* The prototype for dnode_hold_impl() now takes a "slots" parameter.
When the DNODE_MUST_BE_FREE flag is set, this parameter is used to
ensure the hole at the specified object offset is large enough to
hold the dnode being created. The slots parameter is also used
to ensure a dnode does not span multiple dnode blocks. In both of
these cases, if a failure occurs, ENOSPC is returned. Keep in mind,
these failure cases are only possible when using DNODE_MUST_BE_FREE.
If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
dnode_hold_impl() will check if the requested dnode is already
consumed as an extra dnode slot by an large dnode, in which case
it returns ENOENT.
* The function dmu_object_alloc() advances to the next dnode block
if dnode_hold_impl() returns an error for a requested object.
This is because the beginning of the next dnode block is the only
location it can safely assume to either be a hole or a valid
starting point for a dnode.
* dnode_next_offset_level() and other functions that iterate
through dnode blocks may no longer use a simple array indexing
scheme. These now use the current dnode's dn_num_slots field to
advance to the next dnode in the block. This is to ensure we
properly skip the current dnode's bonus area and don't interpret it
as a valid dnode.
zdb
---
The zdb command was updated to display a dnode's size under the
"dnsize" column when the object is dumped.
For ZIL create log records, zdb will now display the slot count for
the object.
ztest
-----
Ztest chooses a random dnodesize for every newly created object. The
random distribution is more heavily weighted toward small dnodes to
better simulate real-world datasets.
Unused bonus buffer space is filled with non-zero values computed from
the object number, dataset id, offset, and generation number. This
helps ensure that the dnode traversal code properly skips the interior
regions of large dnodes, and that these interior regions are not
overwritten by data belonging to other dnodes. A new test visits each
object in a dataset. It verifies that the actual dnode size matches what
was stored in the ztest block tag when it was created. It also verifies
that the unused bonus buffer space is filled with the expected data
patterns.
ZFS Test Suite
--------------
Added six new large dnode-specific tests, and integrated the dnodesize
property into existing tests for zfs allow and send/recv.
Send/Receive
------------
ZFS send streams for datasets containing large dnodes cannot be received
on pools that don't support the large_dnode feature. A send stream with
large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be
unrecognized by an incompatible receiving pool so that the zfs receive
will fail gracefully.
While not implemented here, it may be possible to generate a
backward-compatible send stream from a dataset containing large
dnodes. The implementation may be tricky, however, because the send
object record for a large dnode would need to be resized to a 512
byte dnode, possibly kicking in a spill block in the process. This
means we would need to construct a new SA layout and possibly
register it in the SA layout object. The SA layout is normally just
sent as an ordinary object record. But if we are constructing new
layouts while generating the send stream we'd have to build the SA
layout object dynamically and send it at the end of the stream.
For sending and receiving between pools that do support large dnodes,
the drr_object send record type is extended with a new field to store
the dnode slot count. This field was repurposed from unused padding
in the structure.
ZIL Replay
----------
The dnode slot count is stored in the uppermost 8 bits of the lr_foid
field. The bits were unused as the object id is currently capped at
48 bits.
Resizing Dnodes
---------------
It should be possible to resize a dnode when it is dirtied if the
current dnodesize dataset property differs from the dnode's size, but
this functionality is not currently implemented. Clearly a dnode can
only grow if there are sufficient contiguous unused slots in the
dnode block, but it should always be possible to shrink a dnode.
Growing dnodes may be useful to reduce fragmentation in a pool with
many spill blocks in use. Shrinking dnodes may be useful to allow
sending a dataset to a pool that doesn't support the large_dnode
feature.
Feature Reference Counting
--------------------------
The reference count for the large_dnode pool feature tracks the
number of datasets that have ever contained a dnode of size larger
than 512 bytes. The first time a large dnode is created in a dataset
the dataset is converted to an extensible dataset. This is a one-way
operation and the only way to decrement the feature count is to
destroy the dataset, even if the dataset no longer contains any large
dnodes. The complexity of reference counting on a per-dnode basis was
too high, so we chose to track it on a per-dataset basis similarly to
the large_block feature.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #3542
2016-03-17 04:25:34 +03:00
|
|
|
dnodesize = vap->va_fsid; /* ditto */
|
2008-11-20 23:01:55 +03:00
|
|
|
} else {
|
|
|
|
obj = 0;
|
|
|
|
gethrestime(&now);
|
|
|
|
gen = dmu_tx_get_txg(tx);
|
2017-03-08 03:21:37 +03:00
|
|
|
dnodesize = dmu_objset_dnodesize(zfsvfs->z_os);
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
|
|
|
|
Implement large_dnode pool feature
Justification
-------------
This feature adds support for variable length dnodes. Our motivation is
to eliminate the overhead associated with using spill blocks. Spill
blocks are used to store system attribute data (i.e. file metadata) that
does not fit in the dnode's bonus buffer. By allowing a larger bonus
buffer area the use of a spill block can be avoided. Spill blocks
potentially incur an additional read I/O for every dnode in a dnode
block. As a worst case example, reading 32 dnodes from a 16k dnode block
and all of the spill blocks could issue 33 separate reads. Now suppose
those dnodes have size 1024 and therefore don't need spill blocks. Then
the worst case number of blocks read is reduced to from 33 to two--one
per dnode block. In practice spill blocks may tend to be co-located on
disk with the dnode blocks so the reduction in I/O would not be this
drastic. In a badly fragmented pool, however, the improvement could be
significant.
ZFS-on-Linux systems that make heavy use of extended attributes would
benefit from this feature. In particular, ZFS-on-Linux supports the
xattr=sa dataset property which allows file extended attribute data
to be stored in the dnode bonus buffer as an alternative to the
traditional directory-based format. Workloads such as SELinux and the
Lustre distributed filesystem often store enough xattr data to force
spill bocks when xattr=sa is in effect. Large dnodes may therefore
provide a performance benefit to such systems.
Other use cases that may benefit from this feature include files with
large ACLs and symbolic links with long target names. Furthermore,
this feature may be desirable on other platforms in case future
applications or features are developed that could make use of a
larger bonus buffer area.
Implementation
--------------
The size of a dnode may be a multiple of 512 bytes up to the size of
a dnode block (currently 16384 bytes). A dn_extra_slots field was
added to the current on-disk dnode_phys_t structure to describe the
size of the physical dnode on disk. The 8 bits for this field were
taken from the zero filled dn_pad2 field. The field represents how
many "extra" dnode_phys_t slots a dnode consumes in its dnode block.
This convention results in a value of 0 for 512 byte dnodes which
preserves on-disk format compatibility with older software.
Similarly, the in-memory dnode_t structure has a new dn_num_slots field
to represent the total number of dnode_phys_t slots consumed on disk.
Thus dn->dn_num_slots is 1 greater than the corresponding
dnp->dn_extra_slots. This difference in convention was adopted
because, unlike on-disk structures, backward compatibility is not a
concern for in-memory objects, so we used a more natural way to
represent size for a dnode_t.
The default size for newly created dnodes is determined by the value of
a new "dnodesize" dataset property. By default the property is set to
"legacy" which is compatible with older software. Setting the property
to "auto" will allow the filesystem to choose the most suitable dnode
size. Currently this just sets the default dnode size to 1k, but future
code improvements could dynamically choose a size based on observed
workload patterns. Dnodes of varying sizes can coexist within the same
dataset and even within the same dnode block. For example, to enable
automatically-sized dnodes, run
# zfs set dnodesize=auto tank/fish
The user can also specify literal values for the dnodesize property.
These are currently limited to powers of two from 1k to 16k. The
power-of-2 limitation is only for simplicity of the user interface.
Internally the implementation can handle any multiple of 512 up to 16k,
and consumers of the DMU API can specify any legal dnode value.
The size of a new dnode is determined at object allocation time and
stored as a new field in the znode in-memory structure. New DMU
interfaces are added to allow the consumer to specify the dnode size
that a newly allocated object should use. Existing interfaces are
unchanged to avoid having to update every call site and to preserve
compatibility with external consumers such as Lustre. The new
interfaces names are given below. The versions of these functions that
don't take a dnodesize parameter now just call the _dnsize() versions
with a dnodesize of 0, which means use the legacy dnode size.
New DMU interfaces:
dmu_object_alloc_dnsize()
dmu_object_claim_dnsize()
dmu_object_reclaim_dnsize()
New ZAP interfaces:
zap_create_dnsize()
zap_create_norm_dnsize()
zap_create_flags_dnsize()
zap_create_claim_norm_dnsize()
zap_create_link_dnsize()
The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The
spa_maxdnodesize() function should be used to determine the maximum
bonus length for a pool.
These are a few noteworthy changes to key functions:
* The prototype for dnode_hold_impl() now takes a "slots" parameter.
When the DNODE_MUST_BE_FREE flag is set, this parameter is used to
ensure the hole at the specified object offset is large enough to
hold the dnode being created. The slots parameter is also used
to ensure a dnode does not span multiple dnode blocks. In both of
these cases, if a failure occurs, ENOSPC is returned. Keep in mind,
these failure cases are only possible when using DNODE_MUST_BE_FREE.
If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
dnode_hold_impl() will check if the requested dnode is already
consumed as an extra dnode slot by an large dnode, in which case
it returns ENOENT.
* The function dmu_object_alloc() advances to the next dnode block
if dnode_hold_impl() returns an error for a requested object.
This is because the beginning of the next dnode block is the only
location it can safely assume to either be a hole or a valid
starting point for a dnode.
* dnode_next_offset_level() and other functions that iterate
through dnode blocks may no longer use a simple array indexing
scheme. These now use the current dnode's dn_num_slots field to
advance to the next dnode in the block. This is to ensure we
properly skip the current dnode's bonus area and don't interpret it
as a valid dnode.
zdb
---
The zdb command was updated to display a dnode's size under the
"dnsize" column when the object is dumped.
For ZIL create log records, zdb will now display the slot count for
the object.
ztest
-----
Ztest chooses a random dnodesize for every newly created object. The
random distribution is more heavily weighted toward small dnodes to
better simulate real-world datasets.
Unused bonus buffer space is filled with non-zero values computed from
the object number, dataset id, offset, and generation number. This
helps ensure that the dnode traversal code properly skips the interior
regions of large dnodes, and that these interior regions are not
overwritten by data belonging to other dnodes. A new test visits each
object in a dataset. It verifies that the actual dnode size matches what
was stored in the ztest block tag when it was created. It also verifies
that the unused bonus buffer space is filled with the expected data
patterns.
ZFS Test Suite
--------------
Added six new large dnode-specific tests, and integrated the dnodesize
property into existing tests for zfs allow and send/recv.
Send/Receive
------------
ZFS send streams for datasets containing large dnodes cannot be received
on pools that don't support the large_dnode feature. A send stream with
large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be
unrecognized by an incompatible receiving pool so that the zfs receive
will fail gracefully.
While not implemented here, it may be possible to generate a
backward-compatible send stream from a dataset containing large
dnodes. The implementation may be tricky, however, because the send
object record for a large dnode would need to be resized to a 512
byte dnode, possibly kicking in a spill block in the process. This
means we would need to construct a new SA layout and possibly
register it in the SA layout object. The SA layout is normally just
sent as an ordinary object record. But if we are constructing new
layouts while generating the send stream we'd have to build the SA
layout object dynamically and send it at the end of the stream.
For sending and receiving between pools that do support large dnodes,
the drr_object send record type is extended with a new field to store
the dnode slot count. This field was repurposed from unused padding
in the structure.
ZIL Replay
----------
The dnode slot count is stored in the uppermost 8 bits of the lr_foid
field. The bits were unused as the object id is currently capped at
48 bits.
Resizing Dnodes
---------------
It should be possible to resize a dnode when it is dirtied if the
current dnodesize dataset property differs from the dnode's size, but
this functionality is not currently implemented. Clearly a dnode can
only grow if there are sufficient contiguous unused slots in the
dnode block, but it should always be possible to shrink a dnode.
Growing dnodes may be useful to reduce fragmentation in a pool with
many spill blocks in use. Shrinking dnodes may be useful to allow
sending a dataset to a pool that doesn't support the large_dnode
feature.
Feature Reference Counting
--------------------------
The reference count for the large_dnode pool feature tracks the
number of datasets that have ever contained a dnode of size larger
than 512 bytes. The first time a large dnode is created in a dataset
the dataset is converted to an extensible dataset. This is a one-way
operation and the only way to decrement the feature count is to
destroy the dataset, even if the dataset no longer contains any large
dnodes. The complexity of reference counting on a per-dnode basis was
too high, so we chose to track it on a per-dataset basis similarly to
the large_block feature.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #3542
2016-03-17 04:25:34 +03:00
|
|
|
if (dnodesize == 0)
|
|
|
|
dnodesize = DNODE_MIN_SIZE;
|
|
|
|
|
2017-03-08 03:21:37 +03:00
|
|
|
obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE;
|
Implement large_dnode pool feature
Justification
-------------
This feature adds support for variable length dnodes. Our motivation is
to eliminate the overhead associated with using spill blocks. Spill
blocks are used to store system attribute data (i.e. file metadata) that
does not fit in the dnode's bonus buffer. By allowing a larger bonus
buffer area the use of a spill block can be avoided. Spill blocks
potentially incur an additional read I/O for every dnode in a dnode
block. As a worst case example, reading 32 dnodes from a 16k dnode block
and all of the spill blocks could issue 33 separate reads. Now suppose
those dnodes have size 1024 and therefore don't need spill blocks. Then
the worst case number of blocks read is reduced to from 33 to two--one
per dnode block. In practice spill blocks may tend to be co-located on
disk with the dnode blocks so the reduction in I/O would not be this
drastic. In a badly fragmented pool, however, the improvement could be
significant.
ZFS-on-Linux systems that make heavy use of extended attributes would
benefit from this feature. In particular, ZFS-on-Linux supports the
xattr=sa dataset property which allows file extended attribute data
to be stored in the dnode bonus buffer as an alternative to the
traditional directory-based format. Workloads such as SELinux and the
Lustre distributed filesystem often store enough xattr data to force
spill bocks when xattr=sa is in effect. Large dnodes may therefore
provide a performance benefit to such systems.
Other use cases that may benefit from this feature include files with
large ACLs and symbolic links with long target names. Furthermore,
this feature may be desirable on other platforms in case future
applications or features are developed that could make use of a
larger bonus buffer area.
Implementation
--------------
The size of a dnode may be a multiple of 512 bytes up to the size of
a dnode block (currently 16384 bytes). A dn_extra_slots field was
added to the current on-disk dnode_phys_t structure to describe the
size of the physical dnode on disk. The 8 bits for this field were
taken from the zero filled dn_pad2 field. The field represents how
many "extra" dnode_phys_t slots a dnode consumes in its dnode block.
This convention results in a value of 0 for 512 byte dnodes which
preserves on-disk format compatibility with older software.
Similarly, the in-memory dnode_t structure has a new dn_num_slots field
to represent the total number of dnode_phys_t slots consumed on disk.
Thus dn->dn_num_slots is 1 greater than the corresponding
dnp->dn_extra_slots. This difference in convention was adopted
because, unlike on-disk structures, backward compatibility is not a
concern for in-memory objects, so we used a more natural way to
represent size for a dnode_t.
The default size for newly created dnodes is determined by the value of
a new "dnodesize" dataset property. By default the property is set to
"legacy" which is compatible with older software. Setting the property
to "auto" will allow the filesystem to choose the most suitable dnode
size. Currently this just sets the default dnode size to 1k, but future
code improvements could dynamically choose a size based on observed
workload patterns. Dnodes of varying sizes can coexist within the same
dataset and even within the same dnode block. For example, to enable
automatically-sized dnodes, run
# zfs set dnodesize=auto tank/fish
The user can also specify literal values for the dnodesize property.
These are currently limited to powers of two from 1k to 16k. The
power-of-2 limitation is only for simplicity of the user interface.
Internally the implementation can handle any multiple of 512 up to 16k,
and consumers of the DMU API can specify any legal dnode value.
The size of a new dnode is determined at object allocation time and
stored as a new field in the znode in-memory structure. New DMU
interfaces are added to allow the consumer to specify the dnode size
that a newly allocated object should use. Existing interfaces are
unchanged to avoid having to update every call site and to preserve
compatibility with external consumers such as Lustre. The new
interfaces names are given below. The versions of these functions that
don't take a dnodesize parameter now just call the _dnsize() versions
with a dnodesize of 0, which means use the legacy dnode size.
New DMU interfaces:
dmu_object_alloc_dnsize()
dmu_object_claim_dnsize()
dmu_object_reclaim_dnsize()
New ZAP interfaces:
zap_create_dnsize()
zap_create_norm_dnsize()
zap_create_flags_dnsize()
zap_create_claim_norm_dnsize()
zap_create_link_dnsize()
The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The
spa_maxdnodesize() function should be used to determine the maximum
bonus length for a pool.
These are a few noteworthy changes to key functions:
* The prototype for dnode_hold_impl() now takes a "slots" parameter.
When the DNODE_MUST_BE_FREE flag is set, this parameter is used to
ensure the hole at the specified object offset is large enough to
hold the dnode being created. The slots parameter is also used
to ensure a dnode does not span multiple dnode blocks. In both of
these cases, if a failure occurs, ENOSPC is returned. Keep in mind,
these failure cases are only possible when using DNODE_MUST_BE_FREE.
If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
dnode_hold_impl() will check if the requested dnode is already
consumed as an extra dnode slot by an large dnode, in which case
it returns ENOENT.
* The function dmu_object_alloc() advances to the next dnode block
if dnode_hold_impl() returns an error for a requested object.
This is because the beginning of the next dnode block is the only
location it can safely assume to either be a hole or a valid
starting point for a dnode.
* dnode_next_offset_level() and other functions that iterate
through dnode blocks may no longer use a simple array indexing
scheme. These now use the current dnode's dn_num_slots field to
advance to the next dnode in the block. This is to ensure we
properly skip the current dnode's bonus area and don't interpret it
as a valid dnode.
zdb
---
The zdb command was updated to display a dnode's size under the
"dnsize" column when the object is dumped.
For ZIL create log records, zdb will now display the slot count for
the object.
ztest
-----
Ztest chooses a random dnodesize for every newly created object. The
random distribution is more heavily weighted toward small dnodes to
better simulate real-world datasets.
Unused bonus buffer space is filled with non-zero values computed from
the object number, dataset id, offset, and generation number. This
helps ensure that the dnode traversal code properly skips the interior
regions of large dnodes, and that these interior regions are not
overwritten by data belonging to other dnodes. A new test visits each
object in a dataset. It verifies that the actual dnode size matches what
was stored in the ztest block tag when it was created. It also verifies
that the unused bonus buffer space is filled with the expected data
patterns.
ZFS Test Suite
--------------
Added six new large dnode-specific tests, and integrated the dnodesize
property into existing tests for zfs allow and send/recv.
Send/Receive
------------
ZFS send streams for datasets containing large dnodes cannot be received
on pools that don't support the large_dnode feature. A send stream with
large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be
unrecognized by an incompatible receiving pool so that the zfs receive
will fail gracefully.
While not implemented here, it may be possible to generate a
backward-compatible send stream from a dataset containing large
dnodes. The implementation may be tricky, however, because the send
object record for a large dnode would need to be resized to a 512
byte dnode, possibly kicking in a spill block in the process. This
means we would need to construct a new SA layout and possibly
register it in the SA layout object. The SA layout is normally just
sent as an ordinary object record. But if we are constructing new
layouts while generating the send stream we'd have to build the SA
layout object dynamically and send it at the end of the stream.
For sending and receiving between pools that do support large dnodes,
the drr_object send record type is extended with a new field to store
the dnode slot count. This field was repurposed from unused padding
in the structure.
ZIL Replay
----------
The dnode slot count is stored in the uppermost 8 bits of the lr_foid
field. The bits were unused as the object id is currently capped at
48 bits.
Resizing Dnodes
---------------
It should be possible to resize a dnode when it is dirtied if the
current dnodesize dataset property differs from the dnode's size, but
this functionality is not currently implemented. Clearly a dnode can
only grow if there are sufficient contiguous unused slots in the
dnode block, but it should always be possible to shrink a dnode.
Growing dnodes may be useful to reduce fragmentation in a pool with
many spill blocks in use. Shrinking dnodes may be useful to allow
sending a dataset to a pool that doesn't support the large_dnode
feature.
Feature Reference Counting
--------------------------
The reference count for the large_dnode pool feature tracks the
number of datasets that have ever contained a dnode of size larger
than 512 bytes. The first time a large dnode is created in a dataset
the dataset is converted to an extensible dataset. This is a one-way
operation and the only way to decrement the feature count is to
destroy the dataset, even if the dataset no longer contains any large
dnodes. The complexity of reference counting on a per-dnode basis was
too high, so we chose to track it on a per-dataset basis similarly to
the large_block feature.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #3542
2016-03-17 04:25:34 +03:00
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
bonuslen = (obj_type == DMU_OT_SA) ?
|
Implement large_dnode pool feature
Justification
-------------
This feature adds support for variable length dnodes. Our motivation is
to eliminate the overhead associated with using spill blocks. Spill
blocks are used to store system attribute data (i.e. file metadata) that
does not fit in the dnode's bonus buffer. By allowing a larger bonus
buffer area the use of a spill block can be avoided. Spill blocks
potentially incur an additional read I/O for every dnode in a dnode
block. As a worst case example, reading 32 dnodes from a 16k dnode block
and all of the spill blocks could issue 33 separate reads. Now suppose
those dnodes have size 1024 and therefore don't need spill blocks. Then
the worst case number of blocks read is reduced to from 33 to two--one
per dnode block. In practice spill blocks may tend to be co-located on
disk with the dnode blocks so the reduction in I/O would not be this
drastic. In a badly fragmented pool, however, the improvement could be
significant.
ZFS-on-Linux systems that make heavy use of extended attributes would
benefit from this feature. In particular, ZFS-on-Linux supports the
xattr=sa dataset property which allows file extended attribute data
to be stored in the dnode bonus buffer as an alternative to the
traditional directory-based format. Workloads such as SELinux and the
Lustre distributed filesystem often store enough xattr data to force
spill bocks when xattr=sa is in effect. Large dnodes may therefore
provide a performance benefit to such systems.
Other use cases that may benefit from this feature include files with
large ACLs and symbolic links with long target names. Furthermore,
this feature may be desirable on other platforms in case future
applications or features are developed that could make use of a
larger bonus buffer area.
Implementation
--------------
The size of a dnode may be a multiple of 512 bytes up to the size of
a dnode block (currently 16384 bytes). A dn_extra_slots field was
added to the current on-disk dnode_phys_t structure to describe the
size of the physical dnode on disk. The 8 bits for this field were
taken from the zero filled dn_pad2 field. The field represents how
many "extra" dnode_phys_t slots a dnode consumes in its dnode block.
This convention results in a value of 0 for 512 byte dnodes which
preserves on-disk format compatibility with older software.
Similarly, the in-memory dnode_t structure has a new dn_num_slots field
to represent the total number of dnode_phys_t slots consumed on disk.
Thus dn->dn_num_slots is 1 greater than the corresponding
dnp->dn_extra_slots. This difference in convention was adopted
because, unlike on-disk structures, backward compatibility is not a
concern for in-memory objects, so we used a more natural way to
represent size for a dnode_t.
The default size for newly created dnodes is determined by the value of
a new "dnodesize" dataset property. By default the property is set to
"legacy" which is compatible with older software. Setting the property
to "auto" will allow the filesystem to choose the most suitable dnode
size. Currently this just sets the default dnode size to 1k, but future
code improvements could dynamically choose a size based on observed
workload patterns. Dnodes of varying sizes can coexist within the same
dataset and even within the same dnode block. For example, to enable
automatically-sized dnodes, run
# zfs set dnodesize=auto tank/fish
The user can also specify literal values for the dnodesize property.
These are currently limited to powers of two from 1k to 16k. The
power-of-2 limitation is only for simplicity of the user interface.
Internally the implementation can handle any multiple of 512 up to 16k,
and consumers of the DMU API can specify any legal dnode value.
The size of a new dnode is determined at object allocation time and
stored as a new field in the znode in-memory structure. New DMU
interfaces are added to allow the consumer to specify the dnode size
that a newly allocated object should use. Existing interfaces are
unchanged to avoid having to update every call site and to preserve
compatibility with external consumers such as Lustre. The new
interfaces names are given below. The versions of these functions that
don't take a dnodesize parameter now just call the _dnsize() versions
with a dnodesize of 0, which means use the legacy dnode size.
New DMU interfaces:
dmu_object_alloc_dnsize()
dmu_object_claim_dnsize()
dmu_object_reclaim_dnsize()
New ZAP interfaces:
zap_create_dnsize()
zap_create_norm_dnsize()
zap_create_flags_dnsize()
zap_create_claim_norm_dnsize()
zap_create_link_dnsize()
The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The
spa_maxdnodesize() function should be used to determine the maximum
bonus length for a pool.
These are a few noteworthy changes to key functions:
* The prototype for dnode_hold_impl() now takes a "slots" parameter.
When the DNODE_MUST_BE_FREE flag is set, this parameter is used to
ensure the hole at the specified object offset is large enough to
hold the dnode being created. The slots parameter is also used
to ensure a dnode does not span multiple dnode blocks. In both of
these cases, if a failure occurs, ENOSPC is returned. Keep in mind,
these failure cases are only possible when using DNODE_MUST_BE_FREE.
If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
dnode_hold_impl() will check if the requested dnode is already
consumed as an extra dnode slot by an large dnode, in which case
it returns ENOENT.
* The function dmu_object_alloc() advances to the next dnode block
if dnode_hold_impl() returns an error for a requested object.
This is because the beginning of the next dnode block is the only
location it can safely assume to either be a hole or a valid
starting point for a dnode.
* dnode_next_offset_level() and other functions that iterate
through dnode blocks may no longer use a simple array indexing
scheme. These now use the current dnode's dn_num_slots field to
advance to the next dnode in the block. This is to ensure we
properly skip the current dnode's bonus area and don't interpret it
as a valid dnode.
zdb
---
The zdb command was updated to display a dnode's size under the
"dnsize" column when the object is dumped.
For ZIL create log records, zdb will now display the slot count for
the object.
ztest
-----
Ztest chooses a random dnodesize for every newly created object. The
random distribution is more heavily weighted toward small dnodes to
better simulate real-world datasets.
Unused bonus buffer space is filled with non-zero values computed from
the object number, dataset id, offset, and generation number. This
helps ensure that the dnode traversal code properly skips the interior
regions of large dnodes, and that these interior regions are not
overwritten by data belonging to other dnodes. A new test visits each
object in a dataset. It verifies that the actual dnode size matches what
was stored in the ztest block tag when it was created. It also verifies
that the unused bonus buffer space is filled with the expected data
patterns.
ZFS Test Suite
--------------
Added six new large dnode-specific tests, and integrated the dnodesize
property into existing tests for zfs allow and send/recv.
Send/Receive
------------
ZFS send streams for datasets containing large dnodes cannot be received
on pools that don't support the large_dnode feature. A send stream with
large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be
unrecognized by an incompatible receiving pool so that the zfs receive
will fail gracefully.
While not implemented here, it may be possible to generate a
backward-compatible send stream from a dataset containing large
dnodes. The implementation may be tricky, however, because the send
object record for a large dnode would need to be resized to a 512
byte dnode, possibly kicking in a spill block in the process. This
means we would need to construct a new SA layout and possibly
register it in the SA layout object. The SA layout is normally just
sent as an ordinary object record. But if we are constructing new
layouts while generating the send stream we'd have to build the SA
layout object dynamically and send it at the end of the stream.
For sending and receiving between pools that do support large dnodes,
the drr_object send record type is extended with a new field to store
the dnode slot count. This field was repurposed from unused padding
in the structure.
ZIL Replay
----------
The dnode slot count is stored in the uppermost 8 bits of the lr_foid
field. The bits were unused as the object id is currently capped at
48 bits.
Resizing Dnodes
---------------
It should be possible to resize a dnode when it is dirtied if the
current dnodesize dataset property differs from the dnode's size, but
this functionality is not currently implemented. Clearly a dnode can
only grow if there are sufficient contiguous unused slots in the
dnode block, but it should always be possible to shrink a dnode.
Growing dnodes may be useful to reduce fragmentation in a pool with
many spill blocks in use. Shrinking dnodes may be useful to allow
sending a dataset to a pool that doesn't support the large_dnode
feature.
Feature Reference Counting
--------------------------
The reference count for the large_dnode pool feature tracks the
number of datasets that have ever contained a dnode of size larger
than 512 bytes. The first time a large dnode is created in a dataset
the dataset is converted to an extensible dataset. This is a one-way
operation and the only way to decrement the feature count is to
destroy the dataset, even if the dataset no longer contains any large
dnodes. The complexity of reference counting on a per-dnode basis was
too high, so we chose to track it on a per-dataset basis similarly to
the large_block feature.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #3542
2016-03-17 04:25:34 +03:00
|
|
|
DN_BONUS_SIZE(dnodesize) : ZFS_OLD_ZNODE_PHYS_SIZE;
|
2010-05-29 00:45:14 +04:00
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
/*
|
|
|
|
* Create a new DMU object.
|
|
|
|
*/
|
|
|
|
/*
|
|
|
|
* There's currently no mechanism for pre-reading the blocks that will
|
2010-08-27 01:24:34 +04:00
|
|
|
* be needed to allocate a new object, so we accept the small chance
|
2008-11-20 23:01:55 +03:00
|
|
|
* that there will be an i/o error and we will fail one of the
|
|
|
|
* assertions below.
|
|
|
|
*/
|
2011-02-08 22:16:06 +03:00
|
|
|
if (S_ISDIR(vap->va_mode)) {
|
2017-03-08 03:21:37 +03:00
|
|
|
if (zfsvfs->z_replay) {
|
|
|
|
VERIFY0(zap_create_claim_norm_dnsize(zfsvfs->z_os, obj,
|
|
|
|
zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
|
Implement large_dnode pool feature
Justification
-------------
This feature adds support for variable length dnodes. Our motivation is
to eliminate the overhead associated with using spill blocks. Spill
blocks are used to store system attribute data (i.e. file metadata) that
does not fit in the dnode's bonus buffer. By allowing a larger bonus
buffer area the use of a spill block can be avoided. Spill blocks
potentially incur an additional read I/O for every dnode in a dnode
block. As a worst case example, reading 32 dnodes from a 16k dnode block
and all of the spill blocks could issue 33 separate reads. Now suppose
those dnodes have size 1024 and therefore don't need spill blocks. Then
the worst case number of blocks read is reduced to from 33 to two--one
per dnode block. In practice spill blocks may tend to be co-located on
disk with the dnode blocks so the reduction in I/O would not be this
drastic. In a badly fragmented pool, however, the improvement could be
significant.
ZFS-on-Linux systems that make heavy use of extended attributes would
benefit from this feature. In particular, ZFS-on-Linux supports the
xattr=sa dataset property which allows file extended attribute data
to be stored in the dnode bonus buffer as an alternative to the
traditional directory-based format. Workloads such as SELinux and the
Lustre distributed filesystem often store enough xattr data to force
spill bocks when xattr=sa is in effect. Large dnodes may therefore
provide a performance benefit to such systems.
Other use cases that may benefit from this feature include files with
large ACLs and symbolic links with long target names. Furthermore,
this feature may be desirable on other platforms in case future
applications or features are developed that could make use of a
larger bonus buffer area.
Implementation
--------------
The size of a dnode may be a multiple of 512 bytes up to the size of
a dnode block (currently 16384 bytes). A dn_extra_slots field was
added to the current on-disk dnode_phys_t structure to describe the
size of the physical dnode on disk. The 8 bits for this field were
taken from the zero filled dn_pad2 field. The field represents how
many "extra" dnode_phys_t slots a dnode consumes in its dnode block.
This convention results in a value of 0 for 512 byte dnodes which
preserves on-disk format compatibility with older software.
Similarly, the in-memory dnode_t structure has a new dn_num_slots field
to represent the total number of dnode_phys_t slots consumed on disk.
Thus dn->dn_num_slots is 1 greater than the corresponding
dnp->dn_extra_slots. This difference in convention was adopted
because, unlike on-disk structures, backward compatibility is not a
concern for in-memory objects, so we used a more natural way to
represent size for a dnode_t.
The default size for newly created dnodes is determined by the value of
a new "dnodesize" dataset property. By default the property is set to
"legacy" which is compatible with older software. Setting the property
to "auto" will allow the filesystem to choose the most suitable dnode
size. Currently this just sets the default dnode size to 1k, but future
code improvements could dynamically choose a size based on observed
workload patterns. Dnodes of varying sizes can coexist within the same
dataset and even within the same dnode block. For example, to enable
automatically-sized dnodes, run
# zfs set dnodesize=auto tank/fish
The user can also specify literal values for the dnodesize property.
These are currently limited to powers of two from 1k to 16k. The
power-of-2 limitation is only for simplicity of the user interface.
Internally the implementation can handle any multiple of 512 up to 16k,
and consumers of the DMU API can specify any legal dnode value.
The size of a new dnode is determined at object allocation time and
stored as a new field in the znode in-memory structure. New DMU
interfaces are added to allow the consumer to specify the dnode size
that a newly allocated object should use. Existing interfaces are
unchanged to avoid having to update every call site and to preserve
compatibility with external consumers such as Lustre. The new
interfaces names are given below. The versions of these functions that
don't take a dnodesize parameter now just call the _dnsize() versions
with a dnodesize of 0, which means use the legacy dnode size.
New DMU interfaces:
dmu_object_alloc_dnsize()
dmu_object_claim_dnsize()
dmu_object_reclaim_dnsize()
New ZAP interfaces:
zap_create_dnsize()
zap_create_norm_dnsize()
zap_create_flags_dnsize()
zap_create_claim_norm_dnsize()
zap_create_link_dnsize()
The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The
spa_maxdnodesize() function should be used to determine the maximum
bonus length for a pool.
These are a few noteworthy changes to key functions:
* The prototype for dnode_hold_impl() now takes a "slots" parameter.
When the DNODE_MUST_BE_FREE flag is set, this parameter is used to
ensure the hole at the specified object offset is large enough to
hold the dnode being created. The slots parameter is also used
to ensure a dnode does not span multiple dnode blocks. In both of
these cases, if a failure occurs, ENOSPC is returned. Keep in mind,
these failure cases are only possible when using DNODE_MUST_BE_FREE.
If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
dnode_hold_impl() will check if the requested dnode is already
consumed as an extra dnode slot by an large dnode, in which case
it returns ENOENT.
* The function dmu_object_alloc() advances to the next dnode block
if dnode_hold_impl() returns an error for a requested object.
This is because the beginning of the next dnode block is the only
location it can safely assume to either be a hole or a valid
starting point for a dnode.
* dnode_next_offset_level() and other functions that iterate
through dnode blocks may no longer use a simple array indexing
scheme. These now use the current dnode's dn_num_slots field to
advance to the next dnode in the block. This is to ensure we
properly skip the current dnode's bonus area and don't interpret it
as a valid dnode.
zdb
---
The zdb command was updated to display a dnode's size under the
"dnsize" column when the object is dumped.
For ZIL create log records, zdb will now display the slot count for
the object.
ztest
-----
Ztest chooses a random dnodesize for every newly created object. The
random distribution is more heavily weighted toward small dnodes to
better simulate real-world datasets.
Unused bonus buffer space is filled with non-zero values computed from
the object number, dataset id, offset, and generation number. This
helps ensure that the dnode traversal code properly skips the interior
regions of large dnodes, and that these interior regions are not
overwritten by data belonging to other dnodes. A new test visits each
object in a dataset. It verifies that the actual dnode size matches what
was stored in the ztest block tag when it was created. It also verifies
that the unused bonus buffer space is filled with the expected data
patterns.
ZFS Test Suite
--------------
Added six new large dnode-specific tests, and integrated the dnodesize
property into existing tests for zfs allow and send/recv.
Send/Receive
------------
ZFS send streams for datasets containing large dnodes cannot be received
on pools that don't support the large_dnode feature. A send stream with
large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be
unrecognized by an incompatible receiving pool so that the zfs receive
will fail gracefully.
While not implemented here, it may be possible to generate a
backward-compatible send stream from a dataset containing large
dnodes. The implementation may be tricky, however, because the send
object record for a large dnode would need to be resized to a 512
byte dnode, possibly kicking in a spill block in the process. This
means we would need to construct a new SA layout and possibly
register it in the SA layout object. The SA layout is normally just
sent as an ordinary object record. But if we are constructing new
layouts while generating the send stream we'd have to build the SA
layout object dynamically and send it at the end of the stream.
For sending and receiving between pools that do support large dnodes,
the drr_object send record type is extended with a new field to store
the dnode slot count. This field was repurposed from unused padding
in the structure.
ZIL Replay
----------
The dnode slot count is stored in the uppermost 8 bits of the lr_foid
field. The bits were unused as the object id is currently capped at
48 bits.
Resizing Dnodes
---------------
It should be possible to resize a dnode when it is dirtied if the
current dnodesize dataset property differs from the dnode's size, but
this functionality is not currently implemented. Clearly a dnode can
only grow if there are sufficient contiguous unused slots in the
dnode block, but it should always be possible to shrink a dnode.
Growing dnodes may be useful to reduce fragmentation in a pool with
many spill blocks in use. Shrinking dnodes may be useful to allow
sending a dataset to a pool that doesn't support the large_dnode
feature.
Feature Reference Counting
--------------------------
The reference count for the large_dnode pool feature tracks the
number of datasets that have ever contained a dnode of size larger
than 512 bytes. The first time a large dnode is created in a dataset
the dataset is converted to an extensible dataset. This is a one-way
operation and the only way to decrement the feature count is to
destroy the dataset, even if the dataset no longer contains any large
dnodes. The complexity of reference counting on a per-dnode basis was
too high, so we chose to track it on a per-dataset basis similarly to
the large_block feature.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #3542
2016-03-17 04:25:34 +03:00
|
|
|
obj_type, bonuslen, dnodesize, tx));
|
2008-11-20 23:01:55 +03:00
|
|
|
} else {
|
2017-03-08 03:21:37 +03:00
|
|
|
obj = zap_create_norm_dnsize(zfsvfs->z_os,
|
|
|
|
zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
|
Implement large_dnode pool feature
Justification
-------------
This feature adds support for variable length dnodes. Our motivation is
to eliminate the overhead associated with using spill blocks. Spill
blocks are used to store system attribute data (i.e. file metadata) that
does not fit in the dnode's bonus buffer. By allowing a larger bonus
buffer area the use of a spill block can be avoided. Spill blocks
potentially incur an additional read I/O for every dnode in a dnode
block. As a worst case example, reading 32 dnodes from a 16k dnode block
and all of the spill blocks could issue 33 separate reads. Now suppose
those dnodes have size 1024 and therefore don't need spill blocks. Then
the worst case number of blocks read is reduced to from 33 to two--one
per dnode block. In practice spill blocks may tend to be co-located on
disk with the dnode blocks so the reduction in I/O would not be this
drastic. In a badly fragmented pool, however, the improvement could be
significant.
ZFS-on-Linux systems that make heavy use of extended attributes would
benefit from this feature. In particular, ZFS-on-Linux supports the
xattr=sa dataset property which allows file extended attribute data
to be stored in the dnode bonus buffer as an alternative to the
traditional directory-based format. Workloads such as SELinux and the
Lustre distributed filesystem often store enough xattr data to force
spill bocks when xattr=sa is in effect. Large dnodes may therefore
provide a performance benefit to such systems.
Other use cases that may benefit from this feature include files with
large ACLs and symbolic links with long target names. Furthermore,
this feature may be desirable on other platforms in case future
applications or features are developed that could make use of a
larger bonus buffer area.
Implementation
--------------
The size of a dnode may be a multiple of 512 bytes up to the size of
a dnode block (currently 16384 bytes). A dn_extra_slots field was
added to the current on-disk dnode_phys_t structure to describe the
size of the physical dnode on disk. The 8 bits for this field were
taken from the zero filled dn_pad2 field. The field represents how
many "extra" dnode_phys_t slots a dnode consumes in its dnode block.
This convention results in a value of 0 for 512 byte dnodes which
preserves on-disk format compatibility with older software.
Similarly, the in-memory dnode_t structure has a new dn_num_slots field
to represent the total number of dnode_phys_t slots consumed on disk.
Thus dn->dn_num_slots is 1 greater than the corresponding
dnp->dn_extra_slots. This difference in convention was adopted
because, unlike on-disk structures, backward compatibility is not a
concern for in-memory objects, so we used a more natural way to
represent size for a dnode_t.
The default size for newly created dnodes is determined by the value of
a new "dnodesize" dataset property. By default the property is set to
"legacy" which is compatible with older software. Setting the property
to "auto" will allow the filesystem to choose the most suitable dnode
size. Currently this just sets the default dnode size to 1k, but future
code improvements could dynamically choose a size based on observed
workload patterns. Dnodes of varying sizes can coexist within the same
dataset and even within the same dnode block. For example, to enable
automatically-sized dnodes, run
# zfs set dnodesize=auto tank/fish
The user can also specify literal values for the dnodesize property.
These are currently limited to powers of two from 1k to 16k. The
power-of-2 limitation is only for simplicity of the user interface.
Internally the implementation can handle any multiple of 512 up to 16k,
and consumers of the DMU API can specify any legal dnode value.
The size of a new dnode is determined at object allocation time and
stored as a new field in the znode in-memory structure. New DMU
interfaces are added to allow the consumer to specify the dnode size
that a newly allocated object should use. Existing interfaces are
unchanged to avoid having to update every call site and to preserve
compatibility with external consumers such as Lustre. The new
interfaces names are given below. The versions of these functions that
don't take a dnodesize parameter now just call the _dnsize() versions
with a dnodesize of 0, which means use the legacy dnode size.
New DMU interfaces:
dmu_object_alloc_dnsize()
dmu_object_claim_dnsize()
dmu_object_reclaim_dnsize()
New ZAP interfaces:
zap_create_dnsize()
zap_create_norm_dnsize()
zap_create_flags_dnsize()
zap_create_claim_norm_dnsize()
zap_create_link_dnsize()
The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The
spa_maxdnodesize() function should be used to determine the maximum
bonus length for a pool.
These are a few noteworthy changes to key functions:
* The prototype for dnode_hold_impl() now takes a "slots" parameter.
When the DNODE_MUST_BE_FREE flag is set, this parameter is used to
ensure the hole at the specified object offset is large enough to
hold the dnode being created. The slots parameter is also used
to ensure a dnode does not span multiple dnode blocks. In both of
these cases, if a failure occurs, ENOSPC is returned. Keep in mind,
these failure cases are only possible when using DNODE_MUST_BE_FREE.
If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
dnode_hold_impl() will check if the requested dnode is already
consumed as an extra dnode slot by an large dnode, in which case
it returns ENOENT.
* The function dmu_object_alloc() advances to the next dnode block
if dnode_hold_impl() returns an error for a requested object.
This is because the beginning of the next dnode block is the only
location it can safely assume to either be a hole or a valid
starting point for a dnode.
* dnode_next_offset_level() and other functions that iterate
through dnode blocks may no longer use a simple array indexing
scheme. These now use the current dnode's dn_num_slots field to
advance to the next dnode in the block. This is to ensure we
properly skip the current dnode's bonus area and don't interpret it
as a valid dnode.
zdb
---
The zdb command was updated to display a dnode's size under the
"dnsize" column when the object is dumped.
For ZIL create log records, zdb will now display the slot count for
the object.
ztest
-----
Ztest chooses a random dnodesize for every newly created object. The
random distribution is more heavily weighted toward small dnodes to
better simulate real-world datasets.
Unused bonus buffer space is filled with non-zero values computed from
the object number, dataset id, offset, and generation number. This
helps ensure that the dnode traversal code properly skips the interior
regions of large dnodes, and that these interior regions are not
overwritten by data belonging to other dnodes. A new test visits each
object in a dataset. It verifies that the actual dnode size matches what
was stored in the ztest block tag when it was created. It also verifies
that the unused bonus buffer space is filled with the expected data
patterns.
ZFS Test Suite
--------------
Added six new large dnode-specific tests, and integrated the dnodesize
property into existing tests for zfs allow and send/recv.
Send/Receive
------------
ZFS send streams for datasets containing large dnodes cannot be received
on pools that don't support the large_dnode feature. A send stream with
large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be
unrecognized by an incompatible receiving pool so that the zfs receive
will fail gracefully.
While not implemented here, it may be possible to generate a
backward-compatible send stream from a dataset containing large
dnodes. The implementation may be tricky, however, because the send
object record for a large dnode would need to be resized to a 512
byte dnode, possibly kicking in a spill block in the process. This
means we would need to construct a new SA layout and possibly
register it in the SA layout object. The SA layout is normally just
sent as an ordinary object record. But if we are constructing new
layouts while generating the send stream we'd have to build the SA
layout object dynamically and send it at the end of the stream.
For sending and receiving between pools that do support large dnodes,
the drr_object send record type is extended with a new field to store
the dnode slot count. This field was repurposed from unused padding
in the structure.
ZIL Replay
----------
The dnode slot count is stored in the uppermost 8 bits of the lr_foid
field. The bits were unused as the object id is currently capped at
48 bits.
Resizing Dnodes
---------------
It should be possible to resize a dnode when it is dirtied if the
current dnodesize dataset property differs from the dnode's size, but
this functionality is not currently implemented. Clearly a dnode can
only grow if there are sufficient contiguous unused slots in the
dnode block, but it should always be possible to shrink a dnode.
Growing dnodes may be useful to reduce fragmentation in a pool with
many spill blocks in use. Shrinking dnodes may be useful to allow
sending a dataset to a pool that doesn't support the large_dnode
feature.
Feature Reference Counting
--------------------------
The reference count for the large_dnode pool feature tracks the
number of datasets that have ever contained a dnode of size larger
than 512 bytes. The first time a large dnode is created in a dataset
the dataset is converted to an extensible dataset. This is a one-way
operation and the only way to decrement the feature count is to
destroy the dataset, even if the dataset no longer contains any large
dnodes. The complexity of reference counting on a per-dnode basis was
too high, so we chose to track it on a per-dataset basis similarly to
the large_block feature.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #3542
2016-03-17 04:25:34 +03:00
|
|
|
obj_type, bonuslen, dnodesize, tx);
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
|
|
|
} else {
|
2017-03-08 03:21:37 +03:00
|
|
|
if (zfsvfs->z_replay) {
|
|
|
|
VERIFY0(dmu_object_claim_dnsize(zfsvfs->z_os, obj,
|
2008-11-20 23:01:55 +03:00
|
|
|
DMU_OT_PLAIN_FILE_CONTENTS, 0,
|
Implement large_dnode pool feature
Justification
-------------
This feature adds support for variable length dnodes. Our motivation is
to eliminate the overhead associated with using spill blocks. Spill
blocks are used to store system attribute data (i.e. file metadata) that
does not fit in the dnode's bonus buffer. By allowing a larger bonus
buffer area the use of a spill block can be avoided. Spill blocks
potentially incur an additional read I/O for every dnode in a dnode
block. As a worst case example, reading 32 dnodes from a 16k dnode block
and all of the spill blocks could issue 33 separate reads. Now suppose
those dnodes have size 1024 and therefore don't need spill blocks. Then
the worst case number of blocks read is reduced to from 33 to two--one
per dnode block. In practice spill blocks may tend to be co-located on
disk with the dnode blocks so the reduction in I/O would not be this
drastic. In a badly fragmented pool, however, the improvement could be
significant.
ZFS-on-Linux systems that make heavy use of extended attributes would
benefit from this feature. In particular, ZFS-on-Linux supports the
xattr=sa dataset property which allows file extended attribute data
to be stored in the dnode bonus buffer as an alternative to the
traditional directory-based format. Workloads such as SELinux and the
Lustre distributed filesystem often store enough xattr data to force
spill bocks when xattr=sa is in effect. Large dnodes may therefore
provide a performance benefit to such systems.
Other use cases that may benefit from this feature include files with
large ACLs and symbolic links with long target names. Furthermore,
this feature may be desirable on other platforms in case future
applications or features are developed that could make use of a
larger bonus buffer area.
Implementation
--------------
The size of a dnode may be a multiple of 512 bytes up to the size of
a dnode block (currently 16384 bytes). A dn_extra_slots field was
added to the current on-disk dnode_phys_t structure to describe the
size of the physical dnode on disk. The 8 bits for this field were
taken from the zero filled dn_pad2 field. The field represents how
many "extra" dnode_phys_t slots a dnode consumes in its dnode block.
This convention results in a value of 0 for 512 byte dnodes which
preserves on-disk format compatibility with older software.
Similarly, the in-memory dnode_t structure has a new dn_num_slots field
to represent the total number of dnode_phys_t slots consumed on disk.
Thus dn->dn_num_slots is 1 greater than the corresponding
dnp->dn_extra_slots. This difference in convention was adopted
because, unlike on-disk structures, backward compatibility is not a
concern for in-memory objects, so we used a more natural way to
represent size for a dnode_t.
The default size for newly created dnodes is determined by the value of
a new "dnodesize" dataset property. By default the property is set to
"legacy" which is compatible with older software. Setting the property
to "auto" will allow the filesystem to choose the most suitable dnode
size. Currently this just sets the default dnode size to 1k, but future
code improvements could dynamically choose a size based on observed
workload patterns. Dnodes of varying sizes can coexist within the same
dataset and even within the same dnode block. For example, to enable
automatically-sized dnodes, run
# zfs set dnodesize=auto tank/fish
The user can also specify literal values for the dnodesize property.
These are currently limited to powers of two from 1k to 16k. The
power-of-2 limitation is only for simplicity of the user interface.
Internally the implementation can handle any multiple of 512 up to 16k,
and consumers of the DMU API can specify any legal dnode value.
The size of a new dnode is determined at object allocation time and
stored as a new field in the znode in-memory structure. New DMU
interfaces are added to allow the consumer to specify the dnode size
that a newly allocated object should use. Existing interfaces are
unchanged to avoid having to update every call site and to preserve
compatibility with external consumers such as Lustre. The new
interfaces names are given below. The versions of these functions that
don't take a dnodesize parameter now just call the _dnsize() versions
with a dnodesize of 0, which means use the legacy dnode size.
New DMU interfaces:
dmu_object_alloc_dnsize()
dmu_object_claim_dnsize()
dmu_object_reclaim_dnsize()
New ZAP interfaces:
zap_create_dnsize()
zap_create_norm_dnsize()
zap_create_flags_dnsize()
zap_create_claim_norm_dnsize()
zap_create_link_dnsize()
The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The
spa_maxdnodesize() function should be used to determine the maximum
bonus length for a pool.
These are a few noteworthy changes to key functions:
* The prototype for dnode_hold_impl() now takes a "slots" parameter.
When the DNODE_MUST_BE_FREE flag is set, this parameter is used to
ensure the hole at the specified object offset is large enough to
hold the dnode being created. The slots parameter is also used
to ensure a dnode does not span multiple dnode blocks. In both of
these cases, if a failure occurs, ENOSPC is returned. Keep in mind,
these failure cases are only possible when using DNODE_MUST_BE_FREE.
If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
dnode_hold_impl() will check if the requested dnode is already
consumed as an extra dnode slot by an large dnode, in which case
it returns ENOENT.
* The function dmu_object_alloc() advances to the next dnode block
if dnode_hold_impl() returns an error for a requested object.
This is because the beginning of the next dnode block is the only
location it can safely assume to either be a hole or a valid
starting point for a dnode.
* dnode_next_offset_level() and other functions that iterate
through dnode blocks may no longer use a simple array indexing
scheme. These now use the current dnode's dn_num_slots field to
advance to the next dnode in the block. This is to ensure we
properly skip the current dnode's bonus area and don't interpret it
as a valid dnode.
zdb
---
The zdb command was updated to display a dnode's size under the
"dnsize" column when the object is dumped.
For ZIL create log records, zdb will now display the slot count for
the object.
ztest
-----
Ztest chooses a random dnodesize for every newly created object. The
random distribution is more heavily weighted toward small dnodes to
better simulate real-world datasets.
Unused bonus buffer space is filled with non-zero values computed from
the object number, dataset id, offset, and generation number. This
helps ensure that the dnode traversal code properly skips the interior
regions of large dnodes, and that these interior regions are not
overwritten by data belonging to other dnodes. A new test visits each
object in a dataset. It verifies that the actual dnode size matches what
was stored in the ztest block tag when it was created. It also verifies
that the unused bonus buffer space is filled with the expected data
patterns.
ZFS Test Suite
--------------
Added six new large dnode-specific tests, and integrated the dnodesize
property into existing tests for zfs allow and send/recv.
Send/Receive
------------
ZFS send streams for datasets containing large dnodes cannot be received
on pools that don't support the large_dnode feature. A send stream with
large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be
unrecognized by an incompatible receiving pool so that the zfs receive
will fail gracefully.
While not implemented here, it may be possible to generate a
backward-compatible send stream from a dataset containing large
dnodes. The implementation may be tricky, however, because the send
object record for a large dnode would need to be resized to a 512
byte dnode, possibly kicking in a spill block in the process. This
means we would need to construct a new SA layout and possibly
register it in the SA layout object. The SA layout is normally just
sent as an ordinary object record. But if we are constructing new
layouts while generating the send stream we'd have to build the SA
layout object dynamically and send it at the end of the stream.
For sending and receiving between pools that do support large dnodes,
the drr_object send record type is extended with a new field to store
the dnode slot count. This field was repurposed from unused padding
in the structure.
ZIL Replay
----------
The dnode slot count is stored in the uppermost 8 bits of the lr_foid
field. The bits were unused as the object id is currently capped at
48 bits.
Resizing Dnodes
---------------
It should be possible to resize a dnode when it is dirtied if the
current dnodesize dataset property differs from the dnode's size, but
this functionality is not currently implemented. Clearly a dnode can
only grow if there are sufficient contiguous unused slots in the
dnode block, but it should always be possible to shrink a dnode.
Growing dnodes may be useful to reduce fragmentation in a pool with
many spill blocks in use. Shrinking dnodes may be useful to allow
sending a dataset to a pool that doesn't support the large_dnode
feature.
Feature Reference Counting
--------------------------
The reference count for the large_dnode pool feature tracks the
number of datasets that have ever contained a dnode of size larger
than 512 bytes. The first time a large dnode is created in a dataset
the dataset is converted to an extensible dataset. This is a one-way
operation and the only way to decrement the feature count is to
destroy the dataset, even if the dataset no longer contains any large
dnodes. The complexity of reference counting on a per-dnode basis was
too high, so we chose to track it on a per-dataset basis similarly to
the large_block feature.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #3542
2016-03-17 04:25:34 +03:00
|
|
|
obj_type, bonuslen, dnodesize, tx));
|
2008-11-20 23:01:55 +03:00
|
|
|
} else {
|
2017-03-08 03:21:37 +03:00
|
|
|
obj = dmu_object_alloc_dnsize(zfsvfs->z_os,
|
2008-11-20 23:01:55 +03:00
|
|
|
DMU_OT_PLAIN_FILE_CONTENTS, 0,
|
Implement large_dnode pool feature
Justification
-------------
This feature adds support for variable length dnodes. Our motivation is
to eliminate the overhead associated with using spill blocks. Spill
blocks are used to store system attribute data (i.e. file metadata) that
does not fit in the dnode's bonus buffer. By allowing a larger bonus
buffer area the use of a spill block can be avoided. Spill blocks
potentially incur an additional read I/O for every dnode in a dnode
block. As a worst case example, reading 32 dnodes from a 16k dnode block
and all of the spill blocks could issue 33 separate reads. Now suppose
those dnodes have size 1024 and therefore don't need spill blocks. Then
the worst case number of blocks read is reduced to from 33 to two--one
per dnode block. In practice spill blocks may tend to be co-located on
disk with the dnode blocks so the reduction in I/O would not be this
drastic. In a badly fragmented pool, however, the improvement could be
significant.
ZFS-on-Linux systems that make heavy use of extended attributes would
benefit from this feature. In particular, ZFS-on-Linux supports the
xattr=sa dataset property which allows file extended attribute data
to be stored in the dnode bonus buffer as an alternative to the
traditional directory-based format. Workloads such as SELinux and the
Lustre distributed filesystem often store enough xattr data to force
spill bocks when xattr=sa is in effect. Large dnodes may therefore
provide a performance benefit to such systems.
Other use cases that may benefit from this feature include files with
large ACLs and symbolic links with long target names. Furthermore,
this feature may be desirable on other platforms in case future
applications or features are developed that could make use of a
larger bonus buffer area.
Implementation
--------------
The size of a dnode may be a multiple of 512 bytes up to the size of
a dnode block (currently 16384 bytes). A dn_extra_slots field was
added to the current on-disk dnode_phys_t structure to describe the
size of the physical dnode on disk. The 8 bits for this field were
taken from the zero filled dn_pad2 field. The field represents how
many "extra" dnode_phys_t slots a dnode consumes in its dnode block.
This convention results in a value of 0 for 512 byte dnodes which
preserves on-disk format compatibility with older software.
Similarly, the in-memory dnode_t structure has a new dn_num_slots field
to represent the total number of dnode_phys_t slots consumed on disk.
Thus dn->dn_num_slots is 1 greater than the corresponding
dnp->dn_extra_slots. This difference in convention was adopted
because, unlike on-disk structures, backward compatibility is not a
concern for in-memory objects, so we used a more natural way to
represent size for a dnode_t.
The default size for newly created dnodes is determined by the value of
a new "dnodesize" dataset property. By default the property is set to
"legacy" which is compatible with older software. Setting the property
to "auto" will allow the filesystem to choose the most suitable dnode
size. Currently this just sets the default dnode size to 1k, but future
code improvements could dynamically choose a size based on observed
workload patterns. Dnodes of varying sizes can coexist within the same
dataset and even within the same dnode block. For example, to enable
automatically-sized dnodes, run
# zfs set dnodesize=auto tank/fish
The user can also specify literal values for the dnodesize property.
These are currently limited to powers of two from 1k to 16k. The
power-of-2 limitation is only for simplicity of the user interface.
Internally the implementation can handle any multiple of 512 up to 16k,
and consumers of the DMU API can specify any legal dnode value.
The size of a new dnode is determined at object allocation time and
stored as a new field in the znode in-memory structure. New DMU
interfaces are added to allow the consumer to specify the dnode size
that a newly allocated object should use. Existing interfaces are
unchanged to avoid having to update every call site and to preserve
compatibility with external consumers such as Lustre. The new
interfaces names are given below. The versions of these functions that
don't take a dnodesize parameter now just call the _dnsize() versions
with a dnodesize of 0, which means use the legacy dnode size.
New DMU interfaces:
dmu_object_alloc_dnsize()
dmu_object_claim_dnsize()
dmu_object_reclaim_dnsize()
New ZAP interfaces:
zap_create_dnsize()
zap_create_norm_dnsize()
zap_create_flags_dnsize()
zap_create_claim_norm_dnsize()
zap_create_link_dnsize()
The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The
spa_maxdnodesize() function should be used to determine the maximum
bonus length for a pool.
These are a few noteworthy changes to key functions:
* The prototype for dnode_hold_impl() now takes a "slots" parameter.
When the DNODE_MUST_BE_FREE flag is set, this parameter is used to
ensure the hole at the specified object offset is large enough to
hold the dnode being created. The slots parameter is also used
to ensure a dnode does not span multiple dnode blocks. In both of
these cases, if a failure occurs, ENOSPC is returned. Keep in mind,
these failure cases are only possible when using DNODE_MUST_BE_FREE.
If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
dnode_hold_impl() will check if the requested dnode is already
consumed as an extra dnode slot by an large dnode, in which case
it returns ENOENT.
* The function dmu_object_alloc() advances to the next dnode block
if dnode_hold_impl() returns an error for a requested object.
This is because the beginning of the next dnode block is the only
location it can safely assume to either be a hole or a valid
starting point for a dnode.
* dnode_next_offset_level() and other functions that iterate
through dnode blocks may no longer use a simple array indexing
scheme. These now use the current dnode's dn_num_slots field to
advance to the next dnode in the block. This is to ensure we
properly skip the current dnode's bonus area and don't interpret it
as a valid dnode.
zdb
---
The zdb command was updated to display a dnode's size under the
"dnsize" column when the object is dumped.
For ZIL create log records, zdb will now display the slot count for
the object.
ztest
-----
Ztest chooses a random dnodesize for every newly created object. The
random distribution is more heavily weighted toward small dnodes to
better simulate real-world datasets.
Unused bonus buffer space is filled with non-zero values computed from
the object number, dataset id, offset, and generation number. This
helps ensure that the dnode traversal code properly skips the interior
regions of large dnodes, and that these interior regions are not
overwritten by data belonging to other dnodes. A new test visits each
object in a dataset. It verifies that the actual dnode size matches what
was stored in the ztest block tag when it was created. It also verifies
that the unused bonus buffer space is filled with the expected data
patterns.
ZFS Test Suite
--------------
Added six new large dnode-specific tests, and integrated the dnodesize
property into existing tests for zfs allow and send/recv.
Send/Receive
------------
ZFS send streams for datasets containing large dnodes cannot be received
on pools that don't support the large_dnode feature. A send stream with
large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be
unrecognized by an incompatible receiving pool so that the zfs receive
will fail gracefully.
While not implemented here, it may be possible to generate a
backward-compatible send stream from a dataset containing large
dnodes. The implementation may be tricky, however, because the send
object record for a large dnode would need to be resized to a 512
byte dnode, possibly kicking in a spill block in the process. This
means we would need to construct a new SA layout and possibly
register it in the SA layout object. The SA layout is normally just
sent as an ordinary object record. But if we are constructing new
layouts while generating the send stream we'd have to build the SA
layout object dynamically and send it at the end of the stream.
For sending and receiving between pools that do support large dnodes,
the drr_object send record type is extended with a new field to store
the dnode slot count. This field was repurposed from unused padding
in the structure.
ZIL Replay
----------
The dnode slot count is stored in the uppermost 8 bits of the lr_foid
field. The bits were unused as the object id is currently capped at
48 bits.
Resizing Dnodes
---------------
It should be possible to resize a dnode when it is dirtied if the
current dnodesize dataset property differs from the dnode's size, but
this functionality is not currently implemented. Clearly a dnode can
only grow if there are sufficient contiguous unused slots in the
dnode block, but it should always be possible to shrink a dnode.
Growing dnodes may be useful to reduce fragmentation in a pool with
many spill blocks in use. Shrinking dnodes may be useful to allow
sending a dataset to a pool that doesn't support the large_dnode
feature.
Feature Reference Counting
--------------------------
The reference count for the large_dnode pool feature tracks the
number of datasets that have ever contained a dnode of size larger
than 512 bytes. The first time a large dnode is created in a dataset
the dataset is converted to an extensible dataset. This is a one-way
operation and the only way to decrement the feature count is to
destroy the dataset, even if the dataset no longer contains any large
dnodes. The complexity of reference counting on a per-dnode basis was
too high, so we chose to track it on a per-dataset basis similarly to
the large_block feature.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #3542
2016-03-17 04:25:34 +03:00
|
|
|
obj_type, bonuslen, dnodesize, tx);
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-03-08 03:21:37 +03:00
|
|
|
zh = zfs_znode_hold_enter(zfsvfs, obj);
|
2017-08-08 18:38:53 +03:00
|
|
|
VERIFY0(sa_buf_hold(zfsvfs->z_os, obj, NULL, &db));
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If this is the root, fix up the half-initialized parent pointer
|
|
|
|
* to reference the just-allocated physical data area.
|
|
|
|
*/
|
|
|
|
if (flag & IS_ROOT_NODE) {
|
|
|
|
dzp->z_id = obj;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If parent is an xattr, so am I.
|
|
|
|
*/
|
2018-02-14 01:54:54 +03:00
|
|
|
if (dzp->z_pflags & ZFS_XATTR) {
|
2008-11-20 23:01:55 +03:00
|
|
|
flag |= IS_XATTR;
|
|
|
|
}
|
|
|
|
|
2017-03-08 03:21:37 +03:00
|
|
|
if (zfsvfs->z_use_fuids)
|
2010-05-29 00:45:14 +04:00
|
|
|
pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
|
|
|
|
else
|
|
|
|
pflags = 0;
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2011-02-08 22:16:06 +03:00
|
|
|
if (S_ISDIR(vap->va_mode)) {
|
2010-05-29 00:45:14 +04:00
|
|
|
size = 2; /* contents ("." and "..") */
|
2016-07-14 17:44:38 +03:00
|
|
|
links = 2;
|
2010-05-29 00:45:14 +04:00
|
|
|
} else {
|
2016-07-14 17:44:38 +03:00
|
|
|
size = 0;
|
2016-01-26 23:29:46 +03:00
|
|
|
links = (flag & IS_TMPFILE) ? 0 : 1;
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
|
|
|
|
2011-05-09 23:31:56 +04:00
|
|
|
if (S_ISBLK(vap->va_mode) || S_ISCHR(vap->va_mode))
|
2011-02-24 02:13:03 +03:00
|
|
|
rdev = vap->va_rdev;
|
2010-05-29 00:45:14 +04:00
|
|
|
|
|
|
|
parent = dzp->z_id;
|
|
|
|
mode = acl_ids->z_mode;
|
2008-11-20 23:01:55 +03:00
|
|
|
if (flag & IS_XATTR)
|
2010-05-29 00:45:14 +04:00
|
|
|
pflags |= ZFS_XATTR;
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2018-02-14 01:54:54 +03:00
|
|
|
if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode)) {
|
|
|
|
/*
|
|
|
|
* With ZFS_PROJID flag, we can easily know whether there is
|
|
|
|
* project ID stored on disk or not. See zfs_space_delta_cb().
|
|
|
|
*/
|
|
|
|
if (obj_type != DMU_OT_ZNODE &&
|
|
|
|
dmu_objset_projectquota_enabled(zfsvfs->z_os))
|
|
|
|
pflags |= ZFS_PROJID;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Inherit project ID from parent if required.
|
|
|
|
*/
|
|
|
|
projid = zfs_inherit_projid(dzp);
|
|
|
|
if (dzp->z_pflags & ZFS_PROJINHERIT)
|
|
|
|
pflags |= ZFS_PROJINHERIT;
|
|
|
|
}
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
/*
|
2019-09-03 03:56:41 +03:00
|
|
|
* No execs denied will be determined when zfs_mode_compute() is called.
|
2010-05-29 00:45:14 +04:00
|
|
|
*/
|
|
|
|
pflags |= acl_ids->z_aclp->z_hints &
|
|
|
|
(ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT|
|
|
|
|
ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
ZFS_TIME_ENCODE(&now, crtime);
|
|
|
|
ZFS_TIME_ENCODE(&now, ctime);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2011-02-08 22:16:06 +03:00
|
|
|
if (vap->va_mask & ATTR_ATIME) {
|
2010-05-29 00:45:14 +04:00
|
|
|
ZFS_TIME_ENCODE(&vap->va_atime, atime);
|
2008-11-20 23:01:55 +03:00
|
|
|
} else {
|
2010-05-29 00:45:14 +04:00
|
|
|
ZFS_TIME_ENCODE(&now, atime);
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
|
|
|
|
2011-02-08 22:16:06 +03:00
|
|
|
if (vap->va_mask & ATTR_MTIME) {
|
2010-05-29 00:45:14 +04:00
|
|
|
ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
|
|
|
|
} else {
|
|
|
|
ZFS_TIME_ENCODE(&now, mtime);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Now add in all of the "SA" attributes */
|
2017-03-08 03:21:37 +03:00
|
|
|
VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED,
|
2010-05-29 00:45:14 +04:00
|
|
|
&sa_hdl));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Setup the array of attributes to be replaced/set on the new file
|
|
|
|
*
|
|
|
|
* order for DMU_OT_ZNODE is critical since it needs to be constructed
|
|
|
|
* in the old znode_phys_t format. Don't change this ordering
|
|
|
|
*/
|
2014-11-21 03:09:39 +03:00
|
|
|
sa_attrs = kmem_alloc(sizeof (sa_bulk_attr_t) * ZPL_END, KM_SLEEP);
|
2010-05-29 00:45:14 +04:00
|
|
|
|
|
|
|
if (obj_type == DMU_OT_ZNODE) {
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
|
2010-05-29 00:45:14 +04:00
|
|
|
NULL, &atime, 16);
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
|
2010-05-29 00:45:14 +04:00
|
|
|
NULL, &mtime, 16);
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
|
2010-05-29 00:45:14 +04:00
|
|
|
NULL, &ctime, 16);
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
|
2010-05-29 00:45:14 +04:00
|
|
|
NULL, &crtime, 16);
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
|
2010-05-29 00:45:14 +04:00
|
|
|
NULL, &gen, 8);
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
|
2010-05-29 00:45:14 +04:00
|
|
|
NULL, &mode, 8);
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
|
2010-05-29 00:45:14 +04:00
|
|
|
NULL, &size, 8);
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
|
2010-05-29 00:45:14 +04:00
|
|
|
NULL, &parent, 8);
|
2008-11-20 23:01:55 +03:00
|
|
|
} else {
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
|
2010-05-29 00:45:14 +04:00
|
|
|
NULL, &mode, 8);
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
|
2010-05-29 00:45:14 +04:00
|
|
|
NULL, &size, 8);
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
|
2010-05-29 00:45:14 +04:00
|
|
|
NULL, &gen, 8);
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs),
|
2011-02-08 22:16:06 +03:00
|
|
|
NULL, &acl_ids->z_fuid, 8);
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs),
|
2011-02-08 22:16:06 +03:00
|
|
|
NULL, &acl_ids->z_fgid, 8);
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
|
2010-05-29 00:45:14 +04:00
|
|
|
NULL, &parent, 8);
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
|
2010-05-29 00:45:14 +04:00
|
|
|
NULL, &pflags, 8);
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
|
2010-05-29 00:45:14 +04:00
|
|
|
NULL, &atime, 16);
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
|
2010-05-29 00:45:14 +04:00
|
|
|
NULL, &mtime, 16);
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
|
2010-05-29 00:45:14 +04:00
|
|
|
NULL, &ctime, 16);
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
|
2010-05-29 00:45:14 +04:00
|
|
|
NULL, &crtime, 16);
|
|
|
|
}
|
|
|
|
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
|
2010-05-29 00:45:14 +04:00
|
|
|
|
|
|
|
if (obj_type == DMU_OT_ZNODE) {
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL,
|
2010-05-29 00:45:14 +04:00
|
|
|
&empty_xattr, 8);
|
2018-02-14 01:54:54 +03:00
|
|
|
} else if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
|
|
|
|
pflags & ZFS_PROJID) {
|
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PROJID(zfsvfs),
|
|
|
|
NULL, &projid, 8);
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
2010-05-29 00:45:14 +04:00
|
|
|
if (obj_type == DMU_OT_ZNODE ||
|
2011-05-09 23:31:56 +04:00
|
|
|
(S_ISBLK(vap->va_mode) || S_ISCHR(vap->va_mode))) {
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs),
|
2010-05-29 00:45:14 +04:00
|
|
|
NULL, &rdev, 8);
|
|
|
|
}
|
|
|
|
if (obj_type == DMU_OT_ZNODE) {
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
|
2010-05-29 00:45:14 +04:00
|
|
|
NULL, &pflags, 8);
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
|
2010-05-29 00:45:14 +04:00
|
|
|
&acl_ids->z_fuid, 8);
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
|
2010-05-29 00:45:14 +04:00
|
|
|
&acl_ids->z_fgid, 8);
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad,
|
2010-05-29 00:45:14 +04:00
|
|
|
sizeof (uint64_t) * 4);
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
|
2010-05-29 00:45:14 +04:00
|
|
|
&acl_phys, sizeof (zfs_acl_phys_t));
|
|
|
|
} else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) {
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL,
|
2010-05-29 00:45:14 +04:00
|
|
|
&acl_ids->z_aclp->z_acl_count, 8);
|
|
|
|
locate.cb_aclp = acl_ids->z_aclp;
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs),
|
2010-05-29 00:45:14 +04:00
|
|
|
zfs_acl_data_locator, &locate,
|
|
|
|
acl_ids->z_aclp->z_acl_bytes);
|
|
|
|
mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags,
|
|
|
|
acl_ids->z_fuid, acl_ids->z_fgid);
|
|
|
|
}
|
|
|
|
|
|
|
|
VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
|
|
if (!(flag & IS_ROOT_NODE)) {
|
2017-03-24 04:26:50 +03:00
|
|
|
/*
|
|
|
|
* The call to zfs_znode_alloc() may fail if memory is low
|
|
|
|
* via the call path: alloc_inode() -> inode_init_always() ->
|
|
|
|
* security_inode_alloc() -> inode_alloc_security(). Since
|
|
|
|
* the existing code is written such that zfs_mknode() can
|
|
|
|
* not fail retry until sufficient memory has been reclaimed.
|
|
|
|
*/
|
|
|
|
do {
|
2019-06-06 00:18:46 +03:00
|
|
|
*zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl);
|
2017-03-24 04:26:50 +03:00
|
|
|
} while (*zpp == NULL);
|
|
|
|
|
2013-01-16 04:41:09 +04:00
|
|
|
VERIFY(*zpp != NULL);
|
|
|
|
VERIFY(dzp != NULL);
|
2008-11-20 23:01:55 +03:00
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* If we are creating the root node, the "parent" we
|
|
|
|
* passed in is the znode for the root.
|
|
|
|
*/
|
|
|
|
*zpp = dzp;
|
2010-05-29 00:45:14 +04:00
|
|
|
|
|
|
|
(*zpp)->z_sa_hdl = sa_hdl;
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
2010-05-29 00:45:14 +04:00
|
|
|
|
|
|
|
(*zpp)->z_pflags = pflags;
|
2016-09-28 00:08:52 +03:00
|
|
|
(*zpp)->z_mode = ZTOI(*zpp)->i_mode = mode;
|
Implement large_dnode pool feature
Justification
-------------
This feature adds support for variable length dnodes. Our motivation is
to eliminate the overhead associated with using spill blocks. Spill
blocks are used to store system attribute data (i.e. file metadata) that
does not fit in the dnode's bonus buffer. By allowing a larger bonus
buffer area the use of a spill block can be avoided. Spill blocks
potentially incur an additional read I/O for every dnode in a dnode
block. As a worst case example, reading 32 dnodes from a 16k dnode block
and all of the spill blocks could issue 33 separate reads. Now suppose
those dnodes have size 1024 and therefore don't need spill blocks. Then
the worst case number of blocks read is reduced to from 33 to two--one
per dnode block. In practice spill blocks may tend to be co-located on
disk with the dnode blocks so the reduction in I/O would not be this
drastic. In a badly fragmented pool, however, the improvement could be
significant.
ZFS-on-Linux systems that make heavy use of extended attributes would
benefit from this feature. In particular, ZFS-on-Linux supports the
xattr=sa dataset property which allows file extended attribute data
to be stored in the dnode bonus buffer as an alternative to the
traditional directory-based format. Workloads such as SELinux and the
Lustre distributed filesystem often store enough xattr data to force
spill bocks when xattr=sa is in effect. Large dnodes may therefore
provide a performance benefit to such systems.
Other use cases that may benefit from this feature include files with
large ACLs and symbolic links with long target names. Furthermore,
this feature may be desirable on other platforms in case future
applications or features are developed that could make use of a
larger bonus buffer area.
Implementation
--------------
The size of a dnode may be a multiple of 512 bytes up to the size of
a dnode block (currently 16384 bytes). A dn_extra_slots field was
added to the current on-disk dnode_phys_t structure to describe the
size of the physical dnode on disk. The 8 bits for this field were
taken from the zero filled dn_pad2 field. The field represents how
many "extra" dnode_phys_t slots a dnode consumes in its dnode block.
This convention results in a value of 0 for 512 byte dnodes which
preserves on-disk format compatibility with older software.
Similarly, the in-memory dnode_t structure has a new dn_num_slots field
to represent the total number of dnode_phys_t slots consumed on disk.
Thus dn->dn_num_slots is 1 greater than the corresponding
dnp->dn_extra_slots. This difference in convention was adopted
because, unlike on-disk structures, backward compatibility is not a
concern for in-memory objects, so we used a more natural way to
represent size for a dnode_t.
The default size for newly created dnodes is determined by the value of
a new "dnodesize" dataset property. By default the property is set to
"legacy" which is compatible with older software. Setting the property
to "auto" will allow the filesystem to choose the most suitable dnode
size. Currently this just sets the default dnode size to 1k, but future
code improvements could dynamically choose a size based on observed
workload patterns. Dnodes of varying sizes can coexist within the same
dataset and even within the same dnode block. For example, to enable
automatically-sized dnodes, run
# zfs set dnodesize=auto tank/fish
The user can also specify literal values for the dnodesize property.
These are currently limited to powers of two from 1k to 16k. The
power-of-2 limitation is only for simplicity of the user interface.
Internally the implementation can handle any multiple of 512 up to 16k,
and consumers of the DMU API can specify any legal dnode value.
The size of a new dnode is determined at object allocation time and
stored as a new field in the znode in-memory structure. New DMU
interfaces are added to allow the consumer to specify the dnode size
that a newly allocated object should use. Existing interfaces are
unchanged to avoid having to update every call site and to preserve
compatibility with external consumers such as Lustre. The new
interfaces names are given below. The versions of these functions that
don't take a dnodesize parameter now just call the _dnsize() versions
with a dnodesize of 0, which means use the legacy dnode size.
New DMU interfaces:
dmu_object_alloc_dnsize()
dmu_object_claim_dnsize()
dmu_object_reclaim_dnsize()
New ZAP interfaces:
zap_create_dnsize()
zap_create_norm_dnsize()
zap_create_flags_dnsize()
zap_create_claim_norm_dnsize()
zap_create_link_dnsize()
The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The
spa_maxdnodesize() function should be used to determine the maximum
bonus length for a pool.
These are a few noteworthy changes to key functions:
* The prototype for dnode_hold_impl() now takes a "slots" parameter.
When the DNODE_MUST_BE_FREE flag is set, this parameter is used to
ensure the hole at the specified object offset is large enough to
hold the dnode being created. The slots parameter is also used
to ensure a dnode does not span multiple dnode blocks. In both of
these cases, if a failure occurs, ENOSPC is returned. Keep in mind,
these failure cases are only possible when using DNODE_MUST_BE_FREE.
If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
dnode_hold_impl() will check if the requested dnode is already
consumed as an extra dnode slot by an large dnode, in which case
it returns ENOENT.
* The function dmu_object_alloc() advances to the next dnode block
if dnode_hold_impl() returns an error for a requested object.
This is because the beginning of the next dnode block is the only
location it can safely assume to either be a hole or a valid
starting point for a dnode.
* dnode_next_offset_level() and other functions that iterate
through dnode blocks may no longer use a simple array indexing
scheme. These now use the current dnode's dn_num_slots field to
advance to the next dnode in the block. This is to ensure we
properly skip the current dnode's bonus area and don't interpret it
as a valid dnode.
zdb
---
The zdb command was updated to display a dnode's size under the
"dnsize" column when the object is dumped.
For ZIL create log records, zdb will now display the slot count for
the object.
ztest
-----
Ztest chooses a random dnodesize for every newly created object. The
random distribution is more heavily weighted toward small dnodes to
better simulate real-world datasets.
Unused bonus buffer space is filled with non-zero values computed from
the object number, dataset id, offset, and generation number. This
helps ensure that the dnode traversal code properly skips the interior
regions of large dnodes, and that these interior regions are not
overwritten by data belonging to other dnodes. A new test visits each
object in a dataset. It verifies that the actual dnode size matches what
was stored in the ztest block tag when it was created. It also verifies
that the unused bonus buffer space is filled with the expected data
patterns.
ZFS Test Suite
--------------
Added six new large dnode-specific tests, and integrated the dnodesize
property into existing tests for zfs allow and send/recv.
Send/Receive
------------
ZFS send streams for datasets containing large dnodes cannot be received
on pools that don't support the large_dnode feature. A send stream with
large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be
unrecognized by an incompatible receiving pool so that the zfs receive
will fail gracefully.
While not implemented here, it may be possible to generate a
backward-compatible send stream from a dataset containing large
dnodes. The implementation may be tricky, however, because the send
object record for a large dnode would need to be resized to a 512
byte dnode, possibly kicking in a spill block in the process. This
means we would need to construct a new SA layout and possibly
register it in the SA layout object. The SA layout is normally just
sent as an ordinary object record. But if we are constructing new
layouts while generating the send stream we'd have to build the SA
layout object dynamically and send it at the end of the stream.
For sending and receiving between pools that do support large dnodes,
the drr_object send record type is extended with a new field to store
the dnode slot count. This field was repurposed from unused padding
in the structure.
ZIL Replay
----------
The dnode slot count is stored in the uppermost 8 bits of the lr_foid
field. The bits were unused as the object id is currently capped at
48 bits.
Resizing Dnodes
---------------
It should be possible to resize a dnode when it is dirtied if the
current dnodesize dataset property differs from the dnode's size, but
this functionality is not currently implemented. Clearly a dnode can
only grow if there are sufficient contiguous unused slots in the
dnode block, but it should always be possible to shrink a dnode.
Growing dnodes may be useful to reduce fragmentation in a pool with
many spill blocks in use. Shrinking dnodes may be useful to allow
sending a dataset to a pool that doesn't support the large_dnode
feature.
Feature Reference Counting
--------------------------
The reference count for the large_dnode pool feature tracks the
number of datasets that have ever contained a dnode of size larger
than 512 bytes. The first time a large dnode is created in a dataset
the dataset is converted to an extensible dataset. This is a one-way
operation and the only way to decrement the feature count is to
destroy the dataset, even if the dataset no longer contains any large
dnodes. The complexity of reference counting on a per-dnode basis was
too high, so we chose to track it on a per-dataset basis similarly to
the large_block feature.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #3542
2016-03-17 04:25:34 +03:00
|
|
|
(*zpp)->z_dnodesize = dnodesize;
|
2018-02-14 01:54:54 +03:00
|
|
|
(*zpp)->z_projid = projid;
|
2010-05-29 00:45:14 +04:00
|
|
|
|
|
|
|
if (obj_type == DMU_OT_ZNODE ||
|
|
|
|
acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) {
|
2013-12-09 22:37:51 +04:00
|
|
|
VERIFY0(zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx));
|
2010-05-29 00:45:14 +04:00
|
|
|
}
|
2013-11-01 23:26:11 +04:00
|
|
|
kmem_free(sa_attrs, sizeof (sa_bulk_attr_t) * ZPL_END);
|
2017-03-08 03:21:37 +03:00
|
|
|
zfs_znode_hold_exit(zfsvfs, zh);
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
|
|
|
|
2011-03-01 23:24:09 +03:00
|
|
|
/*
|
2013-06-11 21:12:34 +04:00
|
|
|
* Update in-core attributes. It is assumed the caller will be doing an
|
|
|
|
* sa_bulk_update to push the changes out.
|
2011-03-01 23:24:09 +03:00
|
|
|
*/
|
|
|
|
void
|
|
|
|
zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
xoptattr_t *xoap;
|
2016-12-15 01:18:53 +03:00
|
|
|
boolean_t update_inode = B_FALSE;
|
2011-03-01 23:24:09 +03:00
|
|
|
|
|
|
|
xoap = xva_getxoptattr(xvap);
|
|
|
|
ASSERT(xoap);
|
|
|
|
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
|
|
|
|
uint64_t times[2];
|
|
|
|
ZFS_TIME_ENCODE(&xoap->xoa_createtime, times);
|
|
|
|
(void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(ZTOZSB(zp)),
|
|
|
|
×, sizeof (times), tx);
|
|
|
|
XVA_SET_RTN(xvap, XAT_CREATETIME);
|
|
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
|
|
|
|
ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly,
|
|
|
|
zp->z_pflags, tx);
|
|
|
|
XVA_SET_RTN(xvap, XAT_READONLY);
|
|
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
|
|
|
|
ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden,
|
|
|
|
zp->z_pflags, tx);
|
|
|
|
XVA_SET_RTN(xvap, XAT_HIDDEN);
|
|
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
|
|
|
|
ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system,
|
|
|
|
zp->z_pflags, tx);
|
|
|
|
XVA_SET_RTN(xvap, XAT_SYSTEM);
|
|
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
|
|
|
|
ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive,
|
|
|
|
zp->z_pflags, tx);
|
|
|
|
XVA_SET_RTN(xvap, XAT_ARCHIVE);
|
|
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
|
|
|
|
ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable,
|
|
|
|
zp->z_pflags, tx);
|
|
|
|
XVA_SET_RTN(xvap, XAT_IMMUTABLE);
|
2016-10-06 00:47:29 +03:00
|
|
|
|
2016-12-15 01:18:53 +03:00
|
|
|
update_inode = B_TRUE;
|
2011-03-01 23:24:09 +03:00
|
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
|
|
|
|
ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink,
|
|
|
|
zp->z_pflags, tx);
|
|
|
|
XVA_SET_RTN(xvap, XAT_NOUNLINK);
|
|
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
|
|
|
|
ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly,
|
|
|
|
zp->z_pflags, tx);
|
|
|
|
XVA_SET_RTN(xvap, XAT_APPENDONLY);
|
2016-10-06 00:47:29 +03:00
|
|
|
|
2016-12-15 01:18:53 +03:00
|
|
|
update_inode = B_TRUE;
|
2011-03-01 23:24:09 +03:00
|
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
|
|
|
|
ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump,
|
|
|
|
zp->z_pflags, tx);
|
|
|
|
XVA_SET_RTN(xvap, XAT_NODUMP);
|
|
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
|
|
|
|
ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque,
|
|
|
|
zp->z_pflags, tx);
|
|
|
|
XVA_SET_RTN(xvap, XAT_OPAQUE);
|
|
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
|
|
|
|
ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
|
|
|
|
xoap->xoa_av_quarantined, zp->z_pflags, tx);
|
|
|
|
XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
|
|
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
|
|
|
|
ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified,
|
|
|
|
zp->z_pflags, tx);
|
|
|
|
XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
|
|
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
|
|
|
|
zfs_sa_set_scanstamp(zp, xvap, tx);
|
|
|
|
XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
|
|
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
|
|
|
|
ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse,
|
|
|
|
zp->z_pflags, tx);
|
|
|
|
XVA_SET_RTN(xvap, XAT_REPARSE);
|
|
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
|
|
|
|
ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline,
|
|
|
|
zp->z_pflags, tx);
|
|
|
|
XVA_SET_RTN(xvap, XAT_OFFLINE);
|
|
|
|
}
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
|
|
|
|
ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse,
|
|
|
|
zp->z_pflags, tx);
|
|
|
|
XVA_SET_RTN(xvap, XAT_SPARSE);
|
|
|
|
}
|
2018-02-14 01:54:54 +03:00
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
|
|
|
|
ZFS_ATTR_SET(zp, ZFS_PROJINHERIT, xoap->xoa_projinherit,
|
|
|
|
zp->z_pflags, tx);
|
|
|
|
XVA_SET_RTN(xvap, XAT_PROJINHERIT);
|
|
|
|
}
|
2016-12-15 01:18:53 +03:00
|
|
|
|
|
|
|
if (update_inode)
|
|
|
|
zfs_set_inode_flags(zp, ZTOI(zp));
|
2011-03-01 23:24:09 +03:00
|
|
|
}
|
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
int
|
2017-03-08 03:21:37 +03:00
|
|
|
zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
|
2008-11-20 23:01:55 +03:00
|
|
|
{
|
|
|
|
dmu_object_info_t doi;
|
|
|
|
dmu_buf_t *db;
|
|
|
|
znode_t *zp;
|
2015-12-23 00:47:38 +03:00
|
|
|
znode_hold_t *zh;
|
2008-11-20 23:01:55 +03:00
|
|
|
int err;
|
2010-05-29 00:45:14 +04:00
|
|
|
sa_handle_t *hdl;
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
|
|
*zpp = NULL;
|
|
|
|
|
2014-03-25 23:41:18 +04:00
|
|
|
again:
|
2017-03-08 03:21:37 +03:00
|
|
|
zh = zfs_znode_hold_enter(zfsvfs, obj_num);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2017-03-08 03:21:37 +03:00
|
|
|
err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
|
2008-11-20 23:01:55 +03:00
|
|
|
if (err) {
|
2017-03-08 03:21:37 +03:00
|
|
|
zfs_znode_hold_exit(zfsvfs, zh);
|
2008-11-20 23:01:55 +03:00
|
|
|
return (err);
|
|
|
|
}
|
|
|
|
|
|
|
|
dmu_object_info_from_db(db, &doi);
|
2010-05-29 00:45:14 +04:00
|
|
|
if (doi.doi_bonus_type != DMU_OT_SA &&
|
|
|
|
(doi.doi_bonus_type != DMU_OT_ZNODE ||
|
|
|
|
(doi.doi_bonus_type == DMU_OT_ZNODE &&
|
|
|
|
doi.doi_bonus_size < sizeof (znode_phys_t)))) {
|
|
|
|
sa_buf_rele(db, NULL);
|
2017-03-08 03:21:37 +03:00
|
|
|
zfs_znode_hold_exit(zfsvfs, zh);
|
2013-03-08 22:41:28 +04:00
|
|
|
return (SET_ERROR(EINVAL));
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
hdl = dmu_buf_get_user(db);
|
|
|
|
if (hdl != NULL) {
|
2011-04-15 00:07:24 +04:00
|
|
|
zp = sa_get_userdata(hdl);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2014-04-04 01:26:16 +04:00
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
/*
|
2010-05-29 00:45:14 +04:00
|
|
|
* Since "SA" does immediate eviction we
|
|
|
|
* should never find a sa handle that doesn't
|
|
|
|
* know about the znode.
|
2008-11-20 23:01:55 +03:00
|
|
|
*/
|
2010-05-29 00:45:14 +04:00
|
|
|
|
|
|
|
ASSERT3P(zp, !=, NULL);
|
|
|
|
|
|
|
|
mutex_enter(&zp->z_lock);
|
2008-11-20 23:01:55 +03:00
|
|
|
ASSERT3U(zp->z_id, ==, obj_num);
|
2016-10-13 03:30:46 +03:00
|
|
|
/*
|
2019-11-15 20:56:05 +03:00
|
|
|
* If zp->z_unlinked is set, the znode is already marked
|
2019-11-21 23:24:03 +03:00
|
|
|
* for deletion and should not be discovered. Check this
|
|
|
|
* after checking igrab() due to fsetxattr() & O_TMPFILE.
|
2019-11-15 20:56:05 +03:00
|
|
|
*
|
2016-10-13 03:30:46 +03:00
|
|
|
* If igrab() returns NULL the VFS has independently
|
|
|
|
* determined the inode should be evicted and has
|
|
|
|
* called iput_final() to start the eviction process.
|
|
|
|
* The SA handle is still valid but because the VFS
|
|
|
|
* requires that the eviction succeed we must drop
|
|
|
|
* our locks and references to allow the eviction to
|
|
|
|
* complete. The zfs_zget() may then be retried.
|
|
|
|
*
|
|
|
|
* This unlikely case could be optimized by registering
|
|
|
|
* a sops->drop_inode() callback. The callback would
|
|
|
|
* need to detect the active SA hold thereby informing
|
|
|
|
* the VFS that this inode should not be evicted.
|
|
|
|
*/
|
2019-11-21 23:24:03 +03:00
|
|
|
if (igrab(ZTOI(zp)) == NULL) {
|
|
|
|
if (zp->z_unlinked)
|
|
|
|
err = SET_ERROR(ENOENT);
|
|
|
|
else
|
|
|
|
err = SET_ERROR(EAGAIN);
|
2019-11-15 20:56:05 +03:00
|
|
|
} else {
|
|
|
|
*zpp = zp;
|
|
|
|
err = 0;
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
2019-11-15 20:56:05 +03:00
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
mutex_exit(&zp->z_lock);
|
2014-03-26 01:49:47 +04:00
|
|
|
sa_buf_rele(db, NULL);
|
2017-03-08 03:21:37 +03:00
|
|
|
zfs_znode_hold_exit(zfsvfs, zh);
|
2019-11-15 20:56:05 +03:00
|
|
|
|
|
|
|
if (err == EAGAIN) {
|
|
|
|
/* inode might need this to finish evict */
|
|
|
|
cond_resched();
|
|
|
|
goto again;
|
|
|
|
}
|
2008-11-20 23:01:55 +03:00
|
|
|
return (err);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2011-02-08 22:16:06 +03:00
|
|
|
* Not found create new znode/vnode but only if file exists.
|
2010-05-29 00:45:14 +04:00
|
|
|
*
|
|
|
|
* There is a small window where zfs_vget() could
|
|
|
|
* find this object while a file create is still in
|
|
|
|
* progress. This is checked for in zfs_znode_alloc()
|
|
|
|
*
|
|
|
|
* if zfs_znode_alloc() fails it will drop the hold on the
|
|
|
|
* bonus buffer.
|
2008-11-20 23:01:55 +03:00
|
|
|
*/
|
2017-03-08 03:21:37 +03:00
|
|
|
zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size,
|
2019-06-06 00:18:46 +03:00
|
|
|
doi.doi_bonus_type, NULL);
|
2010-05-29 00:45:14 +04:00
|
|
|
if (zp == NULL) {
|
2013-03-08 22:41:28 +04:00
|
|
|
err = SET_ERROR(ENOENT);
|
2010-05-29 00:45:14 +04:00
|
|
|
} else {
|
|
|
|
*zpp = zp;
|
|
|
|
}
|
2017-03-08 03:21:37 +03:00
|
|
|
zfs_znode_hold_exit(zfsvfs, zh);
|
2010-05-29 00:45:14 +04:00
|
|
|
return (err);
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
zfs_rezget(znode_t *zp)
|
|
|
|
{
|
2017-03-08 03:21:37 +03:00
|
|
|
zfsvfs_t *zfsvfs = ZTOZSB(zp);
|
2008-11-20 23:01:55 +03:00
|
|
|
dmu_object_info_t doi;
|
|
|
|
dmu_buf_t *db;
|
|
|
|
uint64_t obj_num = zp->z_id;
|
2010-05-29 00:45:14 +04:00
|
|
|
uint64_t mode;
|
2016-07-14 17:44:38 +03:00
|
|
|
uint64_t links;
|
2019-03-17 03:43:13 +03:00
|
|
|
sa_bulk_attr_t bulk[11];
|
2008-11-20 23:01:55 +03:00
|
|
|
int err;
|
2010-05-29 00:45:14 +04:00
|
|
|
int count = 0;
|
|
|
|
uint64_t gen;
|
2016-05-22 14:15:57 +03:00
|
|
|
uint64_t z_uid, z_gid;
|
2019-03-17 03:43:13 +03:00
|
|
|
uint64_t atime[2], mtime[2], ctime[2], btime[2];
|
2023-12-16 14:31:32 +03:00
|
|
|
inode_timespec_t tmp_ts;
|
2018-02-14 01:54:54 +03:00
|
|
|
uint64_t projid = ZFS_DEFAULT_PROJID;
|
2015-12-23 00:47:38 +03:00
|
|
|
znode_hold_t *zh;
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2016-05-20 03:04:27 +03:00
|
|
|
/*
|
|
|
|
* skip ctldir, otherwise they will always get invalidated. This will
|
|
|
|
* cause funny behaviour for the mounted snapdirs. Especially for
|
|
|
|
* Linux >= 3.18, d_invalidate will detach the mountpoint and prevent
|
|
|
|
* anyone automount it again as long as someone is still using the
|
|
|
|
* detached mount.
|
|
|
|
*/
|
|
|
|
if (zp->z_is_ctldir)
|
|
|
|
return (0);
|
|
|
|
|
2017-03-08 03:21:37 +03:00
|
|
|
zh = zfs_znode_hold_enter(zfsvfs, obj_num);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
mutex_enter(&zp->z_acl_lock);
|
|
|
|
if (zp->z_acl_cached) {
|
|
|
|
zfs_acl_free(zp->z_acl_cached);
|
|
|
|
zp->z_acl_cached = NULL;
|
|
|
|
}
|
|
|
|
mutex_exit(&zp->z_acl_lock);
|
2013-01-16 04:41:09 +04:00
|
|
|
|
2015-12-21 20:12:37 +03:00
|
|
|
rw_enter(&zp->z_xattr_lock, RW_WRITER);
|
2013-01-16 04:41:09 +04:00
|
|
|
if (zp->z_xattr_cached) {
|
|
|
|
nvlist_free(zp->z_xattr_cached);
|
|
|
|
zp->z_xattr_cached = NULL;
|
|
|
|
}
|
|
|
|
rw_exit(&zp->z_xattr_lock);
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
ASSERT(zp->z_sa_hdl == NULL);
|
2017-03-08 03:21:37 +03:00
|
|
|
err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
|
2008-11-20 23:01:55 +03:00
|
|
|
if (err) {
|
2017-03-08 03:21:37 +03:00
|
|
|
zfs_znode_hold_exit(zfsvfs, zh);
|
2008-11-20 23:01:55 +03:00
|
|
|
return (err);
|
|
|
|
}
|
|
|
|
|
|
|
|
dmu_object_info_from_db(db, &doi);
|
2010-05-29 00:45:14 +04:00
|
|
|
if (doi.doi_bonus_type != DMU_OT_SA &&
|
|
|
|
(doi.doi_bonus_type != DMU_OT_ZNODE ||
|
|
|
|
(doi.doi_bonus_type == DMU_OT_ZNODE &&
|
|
|
|
doi.doi_bonus_size < sizeof (znode_phys_t)))) {
|
|
|
|
sa_buf_rele(db, NULL);
|
2017-03-08 03:21:37 +03:00
|
|
|
zfs_znode_hold_exit(zfsvfs, zh);
|
2013-03-08 22:41:28 +04:00
|
|
|
return (SET_ERROR(EINVAL));
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
|
|
|
|
2017-03-08 03:21:37 +03:00
|
|
|
zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL);
|
2010-05-29 00:45:14 +04:00
|
|
|
|
|
|
|
/* reload cached values */
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL,
|
2010-05-29 00:45:14 +04:00
|
|
|
&gen, sizeof (gen));
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
|
2010-05-29 00:45:14 +04:00
|
|
|
&zp->z_size, sizeof (zp->z_size));
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
|
2016-07-14 17:44:38 +03:00
|
|
|
&links, sizeof (links));
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
|
2010-05-29 00:45:14 +04:00
|
|
|
&zp->z_pflags, sizeof (zp->z_pflags));
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
|
2016-05-22 14:15:57 +03:00
|
|
|
&z_uid, sizeof (z_uid));
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
|
2016-05-22 14:15:57 +03:00
|
|
|
&z_gid, sizeof (z_gid));
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
|
2010-05-29 00:45:14 +04:00
|
|
|
&mode, sizeof (mode));
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
|
2016-08-01 23:02:25 +03:00
|
|
|
&atime, 16);
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
|
2016-08-01 23:02:25 +03:00
|
|
|
&mtime, 16);
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
|
2016-08-01 23:02:25 +03:00
|
|
|
&ctime, 16);
|
2019-03-17 03:43:13 +03:00
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &btime, 16);
|
2010-05-29 00:45:14 +04:00
|
|
|
|
|
|
|
if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) {
|
|
|
|
zfs_znode_dmu_fini(zp);
|
2017-03-08 03:21:37 +03:00
|
|
|
zfs_znode_hold_exit(zfsvfs, zh);
|
2013-03-08 22:41:28 +04:00
|
|
|
return (SET_ERROR(EIO));
|
2010-05-29 00:45:14 +04:00
|
|
|
}
|
|
|
|
|
2018-02-14 01:54:54 +03:00
|
|
|
if (dmu_objset_projectquota_enabled(zfsvfs->z_os)) {
|
|
|
|
err = sa_lookup(zp->z_sa_hdl, SA_ZPL_PROJID(zfsvfs),
|
|
|
|
&projid, 8);
|
|
|
|
if (err != 0 && err != ENOENT) {
|
|
|
|
zfs_znode_dmu_fini(zp);
|
|
|
|
zfs_znode_hold_exit(zfsvfs, zh);
|
|
|
|
return (SET_ERROR(err));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
zp->z_projid = projid;
|
2016-09-28 00:08:52 +03:00
|
|
|
zp->z_mode = ZTOI(zp)->i_mode = mode;
|
2016-05-22 14:15:57 +03:00
|
|
|
zfs_uid_write(ZTOI(zp), z_uid);
|
|
|
|
zfs_gid_write(ZTOI(zp), z_gid);
|
2010-08-27 01:24:34 +04:00
|
|
|
|
2023-12-16 14:31:32 +03:00
|
|
|
ZFS_TIME_DECODE(&tmp_ts, atime);
|
|
|
|
zpl_inode_set_atime_to_ts(ZTOI(zp), tmp_ts);
|
|
|
|
ZFS_TIME_DECODE(&tmp_ts, mtime);
|
|
|
|
zpl_inode_set_mtime_to_ts(ZTOI(zp), tmp_ts);
|
|
|
|
ZFS_TIME_DECODE(&tmp_ts, ctime);
|
|
|
|
zpl_inode_set_ctime_to_ts(ZTOI(zp), tmp_ts);
|
2019-03-17 03:43:13 +03:00
|
|
|
ZFS_TIME_DECODE(&zp->z_btime, btime);
|
2016-08-01 23:02:25 +03:00
|
|
|
|
2019-06-06 22:59:39 +03:00
|
|
|
if ((uint32_t)gen != ZTOI(zp)->i_generation) {
|
2010-05-29 00:45:14 +04:00
|
|
|
zfs_znode_dmu_fini(zp);
|
2017-03-08 03:21:37 +03:00
|
|
|
zfs_znode_hold_exit(zfsvfs, zh);
|
2013-03-08 22:41:28 +04:00
|
|
|
return (SET_ERROR(EIO));
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
|
|
|
|
2016-07-14 17:44:38 +03:00
|
|
|
set_nlink(ZTOI(zp), (uint32_t)links);
|
2016-12-15 01:18:53 +03:00
|
|
|
zfs_set_inode_flags(zp, ZTOI(zp));
|
2016-07-14 17:44:38 +03:00
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
zp->z_blksz = doi.doi_data_block_size;
|
2019-08-13 16:58:02 +03:00
|
|
|
zp->z_atime_dirty = B_FALSE;
|
2021-02-09 22:17:29 +03:00
|
|
|
zfs_znode_update_vfs(zp);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2017-09-12 16:35:48 +03:00
|
|
|
/*
|
|
|
|
* If the file has zero links, then it has been unlinked on the send
|
|
|
|
* side and it must be in the received unlinked set.
|
|
|
|
* We call zfs_znode_dmu_fini() now to prevent any accesses to the
|
2019-09-03 03:56:41 +03:00
|
|
|
* stale data and to prevent automatic removal of the file in
|
2017-09-12 16:35:48 +03:00
|
|
|
* zfs_zinactive(). The file will be removed either when it is removed
|
|
|
|
* on the send side and the next incremental stream is received or
|
|
|
|
* when the unlinked set gets processed.
|
|
|
|
*/
|
|
|
|
zp->z_unlinked = (ZTOI(zp)->i_nlink == 0);
|
|
|
|
if (zp->z_unlinked)
|
|
|
|
zfs_znode_dmu_fini(zp);
|
|
|
|
|
2017-03-08 03:21:37 +03:00
|
|
|
zfs_znode_hold_exit(zfsvfs, zh);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
|
|
|
|
{
|
2017-03-08 03:21:37 +03:00
|
|
|
zfsvfs_t *zfsvfs = ZTOZSB(zp);
|
|
|
|
objset_t *os = zfsvfs->z_os;
|
2008-11-20 23:01:55 +03:00
|
|
|
uint64_t obj = zp->z_id;
|
2010-08-27 01:24:34 +04:00
|
|
|
uint64_t acl_obj = zfs_external_acl(zp);
|
2015-12-23 00:47:38 +03:00
|
|
|
znode_hold_t *zh;
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2017-03-08 03:21:37 +03:00
|
|
|
zh = zfs_znode_hold_enter(zfsvfs, obj);
|
2010-08-27 01:24:34 +04:00
|
|
|
if (acl_obj) {
|
|
|
|
VERIFY(!zp->z_is_sa);
|
2008-12-03 23:09:06 +03:00
|
|
|
VERIFY(0 == dmu_object_free(os, acl_obj, tx));
|
2010-08-27 01:24:34 +04:00
|
|
|
}
|
2008-12-03 23:09:06 +03:00
|
|
|
VERIFY(0 == dmu_object_free(os, obj, tx));
|
2008-11-20 23:01:55 +03:00
|
|
|
zfs_znode_dmu_fini(zp);
|
2017-03-08 03:21:37 +03:00
|
|
|
zfs_znode_hold_exit(zfsvfs, zh);
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
zfs_zinactive(znode_t *zp)
|
|
|
|
{
|
2017-03-08 03:21:37 +03:00
|
|
|
zfsvfs_t *zfsvfs = ZTOZSB(zp);
|
2008-11-20 23:01:55 +03:00
|
|
|
uint64_t z_id = zp->z_id;
|
2015-12-23 00:47:38 +03:00
|
|
|
znode_hold_t *zh;
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
ASSERT(zp->z_sa_hdl);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
|
|
/*
|
2011-03-21 20:19:30 +03:00
|
|
|
* Don't allow a zfs_zget() while were trying to release this znode.
|
2008-11-20 23:01:55 +03:00
|
|
|
*/
|
2017-03-08 03:21:37 +03:00
|
|
|
zh = zfs_znode_hold_enter(zfsvfs, z_id);
|
2011-03-21 20:19:30 +03:00
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
mutex_enter(&zp->z_lock);
|
|
|
|
|
|
|
|
/*
|
2017-09-12 16:35:48 +03:00
|
|
|
* If this was the last reference to a file with no links, remove
|
|
|
|
* the file from the file system unless the file system is mounted
|
|
|
|
* read-only. That can happen, for example, if the file system was
|
|
|
|
* originally read-write, the file was opened, then unlinked and
|
|
|
|
* the file system was made read-only before the file was finally
|
|
|
|
* closed. The file will remain in the unlinked set.
|
2008-11-20 23:01:55 +03:00
|
|
|
*/
|
|
|
|
if (zp->z_unlinked) {
|
2017-09-12 16:35:48 +03:00
|
|
|
ASSERT(!zfsvfs->z_issnap);
|
2019-02-12 21:41:15 +03:00
|
|
|
if (!zfs_is_readonly(zfsvfs) && !zfs_unlink_suspend_progress) {
|
2017-09-12 16:35:48 +03:00
|
|
|
mutex_exit(&zp->z_lock);
|
|
|
|
zfs_znode_hold_exit(zfsvfs, zh);
|
|
|
|
zfs_rmnode(zp);
|
|
|
|
return;
|
|
|
|
}
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
2010-05-29 00:45:14 +04:00
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
mutex_exit(&zp->z_lock);
|
|
|
|
zfs_znode_dmu_fini(zp);
|
2011-03-21 20:19:30 +03:00
|
|
|
|
2017-03-08 03:21:37 +03:00
|
|
|
zfs_znode_hold_exit(zfsvfs, zh);
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
|
|
|
|
Fix `zfs set atime|relatime=off|on` behavior on inherited datasets
`zfs set atime|relatime=off|on` doesn't disable or enable the property
on read for datasets whose property was inherited from parent, until
a dataset is once unmounted and mounted again.
(The properties start to work properly if a dataset is once unmounted
and mounted again. The difference comes from regular mount process,
e.g. via zpool import, uses mount options based on properties read
from ondisk layout for each dataset, whereas
`zfs set atime|relatime=off|on` just remounts a specified dataset.)
--
# zpool create p1 <device>
# zfs create p1/f1
# zfs set atime=off p1
# echo test > /p1/f1/test
# sync
# zfs list
NAME USED AVAIL REFER MOUNTPOINT
p1 176K 18.9G 25.5K /p1
p1/f1 26K 18.9G 26K /p1/f1
# zfs get atime
NAME PROPERTY VALUE SOURCE
p1 atime off local
p1/f1 atime off inherited from p1
# stat /p1/f1/test | grep Access | tail -1
Access: 2019-04-26 23:32:33.741205192 +0900
# cat /p1/f1/test
test
# stat /p1/f1/test | grep Access | tail -1
Access: 2019-04-26 23:32:50.173231861 +0900
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ changed by read(2)
--
The problem is that zfsvfs::z_atime which was probably intended to keep
incore atime state just gets updated by a callback function of "atime"
property change, atime_changed_cb(), and never used for anything else.
Since now that all file read and atime update use a common function
zpl_iter_read_common() -> file_accessed(), and whether to update atime
via ->dirty_inode() is determined by atime_needs_update(),
atime_needs_update() needs to return false once atime is turned off.
It currently continues to return true on `zfs set atime=off`.
Fix atime_changed_cb() by setting or dropping SB_NOATIME in VFS super
block depending on a new atime value, so that atime_needs_update() works
as expected after property change.
The same problem applies to "relatime" except that a self contained
relatime test is needed. This is because relatime_need_update() is based
on a mount option flag MNT_RELATIME, which doesn't exist in datasets
with inherited "relatime" property via `zfs set relatime=...`, hence it
needs its own relatime test zfs_relatime_need_update().
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tomohiro Kusumi <kusumi.tomohiro@gmail.com>
Closes #8674
Closes #8675
2019-05-07 20:06:30 +03:00
|
|
|
#if defined(HAVE_INODE_TIMESPEC64_TIMES)
|
|
|
|
#define zfs_compare_timespec timespec64_compare
|
|
|
|
#else
|
|
|
|
#define zfs_compare_timespec timespec_compare
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Determine whether the znode's atime must be updated. The logic mostly
|
|
|
|
* duplicates the Linux kernel's relatime_need_update() functionality.
|
|
|
|
* This function is only called if the underlying filesystem actually has
|
|
|
|
* atime updates enabled.
|
|
|
|
*/
|
|
|
|
boolean_t
|
|
|
|
zfs_relatime_need_update(const struct inode *ip)
|
2014-01-18 23:00:53 +04:00
|
|
|
{
|
2023-12-16 14:31:32 +03:00
|
|
|
inode_timespec_t now, tmp_atime, tmp_ts;
|
Fix `zfs set atime|relatime=off|on` behavior on inherited datasets
`zfs set atime|relatime=off|on` doesn't disable or enable the property
on read for datasets whose property was inherited from parent, until
a dataset is once unmounted and mounted again.
(The properties start to work properly if a dataset is once unmounted
and mounted again. The difference comes from regular mount process,
e.g. via zpool import, uses mount options based on properties read
from ondisk layout for each dataset, whereas
`zfs set atime|relatime=off|on` just remounts a specified dataset.)
--
# zpool create p1 <device>
# zfs create p1/f1
# zfs set atime=off p1
# echo test > /p1/f1/test
# sync
# zfs list
NAME USED AVAIL REFER MOUNTPOINT
p1 176K 18.9G 25.5K /p1
p1/f1 26K 18.9G 26K /p1/f1
# zfs get atime
NAME PROPERTY VALUE SOURCE
p1 atime off local
p1/f1 atime off inherited from p1
# stat /p1/f1/test | grep Access | tail -1
Access: 2019-04-26 23:32:33.741205192 +0900
# cat /p1/f1/test
test
# stat /p1/f1/test | grep Access | tail -1
Access: 2019-04-26 23:32:50.173231861 +0900
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ changed by read(2)
--
The problem is that zfsvfs::z_atime which was probably intended to keep
incore atime state just gets updated by a callback function of "atime"
property change, atime_changed_cb(), and never used for anything else.
Since now that all file read and atime update use a common function
zpl_iter_read_common() -> file_accessed(), and whether to update atime
via ->dirty_inode() is determined by atime_needs_update(),
atime_needs_update() needs to return false once atime is turned off.
It currently continues to return true on `zfs set atime=off`.
Fix atime_changed_cb() by setting or dropping SB_NOATIME in VFS super
block depending on a new atime value, so that atime_needs_update() works
as expected after property change.
The same problem applies to "relatime" except that a self contained
relatime test is needed. This is because relatime_need_update() is based
on a mount option flag MNT_RELATIME, which doesn't exist in datasets
with inherited "relatime" property via `zfs set relatime=...`, hence it
needs its own relatime test zfs_relatime_need_update().
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tomohiro Kusumi <kusumi.tomohiro@gmail.com>
Closes #8674
Closes #8675
2019-05-07 20:06:30 +03:00
|
|
|
|
|
|
|
gethrestime(&now);
|
2023-12-16 14:31:32 +03:00
|
|
|
tmp_atime = zpl_inode_get_atime(ip);
|
Fix `zfs set atime|relatime=off|on` behavior on inherited datasets
`zfs set atime|relatime=off|on` doesn't disable or enable the property
on read for datasets whose property was inherited from parent, until
a dataset is once unmounted and mounted again.
(The properties start to work properly if a dataset is once unmounted
and mounted again. The difference comes from regular mount process,
e.g. via zpool import, uses mount options based on properties read
from ondisk layout for each dataset, whereas
`zfs set atime|relatime=off|on` just remounts a specified dataset.)
--
# zpool create p1 <device>
# zfs create p1/f1
# zfs set atime=off p1
# echo test > /p1/f1/test
# sync
# zfs list
NAME USED AVAIL REFER MOUNTPOINT
p1 176K 18.9G 25.5K /p1
p1/f1 26K 18.9G 26K /p1/f1
# zfs get atime
NAME PROPERTY VALUE SOURCE
p1 atime off local
p1/f1 atime off inherited from p1
# stat /p1/f1/test | grep Access | tail -1
Access: 2019-04-26 23:32:33.741205192 +0900
# cat /p1/f1/test
test
# stat /p1/f1/test | grep Access | tail -1
Access: 2019-04-26 23:32:50.173231861 +0900
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ changed by read(2)
--
The problem is that zfsvfs::z_atime which was probably intended to keep
incore atime state just gets updated by a callback function of "atime"
property change, atime_changed_cb(), and never used for anything else.
Since now that all file read and atime update use a common function
zpl_iter_read_common() -> file_accessed(), and whether to update atime
via ->dirty_inode() is determined by atime_needs_update(),
atime_needs_update() needs to return false once atime is turned off.
It currently continues to return true on `zfs set atime=off`.
Fix atime_changed_cb() by setting or dropping SB_NOATIME in VFS super
block depending on a new atime value, so that atime_needs_update() works
as expected after property change.
The same problem applies to "relatime" except that a self contained
relatime test is needed. This is because relatime_need_update() is based
on a mount option flag MNT_RELATIME, which doesn't exist in datasets
with inherited "relatime" property via `zfs set relatime=...`, hence it
needs its own relatime test zfs_relatime_need_update().
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tomohiro Kusumi <kusumi.tomohiro@gmail.com>
Closes #8674
Closes #8675
2019-05-07 20:06:30 +03:00
|
|
|
/*
|
|
|
|
* In relatime mode, only update the atime if the previous atime
|
|
|
|
* is earlier than either the ctime or mtime or if at least a day
|
|
|
|
* has passed since the last update of atime.
|
|
|
|
*/
|
2023-12-16 14:31:32 +03:00
|
|
|
tmp_ts = zpl_inode_get_mtime(ip);
|
|
|
|
if (zfs_compare_timespec(&tmp_ts, &tmp_atime) >= 0)
|
Fix `zfs set atime|relatime=off|on` behavior on inherited datasets
`zfs set atime|relatime=off|on` doesn't disable or enable the property
on read for datasets whose property was inherited from parent, until
a dataset is once unmounted and mounted again.
(The properties start to work properly if a dataset is once unmounted
and mounted again. The difference comes from regular mount process,
e.g. via zpool import, uses mount options based on properties read
from ondisk layout for each dataset, whereas
`zfs set atime|relatime=off|on` just remounts a specified dataset.)
--
# zpool create p1 <device>
# zfs create p1/f1
# zfs set atime=off p1
# echo test > /p1/f1/test
# sync
# zfs list
NAME USED AVAIL REFER MOUNTPOINT
p1 176K 18.9G 25.5K /p1
p1/f1 26K 18.9G 26K /p1/f1
# zfs get atime
NAME PROPERTY VALUE SOURCE
p1 atime off local
p1/f1 atime off inherited from p1
# stat /p1/f1/test | grep Access | tail -1
Access: 2019-04-26 23:32:33.741205192 +0900
# cat /p1/f1/test
test
# stat /p1/f1/test | grep Access | tail -1
Access: 2019-04-26 23:32:50.173231861 +0900
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ changed by read(2)
--
The problem is that zfsvfs::z_atime which was probably intended to keep
incore atime state just gets updated by a callback function of "atime"
property change, atime_changed_cb(), and never used for anything else.
Since now that all file read and atime update use a common function
zpl_iter_read_common() -> file_accessed(), and whether to update atime
via ->dirty_inode() is determined by atime_needs_update(),
atime_needs_update() needs to return false once atime is turned off.
It currently continues to return true on `zfs set atime=off`.
Fix atime_changed_cb() by setting or dropping SB_NOATIME in VFS super
block depending on a new atime value, so that atime_needs_update() works
as expected after property change.
The same problem applies to "relatime" except that a self contained
relatime test is needed. This is because relatime_need_update() is based
on a mount option flag MNT_RELATIME, which doesn't exist in datasets
with inherited "relatime" property via `zfs set relatime=...`, hence it
needs its own relatime test zfs_relatime_need_update().
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tomohiro Kusumi <kusumi.tomohiro@gmail.com>
Closes #8674
Closes #8675
2019-05-07 20:06:30 +03:00
|
|
|
return (B_TRUE);
|
|
|
|
|
2023-12-16 14:31:32 +03:00
|
|
|
tmp_ts = zpl_inode_get_ctime(ip);
|
|
|
|
if (zfs_compare_timespec(&tmp_ts, &tmp_atime) >= 0)
|
Fix `zfs set atime|relatime=off|on` behavior on inherited datasets
`zfs set atime|relatime=off|on` doesn't disable or enable the property
on read for datasets whose property was inherited from parent, until
a dataset is once unmounted and mounted again.
(The properties start to work properly if a dataset is once unmounted
and mounted again. The difference comes from regular mount process,
e.g. via zpool import, uses mount options based on properties read
from ondisk layout for each dataset, whereas
`zfs set atime|relatime=off|on` just remounts a specified dataset.)
--
# zpool create p1 <device>
# zfs create p1/f1
# zfs set atime=off p1
# echo test > /p1/f1/test
# sync
# zfs list
NAME USED AVAIL REFER MOUNTPOINT
p1 176K 18.9G 25.5K /p1
p1/f1 26K 18.9G 26K /p1/f1
# zfs get atime
NAME PROPERTY VALUE SOURCE
p1 atime off local
p1/f1 atime off inherited from p1
# stat /p1/f1/test | grep Access | tail -1
Access: 2019-04-26 23:32:33.741205192 +0900
# cat /p1/f1/test
test
# stat /p1/f1/test | grep Access | tail -1
Access: 2019-04-26 23:32:50.173231861 +0900
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ changed by read(2)
--
The problem is that zfsvfs::z_atime which was probably intended to keep
incore atime state just gets updated by a callback function of "atime"
property change, atime_changed_cb(), and never used for anything else.
Since now that all file read and atime update use a common function
zpl_iter_read_common() -> file_accessed(), and whether to update atime
via ->dirty_inode() is determined by atime_needs_update(),
atime_needs_update() needs to return false once atime is turned off.
It currently continues to return true on `zfs set atime=off`.
Fix atime_changed_cb() by setting or dropping SB_NOATIME in VFS super
block depending on a new atime value, so that atime_needs_update() works
as expected after property change.
The same problem applies to "relatime" except that a self contained
relatime test is needed. This is because relatime_need_update() is based
on a mount option flag MNT_RELATIME, which doesn't exist in datasets
with inherited "relatime" property via `zfs set relatime=...`, hence it
needs its own relatime test zfs_relatime_need_update().
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tomohiro Kusumi <kusumi.tomohiro@gmail.com>
Closes #8674
Closes #8675
2019-05-07 20:06:30 +03:00
|
|
|
return (B_TRUE);
|
2014-01-18 23:00:53 +04:00
|
|
|
|
2023-12-16 14:31:32 +03:00
|
|
|
if ((hrtime_t)now.tv_sec - (hrtime_t)tmp_atime.tv_sec >= 24*60*60)
|
Fix `zfs set atime|relatime=off|on` behavior on inherited datasets
`zfs set atime|relatime=off|on` doesn't disable or enable the property
on read for datasets whose property was inherited from parent, until
a dataset is once unmounted and mounted again.
(The properties start to work properly if a dataset is once unmounted
and mounted again. The difference comes from regular mount process,
e.g. via zpool import, uses mount options based on properties read
from ondisk layout for each dataset, whereas
`zfs set atime|relatime=off|on` just remounts a specified dataset.)
--
# zpool create p1 <device>
# zfs create p1/f1
# zfs set atime=off p1
# echo test > /p1/f1/test
# sync
# zfs list
NAME USED AVAIL REFER MOUNTPOINT
p1 176K 18.9G 25.5K /p1
p1/f1 26K 18.9G 26K /p1/f1
# zfs get atime
NAME PROPERTY VALUE SOURCE
p1 atime off local
p1/f1 atime off inherited from p1
# stat /p1/f1/test | grep Access | tail -1
Access: 2019-04-26 23:32:33.741205192 +0900
# cat /p1/f1/test
test
# stat /p1/f1/test | grep Access | tail -1
Access: 2019-04-26 23:32:50.173231861 +0900
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ changed by read(2)
--
The problem is that zfsvfs::z_atime which was probably intended to keep
incore atime state just gets updated by a callback function of "atime"
property change, atime_changed_cb(), and never used for anything else.
Since now that all file read and atime update use a common function
zpl_iter_read_common() -> file_accessed(), and whether to update atime
via ->dirty_inode() is determined by atime_needs_update(),
atime_needs_update() needs to return false once atime is turned off.
It currently continues to return true on `zfs set atime=off`.
Fix atime_changed_cb() by setting or dropping SB_NOATIME in VFS super
block depending on a new atime value, so that atime_needs_update() works
as expected after property change.
The same problem applies to "relatime" except that a self contained
relatime test is needed. This is because relatime_need_update() is based
on a mount option flag MNT_RELATIME, which doesn't exist in datasets
with inherited "relatime" property via `zfs set relatime=...`, hence it
needs its own relatime test zfs_relatime_need_update().
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tomohiro Kusumi <kusumi.tomohiro@gmail.com>
Closes #8674
Closes #8675
2019-05-07 20:06:30 +03:00
|
|
|
return (B_TRUE);
|
2014-01-18 23:00:53 +04:00
|
|
|
|
Fix `zfs set atime|relatime=off|on` behavior on inherited datasets
`zfs set atime|relatime=off|on` doesn't disable or enable the property
on read for datasets whose property was inherited from parent, until
a dataset is once unmounted and mounted again.
(The properties start to work properly if a dataset is once unmounted
and mounted again. The difference comes from regular mount process,
e.g. via zpool import, uses mount options based on properties read
from ondisk layout for each dataset, whereas
`zfs set atime|relatime=off|on` just remounts a specified dataset.)
--
# zpool create p1 <device>
# zfs create p1/f1
# zfs set atime=off p1
# echo test > /p1/f1/test
# sync
# zfs list
NAME USED AVAIL REFER MOUNTPOINT
p1 176K 18.9G 25.5K /p1
p1/f1 26K 18.9G 26K /p1/f1
# zfs get atime
NAME PROPERTY VALUE SOURCE
p1 atime off local
p1/f1 atime off inherited from p1
# stat /p1/f1/test | grep Access | tail -1
Access: 2019-04-26 23:32:33.741205192 +0900
# cat /p1/f1/test
test
# stat /p1/f1/test | grep Access | tail -1
Access: 2019-04-26 23:32:50.173231861 +0900
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ changed by read(2)
--
The problem is that zfsvfs::z_atime which was probably intended to keep
incore atime state just gets updated by a callback function of "atime"
property change, atime_changed_cb(), and never used for anything else.
Since now that all file read and atime update use a common function
zpl_iter_read_common() -> file_accessed(), and whether to update atime
via ->dirty_inode() is determined by atime_needs_update(),
atime_needs_update() needs to return false once atime is turned off.
It currently continues to return true on `zfs set atime=off`.
Fix atime_changed_cb() by setting or dropping SB_NOATIME in VFS super
block depending on a new atime value, so that atime_needs_update() works
as expected after property change.
The same problem applies to "relatime" except that a self contained
relatime test is needed. This is because relatime_need_update() is based
on a mount option flag MNT_RELATIME, which doesn't exist in datasets
with inherited "relatime" property via `zfs set relatime=...`, hence it
needs its own relatime test zfs_relatime_need_update().
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tomohiro Kusumi <kusumi.tomohiro@gmail.com>
Closes #8674
Closes #8675
2019-05-07 20:06:30 +03:00
|
|
|
return (B_FALSE);
|
2014-01-18 23:00:53 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Prepare to update znode time stamps.
|
|
|
|
*
|
|
|
|
* IN: zp - znode requiring timestamp update
|
Fix atime handling and relatime
The problem for atime:
We have 3 places for atime: inode->i_atime, znode->z_atime and SA. And its
handling is a mess. A huge part of mess regarding atime comes from
zfs_tstamp_update_setup, zfs_inode_update, and zfs_getattr, which behave
inconsistently with those three values.
zfs_tstamp_update_setup clears z_atime_dirty unconditionally as long as you
don't pass ATTR_ATIME. Which means every write(2) operation which only updates
ctime and mtime will cause atime changes to not be written to disk.
Also zfs_inode_update from write(2) will replace inode->i_atime with what's
inside SA(stale). But doesn't touch z_atime. So after read(2) and write(2).
You'll have i_atime(stale), z_atime(new), SA(stale) and z_atime_dirty=0.
Now, if you do stat(2), zfs_getattr will actually replace i_atime with what's
inside, z_atime. So you will have now you'll have i_atime(new), z_atime(new),
SA(stale) and z_atime_dirty=0. These will all gone after umount. And you'll
leave with a stale atime.
The problem for relatime:
We do have a relatime config inside ZFS dataset, but how it should interact
with the mount flag MS_RELATIME is not well defined. It seems it wanted
relatime mount option to override the dataset config by showing it as
temporary in `zfs get`. But at the same time, `zfs set relatime=on|off` would
also seems to want to override the mount option. Not to mention that
MS_RELATIME flag is actually never passed into ZFS, so it never really worked.
How Linux handles atime:
The Linux kernel actually handles atime completely in VFS, except for writing
it to disk. So if we remove the atime handling in ZFS, things would just work,
no matter it's strictatime, relatime, noatime, or even O_NOATIME. And whenever
VFS updates the i_atime, it will notify the underlying filesystem via
sb->dirty_inode().
And also there's one thing to note about atime flags like MS_RELATIME and
other flags like MS_NODEV, etc. They are mount point flags rather than
filesystem(sb) flags. Since native linux filesystem can be mounted at multiple
places at the same time, they can all have different atime settings. So these
flags are never passed down to filesystem drivers.
What this patch tries to do:
We remove znode->z_atime, since we won't gain anything from it. We remove most
of the atime handling and leave it to VFS. The only thing we do with atime is
to write it when dirty_inode() or setattr() is called. We also add
file_accessed() in zpl_read() since it's not provided in vfs_read().
After this patch, only the MS_RELATIME flag will have effect. The setting in
dataset won't do anything. We will make zfstuil to mount ZFS with MS_RELATIME
set according to the setting in dataset in future patch.
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4482
2016-03-30 03:53:34 +03:00
|
|
|
* flag - ATTR_MTIME, ATTR_CTIME flags
|
2014-01-18 23:00:53 +04:00
|
|
|
*
|
Fix atime handling and relatime
The problem for atime:
We have 3 places for atime: inode->i_atime, znode->z_atime and SA. And its
handling is a mess. A huge part of mess regarding atime comes from
zfs_tstamp_update_setup, zfs_inode_update, and zfs_getattr, which behave
inconsistently with those three values.
zfs_tstamp_update_setup clears z_atime_dirty unconditionally as long as you
don't pass ATTR_ATIME. Which means every write(2) operation which only updates
ctime and mtime will cause atime changes to not be written to disk.
Also zfs_inode_update from write(2) will replace inode->i_atime with what's
inside SA(stale). But doesn't touch z_atime. So after read(2) and write(2).
You'll have i_atime(stale), z_atime(new), SA(stale) and z_atime_dirty=0.
Now, if you do stat(2), zfs_getattr will actually replace i_atime with what's
inside, z_atime. So you will have now you'll have i_atime(new), z_atime(new),
SA(stale) and z_atime_dirty=0. These will all gone after umount. And you'll
leave with a stale atime.
The problem for relatime:
We do have a relatime config inside ZFS dataset, but how it should interact
with the mount flag MS_RELATIME is not well defined. It seems it wanted
relatime mount option to override the dataset config by showing it as
temporary in `zfs get`. But at the same time, `zfs set relatime=on|off` would
also seems to want to override the mount option. Not to mention that
MS_RELATIME flag is actually never passed into ZFS, so it never really worked.
How Linux handles atime:
The Linux kernel actually handles atime completely in VFS, except for writing
it to disk. So if we remove the atime handling in ZFS, things would just work,
no matter it's strictatime, relatime, noatime, or even O_NOATIME. And whenever
VFS updates the i_atime, it will notify the underlying filesystem via
sb->dirty_inode().
And also there's one thing to note about atime flags like MS_RELATIME and
other flags like MS_NODEV, etc. They are mount point flags rather than
filesystem(sb) flags. Since native linux filesystem can be mounted at multiple
places at the same time, they can all have different atime settings. So these
flags are never passed down to filesystem drivers.
What this patch tries to do:
We remove znode->z_atime, since we won't gain anything from it. We remove most
of the atime handling and leave it to VFS. The only thing we do with atime is
to write it when dirty_inode() or setattr() is called. We also add
file_accessed() in zpl_read() since it's not provided in vfs_read().
After this patch, only the MS_RELATIME flag will have effect. The setting in
dataset won't do anything. We will make zfstuil to mount ZFS with MS_RELATIME
set according to the setting in dataset in future patch.
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4482
2016-03-30 03:53:34 +03:00
|
|
|
* OUT: zp - z_seq
|
2014-01-18 23:00:53 +04:00
|
|
|
* mtime - new mtime
|
|
|
|
* ctime - new ctime
|
|
|
|
*
|
Fix atime handling and relatime
The problem for atime:
We have 3 places for atime: inode->i_atime, znode->z_atime and SA. And its
handling is a mess. A huge part of mess regarding atime comes from
zfs_tstamp_update_setup, zfs_inode_update, and zfs_getattr, which behave
inconsistently with those three values.
zfs_tstamp_update_setup clears z_atime_dirty unconditionally as long as you
don't pass ATTR_ATIME. Which means every write(2) operation which only updates
ctime and mtime will cause atime changes to not be written to disk.
Also zfs_inode_update from write(2) will replace inode->i_atime with what's
inside SA(stale). But doesn't touch z_atime. So after read(2) and write(2).
You'll have i_atime(stale), z_atime(new), SA(stale) and z_atime_dirty=0.
Now, if you do stat(2), zfs_getattr will actually replace i_atime with what's
inside, z_atime. So you will have now you'll have i_atime(new), z_atime(new),
SA(stale) and z_atime_dirty=0. These will all gone after umount. And you'll
leave with a stale atime.
The problem for relatime:
We do have a relatime config inside ZFS dataset, but how it should interact
with the mount flag MS_RELATIME is not well defined. It seems it wanted
relatime mount option to override the dataset config by showing it as
temporary in `zfs get`. But at the same time, `zfs set relatime=on|off` would
also seems to want to override the mount option. Not to mention that
MS_RELATIME flag is actually never passed into ZFS, so it never really worked.
How Linux handles atime:
The Linux kernel actually handles atime completely in VFS, except for writing
it to disk. So if we remove the atime handling in ZFS, things would just work,
no matter it's strictatime, relatime, noatime, or even O_NOATIME. And whenever
VFS updates the i_atime, it will notify the underlying filesystem via
sb->dirty_inode().
And also there's one thing to note about atime flags like MS_RELATIME and
other flags like MS_NODEV, etc. They are mount point flags rather than
filesystem(sb) flags. Since native linux filesystem can be mounted at multiple
places at the same time, they can all have different atime settings. So these
flags are never passed down to filesystem drivers.
What this patch tries to do:
We remove znode->z_atime, since we won't gain anything from it. We remove most
of the atime handling and leave it to VFS. The only thing we do with atime is
to write it when dirty_inode() or setattr() is called. We also add
file_accessed() in zpl_read() since it's not provided in vfs_read().
After this patch, only the MS_RELATIME flag will have effect. The setting in
dataset won't do anything. We will make zfstuil to mount ZFS with MS_RELATIME
set according to the setting in dataset in future patch.
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4482
2016-03-30 03:53:34 +03:00
|
|
|
* Note: We don't update atime here, because we rely on Linux VFS to do
|
|
|
|
* atime updating.
|
2014-01-18 23:00:53 +04:00
|
|
|
*/
|
2008-11-20 23:01:55 +03:00
|
|
|
void
|
2010-05-29 00:45:14 +04:00
|
|
|
zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2],
|
Fix atime handling and relatime
The problem for atime:
We have 3 places for atime: inode->i_atime, znode->z_atime and SA. And its
handling is a mess. A huge part of mess regarding atime comes from
zfs_tstamp_update_setup, zfs_inode_update, and zfs_getattr, which behave
inconsistently with those three values.
zfs_tstamp_update_setup clears z_atime_dirty unconditionally as long as you
don't pass ATTR_ATIME. Which means every write(2) operation which only updates
ctime and mtime will cause atime changes to not be written to disk.
Also zfs_inode_update from write(2) will replace inode->i_atime with what's
inside SA(stale). But doesn't touch z_atime. So after read(2) and write(2).
You'll have i_atime(stale), z_atime(new), SA(stale) and z_atime_dirty=0.
Now, if you do stat(2), zfs_getattr will actually replace i_atime with what's
inside, z_atime. So you will have now you'll have i_atime(new), z_atime(new),
SA(stale) and z_atime_dirty=0. These will all gone after umount. And you'll
leave with a stale atime.
The problem for relatime:
We do have a relatime config inside ZFS dataset, but how it should interact
with the mount flag MS_RELATIME is not well defined. It seems it wanted
relatime mount option to override the dataset config by showing it as
temporary in `zfs get`. But at the same time, `zfs set relatime=on|off` would
also seems to want to override the mount option. Not to mention that
MS_RELATIME flag is actually never passed into ZFS, so it never really worked.
How Linux handles atime:
The Linux kernel actually handles atime completely in VFS, except for writing
it to disk. So if we remove the atime handling in ZFS, things would just work,
no matter it's strictatime, relatime, noatime, or even O_NOATIME. And whenever
VFS updates the i_atime, it will notify the underlying filesystem via
sb->dirty_inode().
And also there's one thing to note about atime flags like MS_RELATIME and
other flags like MS_NODEV, etc. They are mount point flags rather than
filesystem(sb) flags. Since native linux filesystem can be mounted at multiple
places at the same time, they can all have different atime settings. So these
flags are never passed down to filesystem drivers.
What this patch tries to do:
We remove znode->z_atime, since we won't gain anything from it. We remove most
of the atime handling and leave it to VFS. The only thing we do with atime is
to write it when dirty_inode() or setattr() is called. We also add
file_accessed() in zpl_read() since it's not provided in vfs_read().
After this patch, only the MS_RELATIME flag will have effect. The setting in
dataset won't do anything. We will make zfstuil to mount ZFS with MS_RELATIME
set according to the setting in dataset in future patch.
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4482
2016-03-30 03:53:34 +03:00
|
|
|
uint64_t ctime[2])
|
2008-11-20 23:01:55 +03:00
|
|
|
{
|
2023-12-16 14:31:32 +03:00
|
|
|
inode_timespec_t now, tmp_ts;
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
|
|
gethrestime(&now);
|
|
|
|
|
Fix atime handling and relatime
The problem for atime:
We have 3 places for atime: inode->i_atime, znode->z_atime and SA. And its
handling is a mess. A huge part of mess regarding atime comes from
zfs_tstamp_update_setup, zfs_inode_update, and zfs_getattr, which behave
inconsistently with those three values.
zfs_tstamp_update_setup clears z_atime_dirty unconditionally as long as you
don't pass ATTR_ATIME. Which means every write(2) operation which only updates
ctime and mtime will cause atime changes to not be written to disk.
Also zfs_inode_update from write(2) will replace inode->i_atime with what's
inside SA(stale). But doesn't touch z_atime. So after read(2) and write(2).
You'll have i_atime(stale), z_atime(new), SA(stale) and z_atime_dirty=0.
Now, if you do stat(2), zfs_getattr will actually replace i_atime with what's
inside, z_atime. So you will have now you'll have i_atime(new), z_atime(new),
SA(stale) and z_atime_dirty=0. These will all gone after umount. And you'll
leave with a stale atime.
The problem for relatime:
We do have a relatime config inside ZFS dataset, but how it should interact
with the mount flag MS_RELATIME is not well defined. It seems it wanted
relatime mount option to override the dataset config by showing it as
temporary in `zfs get`. But at the same time, `zfs set relatime=on|off` would
also seems to want to override the mount option. Not to mention that
MS_RELATIME flag is actually never passed into ZFS, so it never really worked.
How Linux handles atime:
The Linux kernel actually handles atime completely in VFS, except for writing
it to disk. So if we remove the atime handling in ZFS, things would just work,
no matter it's strictatime, relatime, noatime, or even O_NOATIME. And whenever
VFS updates the i_atime, it will notify the underlying filesystem via
sb->dirty_inode().
And also there's one thing to note about atime flags like MS_RELATIME and
other flags like MS_NODEV, etc. They are mount point flags rather than
filesystem(sb) flags. Since native linux filesystem can be mounted at multiple
places at the same time, they can all have different atime settings. So these
flags are never passed down to filesystem drivers.
What this patch tries to do:
We remove znode->z_atime, since we won't gain anything from it. We remove most
of the atime handling and leave it to VFS. The only thing we do with atime is
to write it when dirty_inode() or setattr() is called. We also add
file_accessed() in zpl_read() since it's not provided in vfs_read().
After this patch, only the MS_RELATIME flag will have effect. The setting in
dataset won't do anything. We will make zfstuil to mount ZFS with MS_RELATIME
set according to the setting in dataset in future patch.
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4482
2016-03-30 03:53:34 +03:00
|
|
|
zp->z_seq++;
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2011-02-08 22:16:06 +03:00
|
|
|
if (flag & ATTR_MTIME) {
|
2010-05-29 00:45:14 +04:00
|
|
|
ZFS_TIME_ENCODE(&now, mtime);
|
2023-12-16 14:31:32 +03:00
|
|
|
ZFS_TIME_DECODE(&tmp_ts, mtime);
|
|
|
|
zpl_inode_set_mtime_to_ts(ZTOI(zp), tmp_ts);
|
2011-02-08 22:16:06 +03:00
|
|
|
if (ZTOZSB(zp)->z_use_fuids) {
|
2010-05-29 00:45:14 +04:00
|
|
|
zp->z_pflags |= (ZFS_ARCHIVE |
|
|
|
|
ZFS_AV_MODIFIED);
|
|
|
|
}
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
|
|
|
|
2011-02-08 22:16:06 +03:00
|
|
|
if (flag & ATTR_CTIME) {
|
2010-05-29 00:45:14 +04:00
|
|
|
ZFS_TIME_ENCODE(&now, ctime);
|
2023-12-16 14:31:32 +03:00
|
|
|
ZFS_TIME_DECODE(&tmp_ts, ctime);
|
|
|
|
zpl_inode_set_ctime_to_ts(ZTOI(zp), tmp_ts);
|
2011-02-08 22:16:06 +03:00
|
|
|
if (ZTOZSB(zp)->z_use_fuids)
|
2010-05-29 00:45:14 +04:00
|
|
|
zp->z_pflags |= ZFS_ARCHIVE;
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Grow the block size for a file.
|
|
|
|
*
|
|
|
|
* IN: zp - znode of file to free data in.
|
|
|
|
* size - requested block size
|
|
|
|
* tx - open transaction.
|
|
|
|
*
|
|
|
|
* NOTE: this function assumes that the znode is write locked.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
u_longlong_t dummy;
|
|
|
|
|
|
|
|
if (size <= zp->z_blksz)
|
|
|
|
return;
|
|
|
|
/*
|
|
|
|
* If the file size is already greater than the current blocksize,
|
|
|
|
* we will not grow. If there is more than one block in a file,
|
|
|
|
* the blocksize cannot change.
|
|
|
|
*/
|
2010-05-29 00:45:14 +04:00
|
|
|
if (zp->z_blksz && zp->z_size > zp->z_blksz)
|
2008-11-20 23:01:55 +03:00
|
|
|
return;
|
|
|
|
|
2011-02-08 22:16:06 +03:00
|
|
|
error = dmu_object_set_blocksize(ZTOZSB(zp)->z_os, zp->z_id,
|
2008-11-20 23:01:55 +03:00
|
|
|
size, 0, tx);
|
2010-05-29 00:45:14 +04:00
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
if (error == ENOTSUP)
|
|
|
|
return;
|
2013-05-11 01:17:03 +04:00
|
|
|
ASSERT0(error);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
|
|
/* What blocksize did we actually get? */
|
2010-05-29 00:45:14 +04:00
|
|
|
dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy);
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2008-12-03 23:09:06 +03:00
|
|
|
* Increase the file length
|
2008-11-20 23:01:55 +03:00
|
|
|
*
|
|
|
|
* IN: zp - znode of file to free data in.
|
2008-12-03 23:09:06 +03:00
|
|
|
* end - new end-of-file
|
2008-11-20 23:01:55 +03:00
|
|
|
*
|
2014-07-07 23:49:36 +04:00
|
|
|
* RETURN: 0 on success, error code on failure
|
2008-11-20 23:01:55 +03:00
|
|
|
*/
|
2008-12-03 23:09:06 +03:00
|
|
|
static int
|
|
|
|
zfs_extend(znode_t *zp, uint64_t end)
|
2008-11-20 23:01:55 +03:00
|
|
|
{
|
2017-03-08 03:21:37 +03:00
|
|
|
zfsvfs_t *zfsvfs = ZTOZSB(zp);
|
2008-12-03 23:09:06 +03:00
|
|
|
dmu_tx_t *tx;
|
2019-11-01 20:37:33 +03:00
|
|
|
zfs_locked_range_t *lr;
|
2008-12-03 23:09:06 +03:00
|
|
|
uint64_t newblksz;
|
2008-11-20 23:01:55 +03:00
|
|
|
int error;
|
|
|
|
|
|
|
|
/*
|
2008-12-03 23:09:06 +03:00
|
|
|
* We will change zp_size, lock the whole file.
|
2008-11-20 23:01:55 +03:00
|
|
|
*/
|
2019-10-04 01:54:29 +03:00
|
|
|
lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_WRITER);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Nothing to do if file already at desired length.
|
|
|
|
*/
|
2010-05-29 00:45:14 +04:00
|
|
|
if (end <= zp->z_size) {
|
2019-10-04 01:54:29 +03:00
|
|
|
zfs_rangelock_exit(lr);
|
2008-11-20 23:01:55 +03:00
|
|
|
return (0);
|
|
|
|
}
|
2017-03-08 03:21:37 +03:00
|
|
|
tx = dmu_tx_create(zfsvfs->z_os);
|
2010-05-29 00:45:14 +04:00
|
|
|
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
|
|
|
|
zfs_sa_upgrade_txholds(tx, zp);
|
2008-12-03 23:09:06 +03:00
|
|
|
if (end > zp->z_blksz &&
|
2017-03-08 03:21:37 +03:00
|
|
|
(!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
|
2008-11-20 23:01:55 +03:00
|
|
|
/*
|
|
|
|
* We are growing the file past the current block size.
|
|
|
|
*/
|
2011-02-08 22:16:06 +03:00
|
|
|
if (zp->z_blksz > ZTOZSB(zp)->z_max_blksz) {
|
2014-11-03 23:15:08 +03:00
|
|
|
/*
|
|
|
|
* File's blocksize is already larger than the
|
|
|
|
* "recordsize" property. Only let it grow to
|
|
|
|
* the next power of 2.
|
|
|
|
*/
|
2008-11-20 23:01:55 +03:00
|
|
|
ASSERT(!ISP2(zp->z_blksz));
|
2014-11-03 23:15:08 +03:00
|
|
|
newblksz = MIN(end, 1 << highbit64(zp->z_blksz));
|
2008-11-20 23:01:55 +03:00
|
|
|
} else {
|
2011-02-08 22:16:06 +03:00
|
|
|
newblksz = MIN(end, ZTOZSB(zp)->z_max_blksz);
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
2008-12-03 23:09:06 +03:00
|
|
|
dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
|
|
|
|
} else {
|
|
|
|
newblksz = 0;
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
|
|
|
|
2013-11-23 03:13:18 +04:00
|
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
2008-11-20 23:01:55 +03:00
|
|
|
if (error) {
|
|
|
|
dmu_tx_abort(tx);
|
2019-10-04 01:54:29 +03:00
|
|
|
zfs_rangelock_exit(lr);
|
2008-11-20 23:01:55 +03:00
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
2008-12-03 23:09:06 +03:00
|
|
|
if (newblksz)
|
|
|
|
zfs_grow_blocksize(zp, newblksz, tx);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
zp->z_size = end;
|
|
|
|
|
2011-02-08 22:16:06 +03:00
|
|
|
VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(ZTOZSB(zp)),
|
2010-05-29 00:45:14 +04:00
|
|
|
&zp->z_size, sizeof (zp->z_size), tx));
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2019-10-04 01:54:29 +03:00
|
|
|
zfs_rangelock_exit(lr);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2008-12-03 23:09:06 +03:00
|
|
|
dmu_tx_commit(tx);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2008-12-03 23:09:06 +03:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2014-08-21 02:35:13 +04:00
|
|
|
/*
|
|
|
|
* zfs_zero_partial_page - Modeled after update_pages() but
|
|
|
|
* with different arguments and semantics for use by zfs_freesp().
|
|
|
|
*
|
|
|
|
* Zeroes a piece of a single page cache entry for zp at offset
|
|
|
|
* start and length len.
|
|
|
|
*
|
|
|
|
* Caller must acquire a range lock on the file for the region
|
|
|
|
* being zeroed in order that the ARC and page cache stay in sync.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
zfs_zero_partial_page(znode_t *zp, uint64_t start, uint64_t len)
|
|
|
|
{
|
|
|
|
struct address_space *mp = ZTOI(zp)->i_mapping;
|
|
|
|
struct page *pp;
|
|
|
|
int64_t off;
|
|
|
|
void *pb;
|
|
|
|
|
2016-04-05 22:39:37 +03:00
|
|
|
ASSERT((start & PAGE_MASK) == ((start + len - 1) & PAGE_MASK));
|
2014-08-21 02:35:13 +04:00
|
|
|
|
2016-04-05 22:39:37 +03:00
|
|
|
off = start & (PAGE_SIZE - 1);
|
|
|
|
start &= PAGE_MASK;
|
2014-08-21 02:35:13 +04:00
|
|
|
|
2016-04-05 22:39:37 +03:00
|
|
|
pp = find_lock_page(mp, start >> PAGE_SHIFT);
|
2014-08-21 02:35:13 +04:00
|
|
|
if (pp) {
|
|
|
|
if (mapping_writably_mapped(mp))
|
|
|
|
flush_dcache_page(pp);
|
|
|
|
|
|
|
|
pb = kmap(pp);
|
2022-02-25 16:26:54 +03:00
|
|
|
memset(pb + off, 0, len);
|
2014-08-21 02:35:13 +04:00
|
|
|
kunmap(pp);
|
|
|
|
|
|
|
|
if (mapping_writably_mapped(mp))
|
|
|
|
flush_dcache_page(pp);
|
|
|
|
|
|
|
|
mark_page_accessed(pp);
|
|
|
|
SetPageUptodate(pp);
|
|
|
|
ClearPageError(pp);
|
|
|
|
unlock_page(pp);
|
2016-04-05 22:39:37 +03:00
|
|
|
put_page(pp);
|
2014-08-21 02:35:13 +04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-12-03 23:09:06 +03:00
|
|
|
/*
|
|
|
|
* Free space in a file.
|
|
|
|
*
|
|
|
|
* IN: zp - znode of file to free data in.
|
|
|
|
* off - start of section to free.
|
|
|
|
* len - length of section to free.
|
|
|
|
*
|
2014-07-07 23:49:36 +04:00
|
|
|
* RETURN: 0 on success, error code on failure
|
2008-12-03 23:09:06 +03:00
|
|
|
*/
|
|
|
|
static int
|
|
|
|
zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
|
|
|
|
{
|
2017-03-08 03:21:37 +03:00
|
|
|
zfsvfs_t *zfsvfs = ZTOZSB(zp);
|
2019-11-01 20:37:33 +03:00
|
|
|
zfs_locked_range_t *lr;
|
2008-12-03 23:09:06 +03:00
|
|
|
int error;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Lock the range being freed.
|
|
|
|
*/
|
2019-10-04 01:54:29 +03:00
|
|
|
lr = zfs_rangelock_enter(&zp->z_rangelock, off, len, RL_WRITER);
|
2008-12-03 23:09:06 +03:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Nothing to do if file already at desired length.
|
|
|
|
*/
|
2010-05-29 00:45:14 +04:00
|
|
|
if (off >= zp->z_size) {
|
2019-10-04 01:54:29 +03:00
|
|
|
zfs_rangelock_exit(lr);
|
2008-12-03 23:09:06 +03:00
|
|
|
return (0);
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
if (off + len > zp->z_size)
|
|
|
|
len = zp->z_size - off;
|
2008-12-03 23:09:06 +03:00
|
|
|
|
2017-03-08 03:21:37 +03:00
|
|
|
error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
|
2008-12-03 23:09:06 +03:00
|
|
|
|
2014-08-21 02:35:13 +04:00
|
|
|
/*
|
|
|
|
* Zero partial page cache entries. This must be done under a
|
|
|
|
* range lock in order to keep the ARC and page cache in sync.
|
|
|
|
*/
|
2023-02-14 22:04:34 +03:00
|
|
|
if (zn_has_cached_data(zp, off, off + len - 1)) {
|
2014-08-21 02:35:13 +04:00
|
|
|
loff_t first_page, last_page, page_len;
|
|
|
|
loff_t first_page_offset, last_page_offset;
|
|
|
|
|
|
|
|
/* first possible full page in hole */
|
2016-04-05 22:39:37 +03:00
|
|
|
first_page = (off + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
2014-08-21 02:35:13 +04:00
|
|
|
/* last page of hole */
|
2016-04-05 22:39:37 +03:00
|
|
|
last_page = (off + len) >> PAGE_SHIFT;
|
2014-08-21 02:35:13 +04:00
|
|
|
|
|
|
|
/* offset of first_page */
|
2016-04-05 22:39:37 +03:00
|
|
|
first_page_offset = first_page << PAGE_SHIFT;
|
2014-08-21 02:35:13 +04:00
|
|
|
/* offset of last_page */
|
2016-04-05 22:39:37 +03:00
|
|
|
last_page_offset = last_page << PAGE_SHIFT;
|
2014-08-21 02:35:13 +04:00
|
|
|
|
2014-09-26 08:40:41 +04:00
|
|
|
/* truncate whole pages */
|
|
|
|
if (last_page_offset > first_page_offset) {
|
|
|
|
truncate_inode_pages_range(ZTOI(zp)->i_mapping,
|
|
|
|
first_page_offset, last_page_offset - 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* truncate sub-page ranges */
|
2014-08-21 02:35:13 +04:00
|
|
|
if (first_page > last_page) {
|
|
|
|
/* entire punched area within a single page */
|
|
|
|
zfs_zero_partial_page(zp, off, len);
|
|
|
|
} else {
|
|
|
|
/* beginning of punched area at the end of a page */
|
|
|
|
page_len = first_page_offset - off;
|
|
|
|
if (page_len > 0)
|
|
|
|
zfs_zero_partial_page(zp, off, page_len);
|
|
|
|
|
|
|
|
/* end of punched area at the beginning of a page */
|
|
|
|
page_len = off + len - last_page_offset;
|
|
|
|
if (page_len > 0)
|
|
|
|
zfs_zero_partial_page(zp, last_page_offset,
|
|
|
|
page_len);
|
|
|
|
}
|
|
|
|
}
|
2019-10-04 01:54:29 +03:00
|
|
|
zfs_rangelock_exit(lr);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2008-12-03 23:09:06 +03:00
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Truncate a file
|
|
|
|
*
|
|
|
|
* IN: zp - znode of file to free data in.
|
|
|
|
* end - new end-of-file.
|
|
|
|
*
|
2014-07-07 23:49:36 +04:00
|
|
|
* RETURN: 0 on success, error code on failure
|
2008-12-03 23:09:06 +03:00
|
|
|
*/
|
|
|
|
static int
|
|
|
|
zfs_trunc(znode_t *zp, uint64_t end)
|
|
|
|
{
|
2017-03-08 03:21:37 +03:00
|
|
|
zfsvfs_t *zfsvfs = ZTOZSB(zp);
|
2008-12-03 23:09:06 +03:00
|
|
|
dmu_tx_t *tx;
|
2019-11-01 20:37:33 +03:00
|
|
|
zfs_locked_range_t *lr;
|
2008-12-03 23:09:06 +03:00
|
|
|
int error;
|
2010-08-27 01:24:34 +04:00
|
|
|
sa_bulk_attr_t bulk[2];
|
|
|
|
int count = 0;
|
2008-12-03 23:09:06 +03:00
|
|
|
|
|
|
|
/*
|
|
|
|
* We will change zp_size, lock the whole file.
|
|
|
|
*/
|
2019-10-04 01:54:29 +03:00
|
|
|
lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_WRITER);
|
2008-12-03 23:09:06 +03:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Nothing to do if file already at desired length.
|
|
|
|
*/
|
2010-05-29 00:45:14 +04:00
|
|
|
if (end >= zp->z_size) {
|
2019-10-04 01:54:29 +03:00
|
|
|
zfs_rangelock_exit(lr);
|
2008-12-03 23:09:06 +03:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2017-09-19 22:19:08 +03:00
|
|
|
error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end,
|
|
|
|
DMU_OBJECT_END);
|
2008-12-03 23:09:06 +03:00
|
|
|
if (error) {
|
2019-10-04 01:54:29 +03:00
|
|
|
zfs_rangelock_exit(lr);
|
2008-12-03 23:09:06 +03:00
|
|
|
return (error);
|
|
|
|
}
|
2017-03-08 03:21:37 +03:00
|
|
|
tx = dmu_tx_create(zfsvfs->z_os);
|
2010-05-29 00:45:14 +04:00
|
|
|
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
|
|
|
|
zfs_sa_upgrade_txholds(tx, zp);
|
2014-07-07 23:49:36 +04:00
|
|
|
dmu_tx_mark_netfree(tx);
|
2014-07-21 21:19:25 +04:00
|
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
2008-12-03 23:09:06 +03:00
|
|
|
if (error) {
|
|
|
|
dmu_tx_abort(tx);
|
2019-10-04 01:54:29 +03:00
|
|
|
zfs_rangelock_exit(lr);
|
2008-12-03 23:09:06 +03:00
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
zp->z_size = end;
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs),
|
2010-08-27 01:24:34 +04:00
|
|
|
NULL, &zp->z_size, sizeof (zp->z_size));
|
2010-05-29 00:45:14 +04:00
|
|
|
|
2010-08-27 01:24:34 +04:00
|
|
|
if (end == 0) {
|
|
|
|
zp->z_pflags &= ~ZFS_SPARSE;
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
|
2010-08-27 01:24:34 +04:00
|
|
|
NULL, &zp->z_pflags, 8);
|
|
|
|
}
|
|
|
|
VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0);
|
2008-12-03 23:09:06 +03:00
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
dmu_tx_commit(tx);
|
2019-10-04 01:54:29 +03:00
|
|
|
zfs_rangelock_exit(lr);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2008-12-03 23:09:06 +03:00
|
|
|
/*
|
|
|
|
* Free space in a file
|
|
|
|
*
|
|
|
|
* IN: zp - znode of file to free data in.
|
|
|
|
* off - start of range
|
|
|
|
* len - end of range (0 => EOF)
|
|
|
|
* flag - current file open mode flags.
|
|
|
|
* log - TRUE if this action should be logged
|
|
|
|
*
|
2014-07-07 23:49:36 +04:00
|
|
|
* RETURN: 0 on success, error code on failure
|
2008-12-03 23:09:06 +03:00
|
|
|
*/
|
|
|
|
int
|
|
|
|
zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
|
|
|
|
{
|
|
|
|
dmu_tx_t *tx;
|
2017-03-08 03:21:37 +03:00
|
|
|
zfsvfs_t *zfsvfs = ZTOZSB(zp);
|
|
|
|
zilog_t *zilog = zfsvfs->z_log;
|
2010-05-29 00:45:14 +04:00
|
|
|
uint64_t mode;
|
|
|
|
uint64_t mtime[2], ctime[2];
|
|
|
|
sa_bulk_attr_t bulk[3];
|
|
|
|
int count = 0;
|
2008-12-03 23:09:06 +03:00
|
|
|
int error;
|
|
|
|
|
2017-03-08 03:21:37 +03:00
|
|
|
if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode,
|
2010-05-29 00:45:14 +04:00
|
|
|
sizeof (mode))) != 0)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
if (off > zp->z_size) {
|
2008-12-03 23:09:06 +03:00
|
|
|
error = zfs_extend(zp, off+len);
|
|
|
|
if (error == 0 && log)
|
|
|
|
goto log;
|
2014-08-21 02:35:13 +04:00
|
|
|
goto out;
|
2008-12-03 23:09:06 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
if (len == 0) {
|
|
|
|
error = zfs_trunc(zp, off);
|
|
|
|
} else {
|
|
|
|
if ((error = zfs_free_range(zp, off, len)) == 0 &&
|
2010-05-29 00:45:14 +04:00
|
|
|
off + len > zp->z_size)
|
2008-12-03 23:09:06 +03:00
|
|
|
error = zfs_extend(zp, off+len);
|
|
|
|
}
|
|
|
|
if (error || !log)
|
2014-08-21 02:35:13 +04:00
|
|
|
goto out;
|
2008-12-03 23:09:06 +03:00
|
|
|
log:
|
2017-03-08 03:21:37 +03:00
|
|
|
tx = dmu_tx_create(zfsvfs->z_os);
|
2010-05-29 00:45:14 +04:00
|
|
|
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
|
|
|
|
zfs_sa_upgrade_txholds(tx, zp);
|
2013-11-23 03:13:18 +04:00
|
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
2008-12-03 23:09:06 +03:00
|
|
|
if (error) {
|
|
|
|
dmu_tx_abort(tx);
|
2014-08-21 02:35:13 +04:00
|
|
|
goto out;
|
2008-12-03 23:09:06 +03:00
|
|
|
}
|
|
|
|
|
2017-03-08 03:21:37 +03:00
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16);
|
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16);
|
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
|
2010-05-29 00:45:14 +04:00
|
|
|
NULL, &zp->z_pflags, 8);
|
Fix atime handling and relatime
The problem for atime:
We have 3 places for atime: inode->i_atime, znode->z_atime and SA. And its
handling is a mess. A huge part of mess regarding atime comes from
zfs_tstamp_update_setup, zfs_inode_update, and zfs_getattr, which behave
inconsistently with those three values.
zfs_tstamp_update_setup clears z_atime_dirty unconditionally as long as you
don't pass ATTR_ATIME. Which means every write(2) operation which only updates
ctime and mtime will cause atime changes to not be written to disk.
Also zfs_inode_update from write(2) will replace inode->i_atime with what's
inside SA(stale). But doesn't touch z_atime. So after read(2) and write(2).
You'll have i_atime(stale), z_atime(new), SA(stale) and z_atime_dirty=0.
Now, if you do stat(2), zfs_getattr will actually replace i_atime with what's
inside, z_atime. So you will have now you'll have i_atime(new), z_atime(new),
SA(stale) and z_atime_dirty=0. These will all gone after umount. And you'll
leave with a stale atime.
The problem for relatime:
We do have a relatime config inside ZFS dataset, but how it should interact
with the mount flag MS_RELATIME is not well defined. It seems it wanted
relatime mount option to override the dataset config by showing it as
temporary in `zfs get`. But at the same time, `zfs set relatime=on|off` would
also seems to want to override the mount option. Not to mention that
MS_RELATIME flag is actually never passed into ZFS, so it never really worked.
How Linux handles atime:
The Linux kernel actually handles atime completely in VFS, except for writing
it to disk. So if we remove the atime handling in ZFS, things would just work,
no matter it's strictatime, relatime, noatime, or even O_NOATIME. And whenever
VFS updates the i_atime, it will notify the underlying filesystem via
sb->dirty_inode().
And also there's one thing to note about atime flags like MS_RELATIME and
other flags like MS_NODEV, etc. They are mount point flags rather than
filesystem(sb) flags. Since native linux filesystem can be mounted at multiple
places at the same time, they can all have different atime settings. So these
flags are never passed down to filesystem drivers.
What this patch tries to do:
We remove znode->z_atime, since we won't gain anything from it. We remove most
of the atime handling and leave it to VFS. The only thing we do with atime is
to write it when dirty_inode() or setattr() is called. We also add
file_accessed() in zpl_read() since it's not provided in vfs_read().
After this patch, only the MS_RELATIME flag will have effect. The setting in
dataset won't do anything. We will make zfstuil to mount ZFS with MS_RELATIME
set according to the setting in dataset in future patch.
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4482
2016-03-30 03:53:34 +03:00
|
|
|
zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
|
2010-05-29 00:45:14 +04:00
|
|
|
error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
|
|
|
|
ASSERT(error == 0);
|
|
|
|
|
2008-12-03 23:09:06 +03:00
|
|
|
zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
|
|
|
|
|
|
|
|
dmu_tx_commit(tx);
|
2014-08-21 02:35:13 +04:00
|
|
|
|
2021-02-09 22:17:29 +03:00
|
|
|
zfs_znode_update_vfs(zp);
|
2014-08-21 02:35:13 +04:00
|
|
|
error = 0;
|
|
|
|
|
|
|
|
out:
|
|
|
|
/*
|
|
|
|
* Truncate the page cache - for file truncate operations, use
|
|
|
|
* the purpose-built API for truncations. For punching operations,
|
2014-09-26 08:40:41 +04:00
|
|
|
* the truncation is handled under a range lock in zfs_free_range.
|
2014-08-21 02:35:13 +04:00
|
|
|
*/
|
|
|
|
if (len == 0)
|
|
|
|
truncate_setsize(ZTOI(zp), off);
|
|
|
|
return (error);
|
2008-12-03 23:09:06 +03:00
|
|
|
}
|
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
void
|
|
|
|
zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
|
|
|
|
{
|
2011-07-21 03:50:22 +04:00
|
|
|
struct super_block *sb;
|
2017-03-08 03:21:37 +03:00
|
|
|
zfsvfs_t *zfsvfs;
|
2010-05-29 00:45:14 +04:00
|
|
|
uint64_t moid, obj, sa_obj, version;
|
2011-07-21 03:50:22 +04:00
|
|
|
uint64_t sense = ZFS_CASE_SENSITIVE;
|
2008-11-20 23:01:55 +03:00
|
|
|
uint64_t norm = 0;
|
|
|
|
nvpair_t *elem;
|
2015-12-23 00:47:38 +03:00
|
|
|
int size;
|
2008-11-20 23:01:55 +03:00
|
|
|
int error;
|
2011-07-21 03:50:22 +04:00
|
|
|
int i;
|
|
|
|
znode_t *rootzp = NULL;
|
|
|
|
vattr_t vattr;
|
|
|
|
znode_t *zp;
|
|
|
|
zfs_acl_ids_t acl_ids;
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
|
|
/*
|
|
|
|
* First attempt to create master node.
|
|
|
|
*/
|
|
|
|
/*
|
|
|
|
* In an empty objset, there are no blocks to read and thus
|
|
|
|
* there can be no i/o errors (which we assert below).
|
|
|
|
*/
|
|
|
|
moid = MASTER_NODE_OBJ;
|
|
|
|
error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
|
|
|
|
DMU_OT_NONE, 0, tx);
|
|
|
|
ASSERT(error == 0);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set starting attributes.
|
|
|
|
*/
|
2010-05-29 00:45:14 +04:00
|
|
|
version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os)));
|
2008-11-20 23:01:55 +03:00
|
|
|
elem = NULL;
|
|
|
|
while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
|
|
|
|
/* For the moment we expect all zpl props to be uint64_ts */
|
|
|
|
uint64_t val;
|
2023-03-11 21:39:24 +03:00
|
|
|
const char *name;
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
|
|
ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
|
|
|
|
VERIFY(nvpair_value_uint64(elem, &val) == 0);
|
|
|
|
name = nvpair_name(elem);
|
|
|
|
if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
|
2009-07-03 02:44:48 +04:00
|
|
|
if (val < version)
|
|
|
|
version = val;
|
2008-11-20 23:01:55 +03:00
|
|
|
} else {
|
|
|
|
error = zap_update(os, moid, name, 8, 1, &val, tx);
|
|
|
|
}
|
|
|
|
ASSERT(error == 0);
|
|
|
|
if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
|
|
|
|
norm = val;
|
2011-07-21 03:50:22 +04:00
|
|
|
else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
|
|
|
|
sense = val;
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
|
|
|
ASSERT(version != 0);
|
2009-07-03 02:44:48 +04:00
|
|
|
error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
|
Cleanup of dead code suggested by Clang Static Analyzer (#14380)
I recently gained the ability to run Clang's static analyzer on the
linux kernel modules via a few hacks. This extended coverage to code
that was previously missed since Clang's static analyzer only looked at
code that we built in userspace. Running it against the Linux kernel
modules built from my local branch produced a total of 72 reports
against my local branch. Of those, 50 were reports of logic errors and
22 were reports of dead code. Since we already had cleaned up all of
the previous dead code reports, I felt it would be a good next step to
clean up these dead code reports. Clang did a further breakdown of the
dead code reports into:
Dead assignment 15
Dead increment 2
Dead nested assignment 5
The benefit of cleaning these up, especially in the case of dead nested
assignment, is that they can expose places where our error handling is
incorrect. A number of them were fairly straight forward. However
several were not:
In vdev_disk_physio_completion(), not only were we not using the return
value from the static function vdev_disk_dio_put(), but nothing used it,
so I changed it to return void and removed the existing (void) cast in
the other area where we call it in addition to no longer storing it to a
stack value.
In FSE_createDTable(), the function is dead code. Its helper function
FSE_freeDTable() is also dead code, as are the CPP definitions in
`module/zstd/include/zstd_compat_wrapper.h`. We just delete it all.
In zfs_zevent_wait(), we have an optimization opportunity. cv_wait_sig()
returns 0 if there are waiting signals and 1 if there are none. The
Linux SPL version literally returns `signal_pending(current) ? 0 : 1)`
and FreeBSD implements the same semantics, we can just do
`!cv_wait_sig()` in place of `signal_pending(current)` to avoid
unnecessarily calling it again.
zfs_setattr() on FreeBSD version did not have error handling issue
because the code was removed entirely from FreeBSD version. The error is
from updating the attribute directory's files. After some thought, I
decided to propapage errors on it to userspace.
In zfs_secpolicy_tmp_snapshot(), we ignore a lack of permission from the
first check in favor of checking three other permissions. I assume this
is intentional.
In zfs_create_fs(), the return value of zap_update() was not checked
despite setting an important version number. I see no backward
compatibility reason to permit failures, so we add an assertion to catch
failures. Interestingly, Linux is still using ASSERT(error == 0) from
OpenSolaris while FreeBSD has switched to the improved ASSERT0(error)
from illumos, although illumos has yet to adopt it here. ASSERT(error ==
0) was used on Linux while ASSERT0(error) was used on FreeBSD since the
entire file needs conversion and that should be the subject of
another patch.
dnode_move()'s issue was caused by us not having implemented
POINTER_IS_VALID() on Linux. We have a stub in
`include/os/linux/spl/sys/kmem_cache.h` for it, when it really should be
in `include/os/linux/spl/sys/kmem.h` to be consistent with
Illumos/OpenSolaris. FreeBSD put both `POINTER_IS_VALID()` and
`POINTER_INVALIDATE()` in `include/os/freebsd/spl/sys/kmem.h`, so we
copy what it did.
Whenever a report was in platform-specific code, I checked the FreeBSD
version to see if it also applied to FreeBSD, but it was only relevant a
few times.
Lastly, the patch that enabled Clang's static analyzer to be run on the
Linux kernel modules needs more work before it can be put into a PR. I
plan to do that in the future as part of the on-going static analysis
work that I am doing.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes #14380
2023-01-17 20:57:12 +03:00
|
|
|
ASSERT(error == 0);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
/*
|
|
|
|
* Create zap object used for SA attribute registration
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (version >= ZPL_VERSION_SA) {
|
|
|
|
sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
|
|
|
|
DMU_OT_NONE, 0, tx);
|
|
|
|
error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
|
|
|
|
ASSERT(error == 0);
|
|
|
|
} else {
|
|
|
|
sa_obj = 0;
|
|
|
|
}
|
2008-11-20 23:01:55 +03:00
|
|
|
/*
|
|
|
|
* Create a delete queue.
|
|
|
|
*/
|
2009-07-03 02:44:48 +04:00
|
|
|
obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2009-07-03 02:44:48 +04:00
|
|
|
error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
|
2008-11-20 23:01:55 +03:00
|
|
|
ASSERT(error == 0);
|
|
|
|
|
2009-07-03 02:44:48 +04:00
|
|
|
/*
|
2017-03-08 03:21:37 +03:00
|
|
|
* Create root znode. Create minimal znode/inode/zfsvfs/sb
|
2011-07-21 03:50:22 +04:00
|
|
|
* to allow zfs_mknode to work.
|
2009-07-03 02:44:48 +04:00
|
|
|
*/
|
2011-07-21 03:50:22 +04:00
|
|
|
vattr.va_mask = ATTR_MODE|ATTR_UID|ATTR_GID;
|
|
|
|
vattr.va_mode = S_IFDIR|0755;
|
|
|
|
vattr.va_uid = crgetuid(cr);
|
|
|
|
vattr.va_gid = crgetgid(cr);
|
|
|
|
|
2014-11-21 03:09:39 +03:00
|
|
|
rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
|
2019-08-13 16:58:02 +03:00
|
|
|
rootzp->z_unlinked = B_FALSE;
|
|
|
|
rootzp->z_atime_dirty = B_FALSE;
|
2011-07-21 03:50:22 +04:00
|
|
|
rootzp->z_is_sa = USE_SA(version, os);
|
2018-02-14 01:54:54 +03:00
|
|
|
rootzp->z_pflags = 0;
|
2011-07-21 03:50:22 +04:00
|
|
|
|
2017-03-08 03:21:37 +03:00
|
|
|
zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
|
|
|
|
zfsvfs->z_os = os;
|
|
|
|
zfsvfs->z_parent = zfsvfs;
|
|
|
|
zfsvfs->z_version = version;
|
|
|
|
zfsvfs->z_use_fuids = USE_FUIDS(version, os);
|
|
|
|
zfsvfs->z_use_sa = USE_SA(version, os);
|
|
|
|
zfsvfs->z_norm = norm;
|
2011-07-21 03:50:22 +04:00
|
|
|
|
2014-11-21 03:09:39 +03:00
|
|
|
sb = kmem_zalloc(sizeof (struct super_block), KM_SLEEP);
|
2017-03-08 03:21:37 +03:00
|
|
|
sb->s_fs_info = zfsvfs;
|
2011-07-21 03:50:22 +04:00
|
|
|
|
|
|
|
ZTOI(rootzp)->i_sb = sb;
|
|
|
|
|
|
|
|
error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
|
2017-03-08 03:21:37 +03:00
|
|
|
&zfsvfs->z_attr_table);
|
2009-07-03 02:44:48 +04:00
|
|
|
|
2011-07-21 03:50:22 +04:00
|
|
|
ASSERT(error == 0);
|
2009-07-03 02:44:48 +04:00
|
|
|
|
2010-08-26 22:45:02 +04:00
|
|
|
/*
|
2011-07-21 03:50:22 +04:00
|
|
|
* Fold case on file systems that are always or sometimes case
|
|
|
|
* insensitive.
|
2010-08-26 22:45:02 +04:00
|
|
|
*/
|
2011-07-21 03:50:22 +04:00
|
|
|
if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
|
2017-03-08 03:21:37 +03:00
|
|
|
zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
|
2010-08-26 22:45:02 +04:00
|
|
|
|
2017-03-08 03:21:37 +03:00
|
|
|
mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
|
2011-07-21 03:50:22 +04:00
|
|
|
offsetof(znode_t, z_link_node));
|
2010-08-26 22:45:02 +04:00
|
|
|
|
2015-12-23 00:47:38 +03:00
|
|
|
size = MIN(1 << (highbit64(zfs_object_mutex_size)-1), ZFS_OBJ_MTX_MAX);
|
2017-03-08 03:21:37 +03:00
|
|
|
zfsvfs->z_hold_size = size;
|
|
|
|
zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
|
|
|
|
KM_SLEEP);
|
|
|
|
zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
|
2015-12-23 00:47:38 +03:00
|
|
|
for (i = 0; i != size; i++) {
|
2017-03-08 03:21:37 +03:00
|
|
|
avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
|
2015-12-23 00:47:38 +03:00
|
|
|
sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
|
2017-03-08 03:21:37 +03:00
|
|
|
mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
|
2015-12-23 00:47:38 +03:00
|
|
|
}
|
2010-08-26 22:45:02 +04:00
|
|
|
|
2011-07-21 03:50:22 +04:00
|
|
|
VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
|
2023-04-11 00:15:36 +03:00
|
|
|
cr, NULL, &acl_ids, zfs_init_idmap));
|
2011-07-21 03:50:22 +04:00
|
|
|
zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids);
|
|
|
|
ASSERT3P(zp, ==, rootzp);
|
|
|
|
error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
|
|
|
|
ASSERT(error == 0);
|
|
|
|
zfs_acl_ids_free(&acl_ids);
|
2010-08-26 22:45:02 +04:00
|
|
|
|
2011-07-21 03:50:22 +04:00
|
|
|
atomic_set(&ZTOI(rootzp)->i_count, 0);
|
|
|
|
sa_handle_destroy(rootzp->z_sa_hdl);
|
|
|
|
kmem_cache_free(znode_cache, rootzp);
|
|
|
|
|
2015-12-23 00:47:38 +03:00
|
|
|
for (i = 0; i != size; i++) {
|
2017-03-08 03:21:37 +03:00
|
|
|
avl_destroy(&zfsvfs->z_hold_trees[i]);
|
|
|
|
mutex_destroy(&zfsvfs->z_hold_locks[i]);
|
2015-12-23 00:47:38 +03:00
|
|
|
}
|
2011-09-09 21:24:55 +04:00
|
|
|
|
2016-11-26 23:30:44 +03:00
|
|
|
mutex_destroy(&zfsvfs->z_znodes_lock);
|
|
|
|
|
2017-03-08 03:21:37 +03:00
|
|
|
vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
|
|
|
|
vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
|
2011-09-09 21:24:55 +04:00
|
|
|
kmem_free(sb, sizeof (struct super_block));
|
2017-03-08 03:21:37 +03:00
|
|
|
kmem_free(zfsvfs, sizeof (zfsvfs_t));
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
|
|
|
#endif /* _KERNEL */
|
2010-05-29 00:45:14 +04:00
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
static int
|
2010-08-27 01:24:34 +04:00
|
|
|
zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table)
|
|
|
|
{
|
|
|
|
uint64_t sa_obj = 0;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj);
|
|
|
|
if (error != 0 && error != ENOENT)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table);
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp,
|
2022-04-19 21:49:30 +03:00
|
|
|
dmu_buf_t **db, const void *tag)
|
2008-11-20 23:01:55 +03:00
|
|
|
{
|
|
|
|
dmu_object_info_t doi;
|
|
|
|
int error;
|
2010-05-29 00:45:14 +04:00
|
|
|
|
2011-07-27 03:38:27 +04:00
|
|
|
if ((error = sa_buf_hold(osp, obj, tag, db)) != 0)
|
2008-11-20 23:01:55 +03:00
|
|
|
return (error);
|
|
|
|
|
2010-08-27 01:24:34 +04:00
|
|
|
dmu_object_info_from_db(*db, &doi);
|
2010-05-29 00:45:14 +04:00
|
|
|
if ((doi.doi_bonus_type != DMU_OT_SA &&
|
|
|
|
doi.doi_bonus_type != DMU_OT_ZNODE) ||
|
2010-08-26 20:52:39 +04:00
|
|
|
(doi.doi_bonus_type == DMU_OT_ZNODE &&
|
|
|
|
doi.doi_bonus_size < sizeof (znode_phys_t))) {
|
2011-07-27 03:38:27 +04:00
|
|
|
sa_buf_rele(*db, tag);
|
2013-03-08 22:41:28 +04:00
|
|
|
return (SET_ERROR(ENOTSUP));
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
|
|
|
|
2010-08-27 01:24:34 +04:00
|
|
|
error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp);
|
|
|
|
if (error != 0) {
|
2011-07-27 03:38:27 +04:00
|
|
|
sa_buf_rele(*db, tag);
|
2010-05-29 00:45:14 +04:00
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
2010-08-27 01:24:34 +04:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2020-06-15 21:30:37 +03:00
|
|
|
static void
|
2022-04-19 21:49:30 +03:00
|
|
|
zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, const void *tag)
|
2010-08-27 01:24:34 +04:00
|
|
|
{
|
|
|
|
sa_handle_destroy(hdl);
|
2011-07-27 03:38:27 +04:00
|
|
|
sa_buf_rele(db, tag);
|
2010-08-27 01:24:34 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Given an object number, return its parent object number and whether
|
|
|
|
* or not the object is an extended attribute directory.
|
|
|
|
*/
|
|
|
|
static int
|
2015-12-31 18:41:52 +03:00
|
|
|
zfs_obj_to_pobj(objset_t *osp, sa_handle_t *hdl, sa_attr_type_t *sa_table,
|
|
|
|
uint64_t *pobjp, int *is_xattrdir)
|
2010-08-27 01:24:34 +04:00
|
|
|
{
|
|
|
|
uint64_t parent;
|
|
|
|
uint64_t pflags;
|
|
|
|
uint64_t mode;
|
2015-12-31 18:41:52 +03:00
|
|
|
uint64_t parent_mode;
|
2010-08-27 01:24:34 +04:00
|
|
|
sa_bulk_attr_t bulk[3];
|
2015-12-31 18:41:52 +03:00
|
|
|
sa_handle_t *sa_hdl;
|
|
|
|
dmu_buf_t *sa_db;
|
2010-08-27 01:24:34 +04:00
|
|
|
int count = 0;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL,
|
|
|
|
&parent, sizeof (parent));
|
2010-05-29 00:45:14 +04:00
|
|
|
SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL,
|
2010-08-27 01:24:34 +04:00
|
|
|
&pflags, sizeof (pflags));
|
2010-05-29 00:45:14 +04:00
|
|
|
SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
|
2010-08-27 01:24:34 +04:00
|
|
|
&mode, sizeof (mode));
|
2010-05-29 00:45:14 +04:00
|
|
|
|
2010-08-27 01:24:34 +04:00
|
|
|
if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0)
|
2010-05-29 00:45:14 +04:00
|
|
|
return (error);
|
2010-08-27 01:24:34 +04:00
|
|
|
|
2015-12-31 18:41:52 +03:00
|
|
|
/*
|
|
|
|
* When a link is removed its parent pointer is not changed and will
|
|
|
|
* be invalid. There are two cases where a link is removed but the
|
|
|
|
* file stays around, when it goes to the delete queue and when there
|
|
|
|
* are additional links.
|
|
|
|
*/
|
|
|
|
error = zfs_grab_sa_handle(osp, parent, &sa_hdl, &sa_db, FTAG);
|
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
error = sa_lookup(sa_hdl, ZPL_MODE, &parent_mode, sizeof (parent_mode));
|
|
|
|
zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
|
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
*is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2015-12-31 18:41:52 +03:00
|
|
|
/*
|
|
|
|
* Extended attributes can be applied to files, directories, etc.
|
|
|
|
* Otherwise the parent must be a directory.
|
|
|
|
*/
|
|
|
|
if (!*is_xattrdir && !S_ISDIR(parent_mode))
|
2017-08-03 07:16:12 +03:00
|
|
|
return (SET_ERROR(EINVAL));
|
2015-12-31 18:41:52 +03:00
|
|
|
|
|
|
|
*pobjp = parent;
|
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2010-08-27 01:24:34 +04:00
|
|
|
/*
|
|
|
|
* Given an object number, return some zpl level statistics
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table,
|
|
|
|
zfs_stat_t *sb)
|
2008-11-20 23:01:55 +03:00
|
|
|
{
|
2010-08-27 01:24:34 +04:00
|
|
|
sa_bulk_attr_t bulk[4];
|
|
|
|
int count = 0;
|
|
|
|
|
|
|
|
SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
|
|
|
|
&sb->zs_mode, sizeof (sb->zs_mode));
|
|
|
|
SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL,
|
|
|
|
&sb->zs_gen, sizeof (sb->zs_gen));
|
|
|
|
SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL,
|
|
|
|
&sb->zs_links, sizeof (sb->zs_links));
|
|
|
|
SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL,
|
|
|
|
&sb->zs_ctime, sizeof (sb->zs_ctime));
|
|
|
|
|
|
|
|
return (sa_bulk_lookup(hdl, bulk, count));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl,
|
|
|
|
sa_attr_type_t *sa_table, char *buf, int len)
|
|
|
|
{
|
|
|
|
sa_handle_t *sa_hdl;
|
|
|
|
sa_handle_t *prevhdl = NULL;
|
|
|
|
dmu_buf_t *prevdb = NULL;
|
|
|
|
dmu_buf_t *sa_db = NULL;
|
2008-11-20 23:01:55 +03:00
|
|
|
char *path = buf + len - 1;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
*path = '\0';
|
2010-08-27 01:24:34 +04:00
|
|
|
sa_hdl = hdl;
|
2010-05-29 00:45:14 +04:00
|
|
|
|
OpenZFS 9421, 9422 - zdb show possibly leaked objects
9421 zdb should detect and print out the number of "leaked" objects
9422 zfs diff and zdb should explicitly mark objects that are on
the deleted queue
It is possible for zfs to "leak" objects in such a way that they are not
freed, but are also not accessible via the POSIX interface. As the only
way to know that this is happened is to see one of them directly in a
zdb run, or by noting unaccounted space usage, zdb should be enhanced to
count these objects and return failure if some are detected.
We have access to the delete queue through the zfs_get_deleteq function;
we should call it in dump_znode to determine if the object is on the
delete queue. This is not the most efficient possible method, but it is
the simplest to implement, and should suffice for the common case where
there few objects on the delete queue.
Also zfs diff and zdb currently traverse every single dnode in a dataset
and tries to figure out the path of the object by following it's parent.
When an object is placed on the delete queue, for all practical purposes
it's already discarded, it's parent might not exist anymore, and another
object might now have the object number that belonged to the parent.
While all of the above makes sense, when trying to figure out the path
of an object that is on the delete queue, we can run into issues where
either it is impossible to determine the path because the parent is
gone, or another dnode has taken it's place and thus we are returned a
wrong path.
We should therefore avoid trying to determine the path of an object on
the delete queue and mark the object itself as being on the delete queue
to avoid confusion. To achieve this, we currently have two ideas:
1. When putting an object on the delete queue, change it's parent object
number to a known constant that means NULL.
2. When displaying objects, first check if it is present on the delete
queue.
Authored by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Approved by: Matt Ahrens <mahrens@delphix.com>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://illumos.org/issues/9421
OpenZFS-issue: https://illumos.org/issues/9422
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/45ae0dd9ca
Closes #7500
2017-07-06 20:35:20 +03:00
|
|
|
uint64_t deleteq_obj;
|
|
|
|
VERIFY0(zap_lookup(osp, MASTER_NODE_OBJ,
|
|
|
|
ZFS_UNLINKED_SET, sizeof (uint64_t), 1, &deleteq_obj));
|
|
|
|
error = zap_lookup_int(osp, deleteq_obj, obj);
|
|
|
|
if (error == 0) {
|
|
|
|
return (ESTALE);
|
|
|
|
} else if (error != ENOENT) {
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
for (;;) {
|
2013-09-14 00:10:36 +04:00
|
|
|
uint64_t pobj = 0;
|
2008-11-20 23:01:55 +03:00
|
|
|
char component[MAXNAMELEN + 2];
|
|
|
|
size_t complen;
|
2013-09-14 00:10:36 +04:00
|
|
|
int is_xattrdir = 0;
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2021-02-09 22:14:59 +03:00
|
|
|
if (prevdb) {
|
|
|
|
ASSERT(prevhdl != NULL);
|
2011-07-27 03:38:27 +04:00
|
|
|
zfs_release_sa_handle(prevhdl, prevdb, FTAG);
|
2021-02-09 22:14:59 +03:00
|
|
|
}
|
2010-08-27 01:24:34 +04:00
|
|
|
|
2015-12-31 18:41:52 +03:00
|
|
|
if ((error = zfs_obj_to_pobj(osp, sa_hdl, sa_table, &pobj,
|
2010-08-27 01:24:34 +04:00
|
|
|
&is_xattrdir)) != 0)
|
2008-11-20 23:01:55 +03:00
|
|
|
break;
|
|
|
|
|
|
|
|
if (pobj == obj) {
|
|
|
|
if (path[0] != '/')
|
|
|
|
*--path = '/';
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
component[0] = '/';
|
|
|
|
if (is_xattrdir) {
|
2022-02-25 16:26:54 +03:00
|
|
|
strcpy(component + 1, "<xattrdir>");
|
2008-11-20 23:01:55 +03:00
|
|
|
} else {
|
|
|
|
error = zap_value_search(osp, pobj, obj,
|
|
|
|
ZFS_DIRENT_OBJ(-1ULL), component + 1);
|
|
|
|
if (error != 0)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
complen = strlen(component);
|
|
|
|
path -= complen;
|
|
|
|
ASSERT(path >= buf);
|
2022-02-25 16:26:54 +03:00
|
|
|
memcpy(path, component, complen);
|
2008-11-20 23:01:55 +03:00
|
|
|
obj = pobj;
|
2010-08-27 01:24:34 +04:00
|
|
|
|
|
|
|
if (sa_hdl != hdl) {
|
|
|
|
prevhdl = sa_hdl;
|
|
|
|
prevdb = sa_db;
|
|
|
|
}
|
2011-07-27 03:38:27 +04:00
|
|
|
error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG);
|
2010-08-27 01:24:34 +04:00
|
|
|
if (error != 0) {
|
|
|
|
sa_hdl = prevhdl;
|
|
|
|
sa_db = prevdb;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (sa_hdl != NULL && sa_hdl != hdl) {
|
|
|
|
ASSERT(sa_db != NULL);
|
2011-07-27 03:38:27 +04:00
|
|
|
zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
|
2008-11-20 23:01:55 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
if (error == 0)
|
|
|
|
(void) memmove(buf, path, buf + len - path);
|
2010-05-29 00:45:14 +04:00
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
return (error);
|
|
|
|
}
|
2010-08-27 01:24:34 +04:00
|
|
|
|
|
|
|
int
|
|
|
|
zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
|
|
|
|
{
|
|
|
|
sa_attr_type_t *sa_table;
|
|
|
|
sa_handle_t *hdl;
|
|
|
|
dmu_buf_t *db;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
error = zfs_sa_setup(osp, &sa_table);
|
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
|
|
|
|
2011-07-27 03:38:27 +04:00
|
|
|
error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
|
2010-08-27 01:24:34 +04:00
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
|
|
|
|
|
2011-07-27 03:38:27 +04:00
|
|
|
zfs_release_sa_handle(hdl, db, FTAG);
|
2010-08-27 01:24:34 +04:00
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb,
|
|
|
|
char *buf, int len)
|
|
|
|
{
|
|
|
|
char *path = buf + len - 1;
|
|
|
|
sa_attr_type_t *sa_table;
|
|
|
|
sa_handle_t *hdl;
|
|
|
|
dmu_buf_t *db;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
*path = '\0';
|
|
|
|
|
|
|
|
error = zfs_sa_setup(osp, &sa_table);
|
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
|
|
|
|
2011-07-27 03:38:27 +04:00
|
|
|
error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
|
2010-08-27 01:24:34 +04:00
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
error = zfs_obj_to_stats_impl(hdl, sa_table, sb);
|
|
|
|
if (error != 0) {
|
2011-07-27 03:38:27 +04:00
|
|
|
zfs_release_sa_handle(hdl, db, FTAG);
|
2010-08-27 01:24:34 +04:00
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
|
|
|
|
|
2011-07-27 03:38:27 +04:00
|
|
|
zfs_release_sa_handle(hdl, db, FTAG);
|
2010-08-27 01:24:34 +04:00
|
|
|
return (error);
|
|
|
|
}
|
2010-08-26 22:49:16 +04:00
|
|
|
|
2023-06-04 04:14:20 +03:00
|
|
|
/*
|
|
|
|
* Read a property stored within the master node.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
|
|
|
|
{
|
|
|
|
uint64_t *cached_copy = NULL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Figure out where in the objset_t the cached copy would live, if it
|
|
|
|
* is available for the requested property.
|
|
|
|
*/
|
|
|
|
if (os != NULL) {
|
|
|
|
switch (prop) {
|
|
|
|
case ZFS_PROP_VERSION:
|
|
|
|
cached_copy = &os->os_version;
|
|
|
|
break;
|
|
|
|
case ZFS_PROP_NORMALIZE:
|
|
|
|
cached_copy = &os->os_normalization;
|
|
|
|
break;
|
|
|
|
case ZFS_PROP_UTF8ONLY:
|
|
|
|
cached_copy = &os->os_utf8only;
|
|
|
|
break;
|
|
|
|
case ZFS_PROP_CASE:
|
|
|
|
cached_copy = &os->os_casesensitivity;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (cached_copy != NULL && *cached_copy != OBJSET_PROP_UNINITIALIZED) {
|
|
|
|
*value = *cached_copy;
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the property wasn't cached, look up the file system's value for
|
|
|
|
* the property. For the version property, we look up a slightly
|
|
|
|
* different string.
|
|
|
|
*/
|
|
|
|
const char *pname;
|
|
|
|
int error = ENOENT;
|
|
|
|
if (prop == ZFS_PROP_VERSION)
|
|
|
|
pname = ZPL_VERSION_STR;
|
|
|
|
else
|
|
|
|
pname = zfs_prop_to_name(prop);
|
|
|
|
|
|
|
|
if (os != NULL) {
|
|
|
|
ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS);
|
|
|
|
error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (error == ENOENT) {
|
|
|
|
/* No value set, use the default value */
|
|
|
|
switch (prop) {
|
|
|
|
case ZFS_PROP_VERSION:
|
|
|
|
*value = ZPL_VERSION;
|
|
|
|
break;
|
|
|
|
case ZFS_PROP_NORMALIZE:
|
|
|
|
case ZFS_PROP_UTF8ONLY:
|
|
|
|
*value = 0;
|
|
|
|
break;
|
|
|
|
case ZFS_PROP_CASE:
|
|
|
|
*value = ZFS_CASE_SENSITIVE;
|
|
|
|
break;
|
|
|
|
case ZFS_PROP_ACLTYPE:
|
|
|
|
*value = ZFS_ACLTYPE_OFF;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
error = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If one of the methods for getting the property value above worked,
|
|
|
|
* copy it into the objset_t's cache.
|
|
|
|
*/
|
|
|
|
if (error == 0 && cached_copy != NULL) {
|
|
|
|
*cached_copy = *value;
|
|
|
|
}
|
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
2018-02-16 04:53:18 +03:00
|
|
|
#if defined(_KERNEL)
|
2010-08-26 22:49:16 +04:00
|
|
|
EXPORT_SYMBOL(zfs_create_fs);
|
|
|
|
EXPORT_SYMBOL(zfs_obj_to_path);
|
2015-12-18 23:19:14 +03:00
|
|
|
|
2016-12-12 21:46:26 +03:00
|
|
|
/* CSTYLED */
|
2015-12-18 23:19:14 +03:00
|
|
|
module_param(zfs_object_mutex_size, uint, 0644);
|
|
|
|
MODULE_PARM_DESC(zfs_object_mutex_size, "Size of znode hold array");
|
2019-02-12 21:41:15 +03:00
|
|
|
module_param(zfs_unlink_suspend_progress, int, 0644);
|
|
|
|
MODULE_PARM_DESC(zfs_unlink_suspend_progress, "Set to prevent async unlinks "
|
|
|
|
"(debug - leaks space into the unlinked set)");
|
2010-08-26 22:49:16 +04:00
|
|
|
#endif
|