mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-15 04:30:33 +03:00
2894 lines
83 KiB
C
2894 lines
83 KiB
C
|
/*
|
||
|
* CDDL HEADER START
|
||
|
*
|
||
|
* The contents of this file are subject to the terms of the
|
||
|
* Common Development and Distribution License (the "License").
|
||
|
* You may not use this file except in compliance with the License.
|
||
|
*
|
||
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
||
|
* or http://www.opensolaris.org/os/licensing.
|
||
|
* See the License for the specific language governing permissions
|
||
|
* and limitations under the License.
|
||
|
*
|
||
|
* When distributing Covered Code, include this CDDL HEADER in each
|
||
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
||
|
* If applicable, add the following below this CDDL HEADER, with the
|
||
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
||
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
||
|
*
|
||
|
* CDDL HEADER END
|
||
|
*/
|
||
|
/*
|
||
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
||
|
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
|
||
|
* Copyright (c) 2011, 2015 by Delphix. All rights reserved.
|
||
|
* Copyright (c) 2014, Joyent, Inc. All rights reserved.
|
||
|
* Copyright 2014 HybridCluster. All rights reserved.
|
||
|
* Copyright 2016 RackTop Systems.
|
||
|
* Copyright (c) 2016 Actifio, Inc. All rights reserved.
|
||
|
*/
|
||
|
|
||
|
#include <sys/dmu.h>
|
||
|
#include <sys/dmu_impl.h>
|
||
|
#include <sys/dmu_tx.h>
|
||
|
#include <sys/dbuf.h>
|
||
|
#include <sys/dnode.h>
|
||
|
#include <sys/zfs_context.h>
|
||
|
#include <sys/dmu_objset.h>
|
||
|
#include <sys/dmu_traverse.h>
|
||
|
#include <sys/dsl_dataset.h>
|
||
|
#include <sys/dsl_dir.h>
|
||
|
#include <sys/dsl_prop.h>
|
||
|
#include <sys/dsl_pool.h>
|
||
|
#include <sys/dsl_synctask.h>
|
||
|
#include <sys/spa_impl.h>
|
||
|
#include <sys/zfs_ioctl.h>
|
||
|
#include <sys/zap.h>
|
||
|
#include <sys/zio_checksum.h>
|
||
|
#include <sys/zfs_znode.h>
|
||
|
#include <zfs_fletcher.h>
|
||
|
#include <sys/avl.h>
|
||
|
#include <sys/ddt.h>
|
||
|
#include <sys/zfs_onexit.h>
|
||
|
#include <sys/dmu_recv.h>
|
||
|
#include <sys/dsl_destroy.h>
|
||
|
#include <sys/blkptr.h>
|
||
|
#include <sys/dsl_bookmark.h>
|
||
|
#include <sys/zfeature.h>
|
||
|
#include <sys/bqueue.h>
|
||
|
#include <sys/zvol.h>
|
||
|
#include <sys/policy.h>
|
||
|
|
||
|
int zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
|
||
|
|
||
|
static char *dmu_recv_tag = "dmu_recv_tag";
|
||
|
const char *recv_clone_name = "%recv";
|
||
|
|
||
|
static void byteswap_record(dmu_replay_record_t *drr);
|
||
|
|
||
|
typedef struct dmu_recv_begin_arg {
|
||
|
const char *drba_origin;
|
||
|
dmu_recv_cookie_t *drba_cookie;
|
||
|
cred_t *drba_cred;
|
||
|
dsl_crypto_params_t *drba_dcp;
|
||
|
uint64_t drba_snapobj;
|
||
|
} dmu_recv_begin_arg_t;
|
||
|
|
||
|
static int
|
||
|
recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
|
||
|
uint64_t fromguid, uint64_t featureflags)
|
||
|
{
|
||
|
uint64_t val;
|
||
|
int error;
|
||
|
dsl_pool_t *dp = ds->ds_dir->dd_pool;
|
||
|
boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
|
||
|
boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
|
||
|
boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
|
||
|
|
||
|
/* temporary clone name must not exist */
|
||
|
error = zap_lookup(dp->dp_meta_objset,
|
||
|
dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
|
||
|
8, 1, &val);
|
||
|
if (error != ENOENT)
|
||
|
return (error == 0 ? EBUSY : error);
|
||
|
|
||
|
/* new snapshot name must not exist */
|
||
|
error = zap_lookup(dp->dp_meta_objset,
|
||
|
dsl_dataset_phys(ds)->ds_snapnames_zapobj,
|
||
|
drba->drba_cookie->drc_tosnap, 8, 1, &val);
|
||
|
if (error != ENOENT)
|
||
|
return (error == 0 ? EEXIST : error);
|
||
|
|
||
|
/*
|
||
|
* Check snapshot limit before receiving. We'll recheck again at the
|
||
|
* end, but might as well abort before receiving if we're already over
|
||
|
* the limit.
|
||
|
*
|
||
|
* Note that we do not check the file system limit with
|
||
|
* dsl_dir_fscount_check because the temporary %clones don't count
|
||
|
* against that limit.
|
||
|
*/
|
||
|
error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
|
||
|
NULL, drba->drba_cred);
|
||
|
if (error != 0)
|
||
|
return (error);
|
||
|
|
||
|
if (fromguid != 0) {
|
||
|
dsl_dataset_t *snap;
|
||
|
uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
|
||
|
|
||
|
/* Can't perform a raw receive on top of a non-raw receive */
|
||
|
if (!encrypted && raw)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
|
||
|
/* Encryption is incompatible with embedded data */
|
||
|
if (encrypted && embed)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
|
||
|
/* Find snapshot in this dir that matches fromguid. */
|
||
|
while (obj != 0) {
|
||
|
error = dsl_dataset_hold_obj(dp, obj, FTAG,
|
||
|
&snap);
|
||
|
if (error != 0)
|
||
|
return (SET_ERROR(ENODEV));
|
||
|
if (snap->ds_dir != ds->ds_dir) {
|
||
|
dsl_dataset_rele(snap, FTAG);
|
||
|
return (SET_ERROR(ENODEV));
|
||
|
}
|
||
|
if (dsl_dataset_phys(snap)->ds_guid == fromguid)
|
||
|
break;
|
||
|
obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
|
||
|
dsl_dataset_rele(snap, FTAG);
|
||
|
}
|
||
|
if (obj == 0)
|
||
|
return (SET_ERROR(ENODEV));
|
||
|
|
||
|
if (drba->drba_cookie->drc_force) {
|
||
|
drba->drba_snapobj = obj;
|
||
|
} else {
|
||
|
/*
|
||
|
* If we are not forcing, there must be no
|
||
|
* changes since fromsnap.
|
||
|
*/
|
||
|
if (dsl_dataset_modified_since_snap(ds, snap)) {
|
||
|
dsl_dataset_rele(snap, FTAG);
|
||
|
return (SET_ERROR(ETXTBSY));
|
||
|
}
|
||
|
drba->drba_snapobj = ds->ds_prev->ds_object;
|
||
|
}
|
||
|
|
||
|
dsl_dataset_rele(snap, FTAG);
|
||
|
} else {
|
||
|
/* if full, then must be forced */
|
||
|
if (!drba->drba_cookie->drc_force)
|
||
|
return (SET_ERROR(EEXIST));
|
||
|
|
||
|
/*
|
||
|
* We don't support using zfs recv -F to blow away
|
||
|
* encrypted filesystems. This would require the
|
||
|
* dsl dir to point to the old encryption key and
|
||
|
* the new one at the same time during the receive.
|
||
|
*/
|
||
|
if ((!encrypted && raw) || encrypted)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
|
||
|
/*
|
||
|
* Perform the same encryption checks we would if
|
||
|
* we were creating a new dataset from scratch.
|
||
|
*/
|
||
|
if (!raw) {
|
||
|
boolean_t will_encrypt;
|
||
|
|
||
|
error = dmu_objset_create_crypt_check(
|
||
|
ds->ds_dir->dd_parent, drba->drba_dcp,
|
||
|
&will_encrypt);
|
||
|
if (error != 0)
|
||
|
return (error);
|
||
|
|
||
|
if (will_encrypt && embed)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
}
|
||
|
|
||
|
drba->drba_snapobj = 0;
|
||
|
}
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
|
||
|
{
|
||
|
dmu_recv_begin_arg_t *drba = arg;
|
||
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
||
|
struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
|
||
|
uint64_t fromguid = drrb->drr_fromguid;
|
||
|
int flags = drrb->drr_flags;
|
||
|
ds_hold_flags_t dsflags = 0;
|
||
|
int error;
|
||
|
uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
|
||
|
dsl_dataset_t *ds;
|
||
|
const char *tofs = drba->drba_cookie->drc_tofs;
|
||
|
|
||
|
/* already checked */
|
||
|
ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
|
||
|
ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
|
||
|
|
||
|
if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
|
||
|
DMU_COMPOUNDSTREAM ||
|
||
|
drrb->drr_type >= DMU_OST_NUMTYPES ||
|
||
|
((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
|
||
|
/* Verify pool version supports SA if SA_SPILL feature set */
|
||
|
if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
|
||
|
spa_version(dp->dp_spa) < SPA_VERSION_SA)
|
||
|
return (SET_ERROR(ENOTSUP));
|
||
|
|
||
|
if (drba->drba_cookie->drc_resumable &&
|
||
|
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
|
||
|
return (SET_ERROR(ENOTSUP));
|
||
|
|
||
|
/*
|
||
|
* The receiving code doesn't know how to translate a WRITE_EMBEDDED
|
||
|
* record to a plain WRITE record, so the pool must have the
|
||
|
* EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
|
||
|
* records. Same with WRITE_EMBEDDED records that use LZ4 compression.
|
||
|
*/
|
||
|
if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
|
||
|
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
|
||
|
return (SET_ERROR(ENOTSUP));
|
||
|
if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
|
||
|
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
|
||
|
return (SET_ERROR(ENOTSUP));
|
||
|
|
||
|
/*
|
||
|
* The receiving code doesn't know how to translate large blocks
|
||
|
* to smaller ones, so the pool must have the LARGE_BLOCKS
|
||
|
* feature enabled if the stream has LARGE_BLOCKS. Same with
|
||
|
* large dnodes.
|
||
|
*/
|
||
|
if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
|
||
|
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
|
||
|
return (SET_ERROR(ENOTSUP));
|
||
|
if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
|
||
|
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE))
|
||
|
return (SET_ERROR(ENOTSUP));
|
||
|
|
||
|
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
|
||
|
/* raw receives require the encryption feature */
|
||
|
if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
|
||
|
return (SET_ERROR(ENOTSUP));
|
||
|
|
||
|
/* embedded data is incompatible with encryption and raw recv */
|
||
|
if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
} else {
|
||
|
dsflags |= DS_HOLD_FLAG_DECRYPT;
|
||
|
}
|
||
|
|
||
|
error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
|
||
|
if (error == 0) {
|
||
|
/* target fs already exists; recv into temp clone */
|
||
|
|
||
|
/* Can't recv a clone into an existing fs */
|
||
|
if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
|
||
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
}
|
||
|
|
||
|
error = recv_begin_check_existing_impl(drba, ds, fromguid,
|
||
|
featureflags);
|
||
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
||
|
} else if (error == ENOENT) {
|
||
|
/* target fs does not exist; must be a full backup or clone */
|
||
|
char buf[ZFS_MAX_DATASET_NAME_LEN];
|
||
|
|
||
|
/*
|
||
|
* If it's a non-clone incremental, we are missing the
|
||
|
* target fs, so fail the recv.
|
||
|
*/
|
||
|
if (fromguid != 0 && !(flags & DRR_FLAG_CLONE ||
|
||
|
drba->drba_origin))
|
||
|
return (SET_ERROR(ENOENT));
|
||
|
|
||
|
/*
|
||
|
* If we're receiving a full send as a clone, and it doesn't
|
||
|
* contain all the necessary free records and freeobject
|
||
|
* records, reject it.
|
||
|
*/
|
||
|
if (fromguid == 0 && drba->drba_origin &&
|
||
|
!(flags & DRR_FLAG_FREERECORDS))
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
|
||
|
/* Open the parent of tofs */
|
||
|
ASSERT3U(strlen(tofs), <, sizeof (buf));
|
||
|
(void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
|
||
|
error = dsl_dataset_hold_flags(dp, buf, dsflags, FTAG, &ds);
|
||
|
if (error != 0)
|
||
|
return (error);
|
||
|
|
||
|
if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
|
||
|
drba->drba_origin == NULL) {
|
||
|
boolean_t will_encrypt;
|
||
|
|
||
|
/*
|
||
|
* Check that we aren't breaking any encryption rules
|
||
|
* and that we have all the parameters we need to
|
||
|
* create an encrypted dataset if necessary. If we are
|
||
|
* making an encrypted dataset the stream can't have
|
||
|
* embedded data.
|
||
|
*/
|
||
|
error = dmu_objset_create_crypt_check(ds->ds_dir,
|
||
|
drba->drba_dcp, &will_encrypt);
|
||
|
if (error != 0) {
|
||
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
||
|
return (error);
|
||
|
}
|
||
|
|
||
|
if (will_encrypt &&
|
||
|
(featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
|
||
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check filesystem and snapshot limits before receiving. We'll
|
||
|
* recheck snapshot limits again at the end (we create the
|
||
|
* filesystems and increment those counts during begin_sync).
|
||
|
*/
|
||
|
error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
|
||
|
ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred);
|
||
|
if (error != 0) {
|
||
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
||
|
return (error);
|
||
|
}
|
||
|
|
||
|
error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
|
||
|
ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred);
|
||
|
if (error != 0) {
|
||
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
||
|
return (error);
|
||
|
}
|
||
|
|
||
|
if (drba->drba_origin != NULL) {
|
||
|
dsl_dataset_t *origin;
|
||
|
|
||
|
error = dsl_dataset_hold_flags(dp, drba->drba_origin,
|
||
|
dsflags, FTAG, &origin);
|
||
|
if (error != 0) {
|
||
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
||
|
return (error);
|
||
|
}
|
||
|
if (!origin->ds_is_snapshot) {
|
||
|
dsl_dataset_rele_flags(origin, dsflags, FTAG);
|
||
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
}
|
||
|
if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
|
||
|
fromguid != 0) {
|
||
|
dsl_dataset_rele_flags(origin, dsflags, FTAG);
|
||
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
||
|
return (SET_ERROR(ENODEV));
|
||
|
}
|
||
|
if (origin->ds_dir->dd_crypto_obj != 0 &&
|
||
|
(featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
|
||
|
dsl_dataset_rele_flags(origin, dsflags, FTAG);
|
||
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
}
|
||
|
dsl_dataset_rele_flags(origin,
|
||
|
dsflags, FTAG);
|
||
|
}
|
||
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
||
|
error = 0;
|
||
|
}
|
||
|
return (error);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
|
||
|
{
|
||
|
dmu_recv_begin_arg_t *drba = arg;
|
||
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
||
|
objset_t *mos = dp->dp_meta_objset;
|
||
|
struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
|
||
|
const char *tofs = drba->drba_cookie->drc_tofs;
|
||
|
uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
|
||
|
dsl_dataset_t *ds, *newds;
|
||
|
objset_t *os;
|
||
|
uint64_t dsobj;
|
||
|
ds_hold_flags_t dsflags = 0;
|
||
|
int error;
|
||
|
uint64_t crflags = 0;
|
||
|
dsl_crypto_params_t dummy_dcp = { 0 };
|
||
|
dsl_crypto_params_t *dcp = drba->drba_dcp;
|
||
|
|
||
|
if (drrb->drr_flags & DRR_FLAG_CI_DATA)
|
||
|
crflags |= DS_FLAG_CI_DATASET;
|
||
|
|
||
|
if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
|
||
|
dsflags |= DS_HOLD_FLAG_DECRYPT;
|
||
|
|
||
|
/*
|
||
|
* Raw, non-incremental recvs always use a dummy dcp with
|
||
|
* the raw cmd set. Raw incremental recvs do not use a dcp
|
||
|
* since the encryption parameters are already set in stone.
|
||
|
*/
|
||
|
if (dcp == NULL && drba->drba_snapobj == 0 &&
|
||
|
drba->drba_origin == NULL) {
|
||
|
ASSERT3P(dcp, ==, NULL);
|
||
|
dcp = &dummy_dcp;
|
||
|
|
||
|
if (featureflags & DMU_BACKUP_FEATURE_RAW)
|
||
|
dcp->cp_cmd = DCP_CMD_RAW_RECV;
|
||
|
}
|
||
|
|
||
|
error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
|
||
|
if (error == 0) {
|
||
|
/* create temporary clone */
|
||
|
dsl_dataset_t *snap = NULL;
|
||
|
|
||
|
if (drba->drba_snapobj != 0) {
|
||
|
VERIFY0(dsl_dataset_hold_obj(dp,
|
||
|
drba->drba_snapobj, FTAG, &snap));
|
||
|
ASSERT3P(dcp, ==, NULL);
|
||
|
}
|
||
|
|
||
|
dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
|
||
|
snap, crflags, drba->drba_cred, dcp, tx);
|
||
|
if (drba->drba_snapobj != 0)
|
||
|
dsl_dataset_rele(snap, FTAG);
|
||
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
||
|
} else {
|
||
|
dsl_dir_t *dd;
|
||
|
const char *tail;
|
||
|
dsl_dataset_t *origin = NULL;
|
||
|
|
||
|
VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
|
||
|
|
||
|
if (drba->drba_origin != NULL) {
|
||
|
VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
|
||
|
FTAG, &origin));
|
||
|
ASSERT3P(dcp, ==, NULL);
|
||
|
}
|
||
|
|
||
|
/* Create new dataset. */
|
||
|
dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
|
||
|
origin, crflags, drba->drba_cred, dcp, tx);
|
||
|
if (origin != NULL)
|
||
|
dsl_dataset_rele(origin, FTAG);
|
||
|
dsl_dir_rele(dd, FTAG);
|
||
|
drba->drba_cookie->drc_newfs = B_TRUE;
|
||
|
}
|
||
|
|
||
|
VERIFY0(dsl_dataset_own_obj(dp, dsobj, dsflags, dmu_recv_tag, &newds));
|
||
|
VERIFY0(dmu_objset_from_ds(newds, &os));
|
||
|
|
||
|
if (drba->drba_cookie->drc_resumable) {
|
||
|
dsl_dataset_zapify(newds, tx);
|
||
|
if (drrb->drr_fromguid != 0) {
|
||
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
|
||
|
8, 1, &drrb->drr_fromguid, tx));
|
||
|
}
|
||
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
|
||
|
8, 1, &drrb->drr_toguid, tx));
|
||
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
|
||
|
1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
|
||
|
uint64_t one = 1;
|
||
|
uint64_t zero = 0;
|
||
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
|
||
|
8, 1, &one, tx));
|
||
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
|
||
|
8, 1, &zero, tx));
|
||
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
|
||
|
8, 1, &zero, tx));
|
||
|
if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
|
||
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
|
||
|
8, 1, &one, tx));
|
||
|
}
|
||
|
if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
|
||
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
|
||
|
8, 1, &one, tx));
|
||
|
}
|
||
|
if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
|
||
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
|
||
|
8, 1, &one, tx));
|
||
|
}
|
||
|
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
|
||
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
|
||
|
8, 1, &one, tx));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Usually the os->os_encrypted value is tied to the presence of a
|
||
|
* DSL Crypto Key object in the dd. However, that will not be received
|
||
|
* until dmu_recv_stream(), so we set the value manually for now.
|
||
|
*/
|
||
|
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
|
||
|
os->os_encrypted = B_TRUE;
|
||
|
drba->drba_cookie->drc_raw = B_TRUE;
|
||
|
}
|
||
|
|
||
|
dmu_buf_will_dirty(newds->ds_dbuf, tx);
|
||
|
dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
|
||
|
|
||
|
/*
|
||
|
* If we actually created a non-clone, we need to create the objset
|
||
|
* in our new dataset. If this is a raw send we postpone this until
|
||
|
* dmu_recv_stream() so that we can allocate the metadnode with the
|
||
|
* properties from the DRR_BEGIN payload.
|
||
|
*/
|
||
|
rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
|
||
|
if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
|
||
|
(featureflags & DMU_BACKUP_FEATURE_RAW) == 0) {
|
||
|
(void) dmu_objset_create_impl(dp->dp_spa,
|
||
|
newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
|
||
|
}
|
||
|
rrw_exit(&newds->ds_bp_rwlock, FTAG);
|
||
|
|
||
|
drba->drba_cookie->drc_ds = newds;
|
||
|
|
||
|
spa_history_log_internal_ds(newds, "receive", tx, "");
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
|
||
|
{
|
||
|
dmu_recv_begin_arg_t *drba = arg;
|
||
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
||
|
struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
|
||
|
int error;
|
||
|
ds_hold_flags_t dsflags = 0;
|
||
|
uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
|
||
|
dsl_dataset_t *ds;
|
||
|
const char *tofs = drba->drba_cookie->drc_tofs;
|
||
|
|
||
|
/* already checked */
|
||
|
ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
|
||
|
ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING);
|
||
|
|
||
|
if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
|
||
|
DMU_COMPOUNDSTREAM ||
|
||
|
drrb->drr_type >= DMU_OST_NUMTYPES)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
|
||
|
/* Verify pool version supports SA if SA_SPILL feature set */
|
||
|
if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
|
||
|
spa_version(dp->dp_spa) < SPA_VERSION_SA)
|
||
|
return (SET_ERROR(ENOTSUP));
|
||
|
|
||
|
/*
|
||
|
* The receiving code doesn't know how to translate a WRITE_EMBEDDED
|
||
|
* record to a plain WRITE record, so the pool must have the
|
||
|
* EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
|
||
|
* records. Same with WRITE_EMBEDDED records that use LZ4 compression.
|
||
|
*/
|
||
|
if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
|
||
|
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
|
||
|
return (SET_ERROR(ENOTSUP));
|
||
|
if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
|
||
|
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
|
||
|
return (SET_ERROR(ENOTSUP));
|
||
|
|
||
|
/*
|
||
|
* The receiving code doesn't know how to translate large blocks
|
||
|
* to smaller ones, so the pool must have the LARGE_BLOCKS
|
||
|
* feature enabled if the stream has LARGE_BLOCKS. Same with
|
||
|
* large dnodes.
|
||
|
*/
|
||
|
if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
|
||
|
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
|
||
|
return (SET_ERROR(ENOTSUP));
|
||
|
if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
|
||
|
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE))
|
||
|
return (SET_ERROR(ENOTSUP));
|
||
|
|
||
|
/* 6 extra bytes for /%recv */
|
||
|
char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
|
||
|
(void) snprintf(recvname, sizeof (recvname), "%s/%s",
|
||
|
tofs, recv_clone_name);
|
||
|
|
||
|
if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
|
||
|
dsflags |= DS_HOLD_FLAG_DECRYPT;
|
||
|
|
||
|
if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
|
||
|
/* %recv does not exist; continue in tofs */
|
||
|
error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
|
||
|
if (error != 0)
|
||
|
return (error);
|
||
|
}
|
||
|
|
||
|
/* check that ds is marked inconsistent */
|
||
|
if (!DS_IS_INCONSISTENT(ds)) {
|
||
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
}
|
||
|
|
||
|
/* check that there is resuming data, and that the toguid matches */
|
||
|
if (!dsl_dataset_is_zapified(ds)) {
|
||
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
}
|
||
|
uint64_t val;
|
||
|
error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
|
||
|
DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
|
||
|
if (error != 0 || drrb->drr_toguid != val) {
|
||
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check if the receive is still running. If so, it will be owned.
|
||
|
* Note that nothing else can own the dataset (e.g. after the receive
|
||
|
* fails) because it will be marked inconsistent.
|
||
|
*/
|
||
|
if (dsl_dataset_has_owner(ds)) {
|
||
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
||
|
return (SET_ERROR(EBUSY));
|
||
|
}
|
||
|
|
||
|
/* There should not be any snapshots of this fs yet. */
|
||
|
if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
|
||
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Note: resume point will be checked when we process the first WRITE
|
||
|
* record.
|
||
|
*/
|
||
|
|
||
|
/* check that the origin matches */
|
||
|
val = 0;
|
||
|
(void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
|
||
|
DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
|
||
|
if (drrb->drr_fromguid != val) {
|
||
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
}
|
||
|
|
||
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
|
||
|
{
|
||
|
dmu_recv_begin_arg_t *drba = arg;
|
||
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
||
|
const char *tofs = drba->drba_cookie->drc_tofs;
|
||
|
struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
|
||
|
uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
|
||
|
dsl_dataset_t *ds;
|
||
|
objset_t *os;
|
||
|
ds_hold_flags_t dsflags = 0;
|
||
|
uint64_t dsobj;
|
||
|
/* 6 extra bytes for /%recv */
|
||
|
char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
|
||
|
|
||
|
(void) snprintf(recvname, sizeof (recvname), "%s/%s",
|
||
|
tofs, recv_clone_name);
|
||
|
|
||
|
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
|
||
|
drba->drba_cookie->drc_raw = B_TRUE;
|
||
|
} else {
|
||
|
dsflags |= DS_HOLD_FLAG_DECRYPT;
|
||
|
}
|
||
|
|
||
|
if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
|
||
|
/* %recv does not exist; continue in tofs */
|
||
|
VERIFY0(dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds));
|
||
|
drba->drba_cookie->drc_newfs = B_TRUE;
|
||
|
}
|
||
|
|
||
|
/* clear the inconsistent flag so that we can own it */
|
||
|
ASSERT(DS_IS_INCONSISTENT(ds));
|
||
|
dmu_buf_will_dirty(ds->ds_dbuf, tx);
|
||
|
dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
|
||
|
dsobj = ds->ds_object;
|
||
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
||
|
|
||
|
VERIFY0(dsl_dataset_own_obj(dp, dsobj, dsflags, dmu_recv_tag, &ds));
|
||
|
VERIFY0(dmu_objset_from_ds(ds, &os));
|
||
|
|
||
|
dmu_buf_will_dirty(ds->ds_dbuf, tx);
|
||
|
dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT;
|
||
|
|
||
|
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
|
||
|
ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
|
||
|
drba->drba_cookie->drc_raw);
|
||
|
rrw_exit(&ds->ds_bp_rwlock, FTAG);
|
||
|
|
||
|
drba->drba_cookie->drc_ds = ds;
|
||
|
|
||
|
spa_history_log_internal_ds(ds, "resume receive", tx, "");
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
|
||
|
* succeeds; otherwise we will leak the holds on the datasets.
|
||
|
*/
|
||
|
int
|
||
|
dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
|
||
|
boolean_t force, boolean_t resumable, nvlist_t *localprops,
|
||
|
nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc)
|
||
|
{
|
||
|
dmu_recv_begin_arg_t drba = { 0 };
|
||
|
|
||
|
bzero(drc, sizeof (dmu_recv_cookie_t));
|
||
|
drc->drc_drr_begin = drr_begin;
|
||
|
drc->drc_drrb = &drr_begin->drr_u.drr_begin;
|
||
|
drc->drc_tosnap = tosnap;
|
||
|
drc->drc_tofs = tofs;
|
||
|
drc->drc_force = force;
|
||
|
drc->drc_resumable = resumable;
|
||
|
drc->drc_cred = CRED();
|
||
|
drc->drc_clone = (origin != NULL);
|
||
|
|
||
|
if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
|
||
|
drc->drc_byteswap = B_TRUE;
|
||
|
(void) fletcher_4_incremental_byteswap(drr_begin,
|
||
|
sizeof (dmu_replay_record_t), &drc->drc_cksum);
|
||
|
byteswap_record(drr_begin);
|
||
|
} else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
|
||
|
(void) fletcher_4_incremental_native(drr_begin,
|
||
|
sizeof (dmu_replay_record_t), &drc->drc_cksum);
|
||
|
} else {
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
}
|
||
|
|
||
|
drba.drba_origin = origin;
|
||
|
drba.drba_cookie = drc;
|
||
|
drba.drba_cred = CRED();
|
||
|
|
||
|
if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
|
||
|
DMU_BACKUP_FEATURE_RESUMING) {
|
||
|
return (dsl_sync_task(tofs,
|
||
|
dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
|
||
|
&drba, 5, ZFS_SPACE_CHECK_NORMAL));
|
||
|
} else {
|
||
|
int err;
|
||
|
|
||
|
/*
|
||
|
* For non-raw, non-incremental, non-resuming receives the
|
||
|
* user can specify encryption parameters on the command line
|
||
|
* with "zfs recv -o". For these receives we create a dcp and
|
||
|
* pass it to the sync task. Creating the dcp will implicitly
|
||
|
* remove the encryption params from the localprops nvlist,
|
||
|
* which avoids errors when trying to set these normally
|
||
|
* read-only properties. Any other kind of receive that
|
||
|
* attempts to set these properties will fail as a result.
|
||
|
*/
|
||
|
if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
|
||
|
DMU_BACKUP_FEATURE_RAW) == 0 &&
|
||
|
origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
|
||
|
err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
|
||
|
localprops, hidden_args, &drba.drba_dcp);
|
||
|
if (err != 0)
|
||
|
return (err);
|
||
|
}
|
||
|
|
||
|
err = dsl_sync_task(tofs,
|
||
|
dmu_recv_begin_check, dmu_recv_begin_sync,
|
||
|
&drba, 5, ZFS_SPACE_CHECK_NORMAL);
|
||
|
dsl_crypto_params_free(drba.drba_dcp, !!err);
|
||
|
|
||
|
return (err);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
struct receive_record_arg {
|
||
|
dmu_replay_record_t header;
|
||
|
void *payload; /* Pointer to a buffer containing the payload */
|
||
|
/*
|
||
|
* If the record is a write, pointer to the arc_buf_t containing the
|
||
|
* payload.
|
||
|
*/
|
||
|
arc_buf_t *arc_buf;
|
||
|
int payload_size;
|
||
|
uint64_t bytes_read; /* bytes read from stream when record created */
|
||
|
boolean_t eos_marker; /* Marks the end of the stream */
|
||
|
bqueue_node_t node;
|
||
|
};
|
||
|
|
||
|
struct receive_writer_arg {
|
||
|
objset_t *os;
|
||
|
boolean_t byteswap;
|
||
|
bqueue_t q;
|
||
|
|
||
|
/*
|
||
|
* These three args are used to signal to the main thread that we're
|
||
|
* done.
|
||
|
*/
|
||
|
kmutex_t mutex;
|
||
|
kcondvar_t cv;
|
||
|
boolean_t done;
|
||
|
|
||
|
int err;
|
||
|
/* A map from guid to dataset to help handle dedup'd streams. */
|
||
|
avl_tree_t *guid_to_ds_map;
|
||
|
boolean_t resumable;
|
||
|
boolean_t raw;
|
||
|
uint64_t last_object;
|
||
|
uint64_t last_offset;
|
||
|
uint64_t max_object; /* highest object ID referenced in stream */
|
||
|
uint64_t bytes_read; /* bytes read when current record created */
|
||
|
|
||
|
/* Encryption parameters for the last received DRR_OBJECT_RANGE */
|
||
|
boolean_t or_crypt_params_present;
|
||
|
uint64_t or_firstobj;
|
||
|
uint64_t or_numslots;
|
||
|
uint8_t or_salt[ZIO_DATA_SALT_LEN];
|
||
|
uint8_t or_iv[ZIO_DATA_IV_LEN];
|
||
|
uint8_t or_mac[ZIO_DATA_MAC_LEN];
|
||
|
boolean_t or_byteorder;
|
||
|
};
|
||
|
|
||
|
struct objlist {
|
||
|
list_t list; /* List of struct receive_objnode. */
|
||
|
/*
|
||
|
* Last object looked up. Used to assert that objects are being looked
|
||
|
* up in ascending order.
|
||
|
*/
|
||
|
uint64_t last_lookup;
|
||
|
};
|
||
|
|
||
|
struct receive_objnode {
|
||
|
list_node_t node;
|
||
|
uint64_t object;
|
||
|
};
|
||
|
|
||
|
struct receive_arg {
|
||
|
objset_t *os;
|
||
|
vnode_t *vp; /* The vnode to read the stream from */
|
||
|
uint64_t voff; /* The current offset in the stream */
|
||
|
uint64_t bytes_read;
|
||
|
/*
|
||
|
* A record that has had its payload read in, but hasn't yet been handed
|
||
|
* off to the worker thread.
|
||
|
*/
|
||
|
struct receive_record_arg *rrd;
|
||
|
/* A record that has had its header read in, but not its payload. */
|
||
|
struct receive_record_arg *next_rrd;
|
||
|
zio_cksum_t cksum;
|
||
|
zio_cksum_t prev_cksum;
|
||
|
int err;
|
||
|
boolean_t byteswap;
|
||
|
boolean_t raw;
|
||
|
uint64_t featureflags;
|
||
|
/* Sorted list of objects not to issue prefetches for. */
|
||
|
struct objlist ignore_objlist;
|
||
|
};
|
||
|
|
||
|
typedef struct guid_map_entry {
|
||
|
uint64_t guid;
|
||
|
boolean_t raw;
|
||
|
dsl_dataset_t *gme_ds;
|
||
|
avl_node_t avlnode;
|
||
|
} guid_map_entry_t;
|
||
|
|
||
|
static int
|
||
|
guid_compare(const void *arg1, const void *arg2)
|
||
|
{
|
||
|
const guid_map_entry_t *gmep1 = (const guid_map_entry_t *)arg1;
|
||
|
const guid_map_entry_t *gmep2 = (const guid_map_entry_t *)arg2;
|
||
|
|
||
|
return (AVL_CMP(gmep1->guid, gmep2->guid));
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
free_guid_map_onexit(void *arg)
|
||
|
{
|
||
|
avl_tree_t *ca = arg;
|
||
|
void *cookie = NULL;
|
||
|
guid_map_entry_t *gmep;
|
||
|
|
||
|
while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) {
|
||
|
ds_hold_flags_t dsflags = DS_HOLD_FLAG_DECRYPT;
|
||
|
|
||
|
if (gmep->raw) {
|
||
|
gmep->gme_ds->ds_objset->os_raw_receive = B_FALSE;
|
||
|
dsflags &= ~DS_HOLD_FLAG_DECRYPT;
|
||
|
}
|
||
|
|
||
|
dsl_dataset_disown(gmep->gme_ds, dsflags, gmep);
|
||
|
kmem_free(gmep, sizeof (guid_map_entry_t));
|
||
|
}
|
||
|
avl_destroy(ca);
|
||
|
kmem_free(ca, sizeof (avl_tree_t));
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
receive_read(struct receive_arg *ra, int len, void *buf)
|
||
|
{
|
||
|
int done = 0;
|
||
|
|
||
|
/*
|
||
|
* The code doesn't rely on this (lengths being multiples of 8). See
|
||
|
* comment in dump_bytes.
|
||
|
*/
|
||
|
ASSERT(len % 8 == 0 ||
|
||
|
(ra->featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
|
||
|
|
||
|
while (done < len) {
|
||
|
ssize_t resid;
|
||
|
|
||
|
ra->err = vn_rdwr(UIO_READ, ra->vp,
|
||
|
(char *)buf + done, len - done,
|
||
|
ra->voff, UIO_SYSSPACE, FAPPEND,
|
||
|
RLIM64_INFINITY, CRED(), &resid);
|
||
|
|
||
|
if (resid == len - done) {
|
||
|
/*
|
||
|
* Note: ECKSUM indicates that the receive
|
||
|
* was interrupted and can potentially be resumed.
|
||
|
*/
|
||
|
ra->err = SET_ERROR(ECKSUM);
|
||
|
}
|
||
|
ra->voff += len - done - resid;
|
||
|
done = len - resid;
|
||
|
if (ra->err != 0)
|
||
|
return (ra->err);
|
||
|
}
|
||
|
|
||
|
ra->bytes_read += len;
|
||
|
|
||
|
ASSERT3U(done, ==, len);
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
noinline static void
|
||
|
byteswap_record(dmu_replay_record_t *drr)
|
||
|
{
|
||
|
#define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
|
||
|
#define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
|
||
|
drr->drr_type = BSWAP_32(drr->drr_type);
|
||
|
drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
|
||
|
|
||
|
switch (drr->drr_type) {
|
||
|
case DRR_BEGIN:
|
||
|
DO64(drr_begin.drr_magic);
|
||
|
DO64(drr_begin.drr_versioninfo);
|
||
|
DO64(drr_begin.drr_creation_time);
|
||
|
DO32(drr_begin.drr_type);
|
||
|
DO32(drr_begin.drr_flags);
|
||
|
DO64(drr_begin.drr_toguid);
|
||
|
DO64(drr_begin.drr_fromguid);
|
||
|
break;
|
||
|
case DRR_OBJECT:
|
||
|
DO64(drr_object.drr_object);
|
||
|
DO32(drr_object.drr_type);
|
||
|
DO32(drr_object.drr_bonustype);
|
||
|
DO32(drr_object.drr_blksz);
|
||
|
DO32(drr_object.drr_bonuslen);
|
||
|
DO32(drr_object.drr_raw_bonuslen);
|
||
|
DO64(drr_object.drr_toguid);
|
||
|
DO64(drr_object.drr_maxblkid);
|
||
|
break;
|
||
|
case DRR_FREEOBJECTS:
|
||
|
DO64(drr_freeobjects.drr_firstobj);
|
||
|
DO64(drr_freeobjects.drr_numobjs);
|
||
|
DO64(drr_freeobjects.drr_toguid);
|
||
|
break;
|
||
|
case DRR_WRITE:
|
||
|
DO64(drr_write.drr_object);
|
||
|
DO32(drr_write.drr_type);
|
||
|
DO64(drr_write.drr_offset);
|
||
|
DO64(drr_write.drr_logical_size);
|
||
|
DO64(drr_write.drr_toguid);
|
||
|
ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
|
||
|
DO64(drr_write.drr_key.ddk_prop);
|
||
|
DO64(drr_write.drr_compressed_size);
|
||
|
break;
|
||
|
case DRR_WRITE_BYREF:
|
||
|
DO64(drr_write_byref.drr_object);
|
||
|
DO64(drr_write_byref.drr_offset);
|
||
|
DO64(drr_write_byref.drr_length);
|
||
|
DO64(drr_write_byref.drr_toguid);
|
||
|
DO64(drr_write_byref.drr_refguid);
|
||
|
DO64(drr_write_byref.drr_refobject);
|
||
|
DO64(drr_write_byref.drr_refoffset);
|
||
|
ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref.
|
||
|
drr_key.ddk_cksum);
|
||
|
DO64(drr_write_byref.drr_key.ddk_prop);
|
||
|
break;
|
||
|
case DRR_WRITE_EMBEDDED:
|
||
|
DO64(drr_write_embedded.drr_object);
|
||
|
DO64(drr_write_embedded.drr_offset);
|
||
|
DO64(drr_write_embedded.drr_length);
|
||
|
DO64(drr_write_embedded.drr_toguid);
|
||
|
DO32(drr_write_embedded.drr_lsize);
|
||
|
DO32(drr_write_embedded.drr_psize);
|
||
|
break;
|
||
|
case DRR_FREE:
|
||
|
DO64(drr_free.drr_object);
|
||
|
DO64(drr_free.drr_offset);
|
||
|
DO64(drr_free.drr_length);
|
||
|
DO64(drr_free.drr_toguid);
|
||
|
break;
|
||
|
case DRR_SPILL:
|
||
|
DO64(drr_spill.drr_object);
|
||
|
DO64(drr_spill.drr_length);
|
||
|
DO64(drr_spill.drr_toguid);
|
||
|
DO64(drr_spill.drr_compressed_size);
|
||
|
DO32(drr_spill.drr_type);
|
||
|
break;
|
||
|
case DRR_OBJECT_RANGE:
|
||
|
DO64(drr_object_range.drr_firstobj);
|
||
|
DO64(drr_object_range.drr_numslots);
|
||
|
DO64(drr_object_range.drr_toguid);
|
||
|
break;
|
||
|
case DRR_END:
|
||
|
DO64(drr_end.drr_toguid);
|
||
|
ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (drr->drr_type != DRR_BEGIN) {
|
||
|
ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
|
||
|
}
|
||
|
|
||
|
#undef DO64
|
||
|
#undef DO32
|
||
|
}
|
||
|
|
||
|
static inline uint8_t
|
||
|
deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
|
||
|
{
|
||
|
if (bonus_type == DMU_OT_SA) {
|
||
|
return (1);
|
||
|
} else {
|
||
|
return (1 +
|
||
|
((DN_OLD_MAX_BONUSLEN -
|
||
|
MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
save_resume_state(struct receive_writer_arg *rwa,
|
||
|
uint64_t object, uint64_t offset, dmu_tx_t *tx)
|
||
|
{
|
||
|
int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
|
||
|
|
||
|
if (!rwa->resumable)
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* We use ds_resume_bytes[] != 0 to indicate that we need to
|
||
|
* update this on disk, so it must not be 0.
|
||
|
*/
|
||
|
ASSERT(rwa->bytes_read != 0);
|
||
|
|
||
|
/*
|
||
|
* We only resume from write records, which have a valid
|
||
|
* (non-meta-dnode) object number.
|
||
|
*/
|
||
|
ASSERT(object != 0);
|
||
|
|
||
|
/*
|
||
|
* For resuming to work correctly, we must receive records in order,
|
||
|
* sorted by object,offset. This is checked by the callers, but
|
||
|
* assert it here for good measure.
|
||
|
*/
|
||
|
ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
|
||
|
ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
|
||
|
offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
|
||
|
ASSERT3U(rwa->bytes_read, >=,
|
||
|
rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
|
||
|
|
||
|
rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
|
||
|
rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
|
||
|
rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
|
||
|
}
|
||
|
|
||
|
noinline static int
|
||
|
receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
|
||
|
void *data)
|
||
|
{
|
||
|
dmu_object_info_t doi;
|
||
|
dmu_tx_t *tx;
|
||
|
uint64_t object;
|
||
|
int err;
|
||
|
uint8_t dn_slots = drro->drr_dn_slots != 0 ?
|
||
|
drro->drr_dn_slots : DNODE_MIN_SLOTS;
|
||
|
|
||
|
if (drro->drr_type == DMU_OT_NONE ||
|
||
|
!DMU_OT_IS_VALID(drro->drr_type) ||
|
||
|
!DMU_OT_IS_VALID(drro->drr_bonustype) ||
|
||
|
drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
|
||
|
drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
|
||
|
P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
|
||
|
drro->drr_blksz < SPA_MINBLOCKSIZE ||
|
||
|
drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
|
||
|
drro->drr_bonuslen >
|
||
|
DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
|
||
|
dn_slots >
|
||
|
(spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
}
|
||
|
|
||
|
if (rwa->raw) {
|
||
|
/*
|
||
|
* We should have received a DRR_OBJECT_RANGE record
|
||
|
* containing this block and stored it in rwa.
|
||
|
*/
|
||
|
if (drro->drr_object < rwa->or_firstobj ||
|
||
|
drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
|
||
|
drro->drr_raw_bonuslen < drro->drr_bonuslen ||
|
||
|
drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
|
||
|
drro->drr_nlevels > DN_MAX_LEVELS ||
|
||
|
drro->drr_nblkptr > DN_MAX_NBLKPTR ||
|
||
|
DN_SLOTS_TO_BONUSLEN(dn_slots) <
|
||
|
drro->drr_raw_bonuslen)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
} else {
|
||
|
if (drro->drr_flags != 0 || drro->drr_raw_bonuslen != 0 ||
|
||
|
drro->drr_indblkshift != 0 || drro->drr_nlevels != 0 ||
|
||
|
drro->drr_nblkptr != 0)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
}
|
||
|
|
||
|
err = dmu_object_info(rwa->os, drro->drr_object, &doi);
|
||
|
if (err != 0 && err != ENOENT && err != EEXIST)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
|
||
|
if (drro->drr_object > rwa->max_object)
|
||
|
rwa->max_object = drro->drr_object;
|
||
|
|
||
|
/*
|
||
|
* If we are losing blkptrs or changing the block size this must
|
||
|
* be a new file instance. We must clear out the previous file
|
||
|
* contents before we can change this type of metadata in the dnode.
|
||
|
* Raw receives will also check that the indirect structure of the
|
||
|
* dnode hasn't changed.
|
||
|
*/
|
||
|
if (err == 0) {
|
||
|
uint32_t indblksz = drro->drr_indblkshift ?
|
||
|
1ULL << drro->drr_indblkshift : 0;
|
||
|
int nblkptr = deduce_nblkptr(drro->drr_bonustype,
|
||
|
drro->drr_bonuslen);
|
||
|
|
||
|
object = drro->drr_object;
|
||
|
|
||
|
/* nblkptr will be bounded by the bonus size and type */
|
||
|
if (rwa->raw && nblkptr != drro->drr_nblkptr)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
|
||
|
if (drro->drr_blksz != doi.doi_data_block_size ||
|
||
|
nblkptr < doi.doi_nblkptr ||
|
||
|
dn_slots != doi.doi_dnodesize >> DNODE_SHIFT ||
|
||
|
(rwa->raw &&
|
||
|
(indblksz != doi.doi_metadata_block_size ||
|
||
|
drro->drr_nlevels < doi.doi_indirection))) {
|
||
|
err = dmu_free_long_range(rwa->os,
|
||
|
drro->drr_object, 0, DMU_OBJECT_END);
|
||
|
if (err != 0)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The dmu does not currently support decreasing nlevels
|
||
|
* on an object. For non-raw sends, this does not matter
|
||
|
* and the new object can just use the previous one's nlevels.
|
||
|
* For raw sends, however, the structure of the received dnode
|
||
|
* (including nlevels) must match that of the send side.
|
||
|
* Therefore, instead of using dmu_object_reclaim(), we must
|
||
|
* free the object completely and call dmu_object_claim_dnsize()
|
||
|
* instead.
|
||
|
*/
|
||
|
if ((rwa->raw && drro->drr_nlevels < doi.doi_indirection) ||
|
||
|
dn_slots != doi.doi_dnodesize >> DNODE_SHIFT) {
|
||
|
err = dmu_free_long_object(rwa->os, drro->drr_object);
|
||
|
if (err != 0)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
|
||
|
txg_wait_synced(dmu_objset_pool(rwa->os), 0);
|
||
|
object = DMU_NEW_OBJECT;
|
||
|
}
|
||
|
} else if (err == EEXIST) {
|
||
|
/*
|
||
|
* The object requested is currently an interior slot of a
|
||
|
* multi-slot dnode. This will be resolved when the next txg
|
||
|
* is synced out, since the send stream will have told us
|
||
|
* to free this slot when we freed the associated dnode
|
||
|
* earlier in the stream.
|
||
|
*/
|
||
|
txg_wait_synced(dmu_objset_pool(rwa->os), 0);
|
||
|
object = drro->drr_object;
|
||
|
} else {
|
||
|
/* object is free and we are about to allocate a new one */
|
||
|
object = DMU_NEW_OBJECT;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If this is a multi-slot dnode there is a chance that this
|
||
|
* object will expand into a slot that is already used by
|
||
|
* another object from the previous snapshot. We must free
|
||
|
* these objects before we attempt to allocate the new dnode.
|
||
|
*/
|
||
|
if (dn_slots > 1) {
|
||
|
boolean_t need_sync = B_FALSE;
|
||
|
|
||
|
for (uint64_t slot = drro->drr_object + 1;
|
||
|
slot < drro->drr_object + dn_slots;
|
||
|
slot++) {
|
||
|
dmu_object_info_t slot_doi;
|
||
|
|
||
|
err = dmu_object_info(rwa->os, slot, &slot_doi);
|
||
|
if (err == ENOENT || err == EEXIST)
|
||
|
continue;
|
||
|
else if (err != 0)
|
||
|
return (err);
|
||
|
|
||
|
err = dmu_free_long_object(rwa->os, slot);
|
||
|
|
||
|
if (err != 0)
|
||
|
return (err);
|
||
|
|
||
|
need_sync = B_TRUE;
|
||
|
}
|
||
|
|
||
|
if (need_sync)
|
||
|
txg_wait_synced(dmu_objset_pool(rwa->os), 0);
|
||
|
}
|
||
|
|
||
|
tx = dmu_tx_create(rwa->os);
|
||
|
dmu_tx_hold_bonus(tx, object);
|
||
|
dmu_tx_hold_write(tx, object, 0, 0);
|
||
|
err = dmu_tx_assign(tx, TXG_WAIT);
|
||
|
if (err != 0) {
|
||
|
dmu_tx_abort(tx);
|
||
|
return (err);
|
||
|
}
|
||
|
|
||
|
if (object == DMU_NEW_OBJECT) {
|
||
|
/* currently free, want to be allocated */
|
||
|
err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
|
||
|
drro->drr_type, drro->drr_blksz,
|
||
|
drro->drr_bonustype, drro->drr_bonuslen,
|
||
|
dn_slots << DNODE_SHIFT, tx);
|
||
|
} else if (drro->drr_type != doi.doi_type ||
|
||
|
drro->drr_blksz != doi.doi_data_block_size ||
|
||
|
drro->drr_bonustype != doi.doi_bonus_type ||
|
||
|
drro->drr_bonuslen != doi.doi_bonus_size) {
|
||
|
/* currently allocated, but with different properties */
|
||
|
err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
|
||
|
drro->drr_type, drro->drr_blksz,
|
||
|
drro->drr_bonustype, drro->drr_bonuslen,
|
||
|
dn_slots << DNODE_SHIFT, tx);
|
||
|
}
|
||
|
if (err != 0) {
|
||
|
dmu_tx_commit(tx);
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
}
|
||
|
|
||
|
if (rwa->or_crypt_params_present) {
|
||
|
/*
|
||
|
* Set the crypt params for the buffer associated with this
|
||
|
* range of dnodes. This causes the blkptr_t to have the
|
||
|
* same crypt params (byteorder, salt, iv, mac) as on the
|
||
|
* sending side.
|
||
|
*
|
||
|
* Since we are committing this tx now, it is possible for
|
||
|
* the dnode block to end up on-disk with the incorrect MAC,
|
||
|
* if subsequent objects in this block are received in a
|
||
|
* different txg. However, since the dataset is marked as
|
||
|
* inconsistent, no code paths will do a non-raw read (or
|
||
|
* decrypt the block / verify the MAC). The receive code and
|
||
|
* scrub code can safely do raw reads and verify the
|
||
|
* checksum. They don't need to verify the MAC.
|
||
|
*/
|
||
|
dmu_buf_t *db = NULL;
|
||
|
uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
|
||
|
|
||
|
err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
|
||
|
offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
|
||
|
if (err != 0) {
|
||
|
dmu_tx_commit(tx);
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
}
|
||
|
|
||
|
dmu_buf_set_crypt_params(db, rwa->or_byteorder,
|
||
|
rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
|
||
|
|
||
|
dmu_buf_rele(db, FTAG);
|
||
|
|
||
|
rwa->or_crypt_params_present = B_FALSE;
|
||
|
}
|
||
|
|
||
|
dmu_object_set_checksum(rwa->os, drro->drr_object,
|
||
|
drro->drr_checksumtype, tx);
|
||
|
dmu_object_set_compress(rwa->os, drro->drr_object,
|
||
|
drro->drr_compress, tx);
|
||
|
|
||
|
/* handle more restrictive dnode structuring for raw recvs */
|
||
|
if (rwa->raw) {
|
||
|
/*
|
||
|
* Set the indirect block shift and nlevels. This will not fail
|
||
|
* because we ensured all of the blocks were free earlier if
|
||
|
* this is a new object.
|
||
|
*/
|
||
|
VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
|
||
|
drro->drr_blksz, drro->drr_indblkshift, tx));
|
||
|
VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
|
||
|
drro->drr_nlevels, tx));
|
||
|
VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
|
||
|
drro->drr_maxblkid, tx));
|
||
|
}
|
||
|
|
||
|
if (data != NULL) {
|
||
|
dmu_buf_t *db;
|
||
|
uint32_t flags = DMU_READ_NO_PREFETCH;
|
||
|
|
||
|
if (rwa->raw)
|
||
|
flags |= DMU_READ_NO_DECRYPT;
|
||
|
|
||
|
VERIFY0(dmu_bonus_hold_impl(rwa->os, drro->drr_object,
|
||
|
FTAG, flags, &db));
|
||
|
dmu_buf_will_dirty(db, tx);
|
||
|
|
||
|
ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
|
||
|
bcopy(data, db->db_data, DRR_OBJECT_PAYLOAD_SIZE(drro));
|
||
|
|
||
|
/*
|
||
|
* Raw bonus buffers have their byteorder determined by the
|
||
|
* DRR_OBJECT_RANGE record.
|
||
|
*/
|
||
|
if (rwa->byteswap && !rwa->raw) {
|
||
|
dmu_object_byteswap_t byteswap =
|
||
|
DMU_OT_BYTESWAP(drro->drr_bonustype);
|
||
|
dmu_ot_byteswap[byteswap].ob_func(db->db_data,
|
||
|
DRR_OBJECT_PAYLOAD_SIZE(drro));
|
||
|
}
|
||
|
dmu_buf_rele(db, FTAG);
|
||
|
}
|
||
|
dmu_tx_commit(tx);
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/* ARGSUSED */
|
||
|
noinline static int
|
||
|
receive_freeobjects(struct receive_writer_arg *rwa,
|
||
|
struct drr_freeobjects *drrfo)
|
||
|
{
|
||
|
uint64_t obj;
|
||
|
int next_err = 0;
|
||
|
|
||
|
if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
|
||
|
for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
|
||
|
obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0;
|
||
|
next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
|
||
|
dmu_object_info_t doi;
|
||
|
int err;
|
||
|
|
||
|
err = dmu_object_info(rwa->os, obj, &doi);
|
||
|
if (err == ENOENT)
|
||
|
continue;
|
||
|
else if (err != 0)
|
||
|
return (err);
|
||
|
|
||
|
err = dmu_free_long_object(rwa->os, obj);
|
||
|
|
||
|
if (err != 0)
|
||
|
return (err);
|
||
|
|
||
|
if (obj > rwa->max_object)
|
||
|
rwa->max_object = obj;
|
||
|
}
|
||
|
if (next_err != ESRCH)
|
||
|
return (next_err);
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
noinline static int
|
||
|
receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw,
|
||
|
arc_buf_t *abuf)
|
||
|
{
|
||
|
int err;
|
||
|
dmu_tx_t *tx;
|
||
|
dnode_t *dn;
|
||
|
|
||
|
if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
|
||
|
!DMU_OT_IS_VALID(drrw->drr_type))
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
|
||
|
/*
|
||
|
* For resuming to work, records must be in increasing order
|
||
|
* by (object, offset).
|
||
|
*/
|
||
|
if (drrw->drr_object < rwa->last_object ||
|
||
|
(drrw->drr_object == rwa->last_object &&
|
||
|
drrw->drr_offset < rwa->last_offset)) {
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
}
|
||
|
rwa->last_object = drrw->drr_object;
|
||
|
rwa->last_offset = drrw->drr_offset;
|
||
|
|
||
|
if (rwa->last_object > rwa->max_object)
|
||
|
rwa->max_object = rwa->last_object;
|
||
|
|
||
|
if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
|
||
|
tx = dmu_tx_create(rwa->os);
|
||
|
dmu_tx_hold_write(tx, drrw->drr_object,
|
||
|
drrw->drr_offset, drrw->drr_logical_size);
|
||
|
err = dmu_tx_assign(tx, TXG_WAIT);
|
||
|
if (err != 0) {
|
||
|
dmu_tx_abort(tx);
|
||
|
return (err);
|
||
|
}
|
||
|
|
||
|
if (rwa->byteswap && !arc_is_encrypted(abuf) &&
|
||
|
arc_get_compression(abuf) == ZIO_COMPRESS_OFF) {
|
||
|
dmu_object_byteswap_t byteswap =
|
||
|
DMU_OT_BYTESWAP(drrw->drr_type);
|
||
|
dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
|
||
|
DRR_WRITE_PAYLOAD_SIZE(drrw));
|
||
|
}
|
||
|
|
||
|
VERIFY0(dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn));
|
||
|
dmu_assign_arcbuf_by_dnode(dn, drrw->drr_offset, abuf, tx);
|
||
|
dnode_rele(dn, FTAG);
|
||
|
|
||
|
/*
|
||
|
* Note: If the receive fails, we want the resume stream to start
|
||
|
* with the same record that we last successfully received (as opposed
|
||
|
* to the next record), so that we can verify that we are
|
||
|
* resuming from the correct location.
|
||
|
*/
|
||
|
save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
|
||
|
dmu_tx_commit(tx);
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed
|
||
|
* streams to refer to a copy of the data that is already on the
|
||
|
* system because it came in earlier in the stream. This function
|
||
|
* finds the earlier copy of the data, and uses that copy instead of
|
||
|
* data from the stream to fulfill this write.
|
||
|
*/
|
||
|
static int
|
||
|
receive_write_byref(struct receive_writer_arg *rwa,
|
||
|
struct drr_write_byref *drrwbr)
|
||
|
{
|
||
|
dmu_tx_t *tx;
|
||
|
int err;
|
||
|
guid_map_entry_t gmesrch;
|
||
|
guid_map_entry_t *gmep;
|
||
|
avl_index_t where;
|
||
|
objset_t *ref_os = NULL;
|
||
|
int flags = DMU_READ_PREFETCH;
|
||
|
dmu_buf_t *dbp;
|
||
|
|
||
|
if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
|
||
|
/*
|
||
|
* If the GUID of the referenced dataset is different from the
|
||
|
* GUID of the target dataset, find the referenced dataset.
|
||
|
*/
|
||
|
if (drrwbr->drr_toguid != drrwbr->drr_refguid) {
|
||
|
gmesrch.guid = drrwbr->drr_refguid;
|
||
|
if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch,
|
||
|
&where)) == NULL) {
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
}
|
||
|
if (dmu_objset_from_ds(gmep->gme_ds, &ref_os))
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
} else {
|
||
|
ref_os = rwa->os;
|
||
|
}
|
||
|
|
||
|
if (drrwbr->drr_object > rwa->max_object)
|
||
|
rwa->max_object = drrwbr->drr_object;
|
||
|
|
||
|
if (rwa->raw)
|
||
|
flags |= DMU_READ_NO_DECRYPT;
|
||
|
|
||
|
/* may return either a regular db or an encrypted one */
|
||
|
err = dmu_buf_hold(ref_os, drrwbr->drr_refobject,
|
||
|
drrwbr->drr_refoffset, FTAG, &dbp, flags);
|
||
|
if (err != 0)
|
||
|
return (err);
|
||
|
|
||
|
tx = dmu_tx_create(rwa->os);
|
||
|
|
||
|
dmu_tx_hold_write(tx, drrwbr->drr_object,
|
||
|
drrwbr->drr_offset, drrwbr->drr_length);
|
||
|
err = dmu_tx_assign(tx, TXG_WAIT);
|
||
|
if (err != 0) {
|
||
|
dmu_tx_abort(tx);
|
||
|
return (err);
|
||
|
}
|
||
|
|
||
|
if (rwa->raw) {
|
||
|
dmu_copy_from_buf(rwa->os, drrwbr->drr_object,
|
||
|
drrwbr->drr_offset, dbp, tx);
|
||
|
} else {
|
||
|
dmu_write(rwa->os, drrwbr->drr_object,
|
||
|
drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx);
|
||
|
}
|
||
|
dmu_buf_rele(dbp, FTAG);
|
||
|
|
||
|
/* See comment in restore_write. */
|
||
|
save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx);
|
||
|
dmu_tx_commit(tx);
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
receive_write_embedded(struct receive_writer_arg *rwa,
|
||
|
struct drr_write_embedded *drrwe, void *data)
|
||
|
{
|
||
|
dmu_tx_t *tx;
|
||
|
int err;
|
||
|
|
||
|
if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
|
||
|
if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
|
||
|
if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
if (rwa->raw)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
|
||
|
if (drrwe->drr_object > rwa->max_object)
|
||
|
rwa->max_object = drrwe->drr_object;
|
||
|
|
||
|
tx = dmu_tx_create(rwa->os);
|
||
|
|
||
|
dmu_tx_hold_write(tx, drrwe->drr_object,
|
||
|
drrwe->drr_offset, drrwe->drr_length);
|
||
|
err = dmu_tx_assign(tx, TXG_WAIT);
|
||
|
if (err != 0) {
|
||
|
dmu_tx_abort(tx);
|
||
|
return (err);
|
||
|
}
|
||
|
|
||
|
dmu_write_embedded(rwa->os, drrwe->drr_object,
|
||
|
drrwe->drr_offset, data, drrwe->drr_etype,
|
||
|
drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
|
||
|
rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
|
||
|
|
||
|
/* See comment in restore_write. */
|
||
|
save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
|
||
|
dmu_tx_commit(tx);
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
|
||
|
arc_buf_t *abuf)
|
||
|
{
|
||
|
dmu_tx_t *tx;
|
||
|
dmu_buf_t *db, *db_spill;
|
||
|
int err;
|
||
|
uint32_t flags = 0;
|
||
|
|
||
|
if (drrs->drr_length < SPA_MINBLOCKSIZE ||
|
||
|
drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
|
||
|
if (rwa->raw) {
|
||
|
if (!DMU_OT_IS_VALID(drrs->drr_type) ||
|
||
|
drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
|
||
|
drrs->drr_compressed_size == 0)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
|
||
|
flags |= DMU_READ_NO_DECRYPT;
|
||
|
}
|
||
|
|
||
|
if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
|
||
|
if (drrs->drr_object > rwa->max_object)
|
||
|
rwa->max_object = drrs->drr_object;
|
||
|
|
||
|
VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
|
||
|
if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
|
||
|
&db_spill)) != 0) {
|
||
|
dmu_buf_rele(db, FTAG);
|
||
|
return (err);
|
||
|
}
|
||
|
|
||
|
tx = dmu_tx_create(rwa->os);
|
||
|
|
||
|
dmu_tx_hold_spill(tx, db->db_object);
|
||
|
|
||
|
err = dmu_tx_assign(tx, TXG_WAIT);
|
||
|
if (err != 0) {
|
||
|
dmu_buf_rele(db, FTAG);
|
||
|
dmu_buf_rele(db_spill, FTAG);
|
||
|
dmu_tx_abort(tx);
|
||
|
return (err);
|
||
|
}
|
||
|
|
||
|
if (db_spill->db_size < drrs->drr_length)
|
||
|
VERIFY(0 == dbuf_spill_set_blksz(db_spill,
|
||
|
drrs->drr_length, tx));
|
||
|
|
||
|
if (rwa->byteswap && !arc_is_encrypted(abuf) &&
|
||
|
arc_get_compression(abuf) == ZIO_COMPRESS_OFF) {
|
||
|
dmu_object_byteswap_t byteswap =
|
||
|
DMU_OT_BYTESWAP(drrs->drr_type);
|
||
|
dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
|
||
|
DRR_SPILL_PAYLOAD_SIZE(drrs));
|
||
|
}
|
||
|
|
||
|
dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
|
||
|
|
||
|
dmu_buf_rele(db, FTAG);
|
||
|
dmu_buf_rele(db_spill, FTAG);
|
||
|
|
||
|
dmu_tx_commit(tx);
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/* ARGSUSED */
|
||
|
noinline static int
|
||
|
receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
|
||
|
{
|
||
|
int err;
|
||
|
|
||
|
if (drrf->drr_length != DMU_OBJECT_END &&
|
||
|
drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
|
||
|
if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
|
||
|
if (drrf->drr_object > rwa->max_object)
|
||
|
rwa->max_object = drrf->drr_object;
|
||
|
|
||
|
err = dmu_free_long_range(rwa->os, drrf->drr_object,
|
||
|
drrf->drr_offset, drrf->drr_length);
|
||
|
|
||
|
return (err);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
receive_object_range(struct receive_writer_arg *rwa,
|
||
|
struct drr_object_range *drror)
|
||
|
{
|
||
|
/*
|
||
|
* By default, we assume this block is in our native format
|
||
|
* (ZFS_HOST_BYTEORDER). We then take into account whether
|
||
|
* the send stream is byteswapped (rwa->byteswap). Finally,
|
||
|
* we need to byteswap again if this particular block was
|
||
|
* in non-native format on the send side.
|
||
|
*/
|
||
|
boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
|
||
|
!!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
|
||
|
|
||
|
/*
|
||
|
* Since dnode block sizes are constant, we should not need to worry
|
||
|
* about making sure that the dnode block size is the same on the
|
||
|
* sending and receiving sides for the time being. For non-raw sends,
|
||
|
* this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
|
||
|
* record at all). Raw sends require this record type because the
|
||
|
* encryption parameters are used to protect an entire block of bonus
|
||
|
* buffers. If the size of dnode blocks ever becomes variable,
|
||
|
* handling will need to be added to ensure that dnode block sizes
|
||
|
* match on the sending and receiving side.
|
||
|
*/
|
||
|
if (drror->drr_numslots != DNODES_PER_BLOCK ||
|
||
|
P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
|
||
|
!rwa->raw)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
|
||
|
if (drror->drr_firstobj > rwa->max_object)
|
||
|
rwa->max_object = drror->drr_firstobj;
|
||
|
|
||
|
/*
|
||
|
* The DRR_OBJECT_RANGE handling must be deferred to receive_object()
|
||
|
* so that the block of dnodes is not written out when it's empty,
|
||
|
* and converted to a HOLE BP.
|
||
|
*/
|
||
|
rwa->or_crypt_params_present = B_TRUE;
|
||
|
rwa->or_firstobj = drror->drr_firstobj;
|
||
|
rwa->or_numslots = drror->drr_numslots;
|
||
|
bcopy(drror->drr_salt, rwa->or_salt, ZIO_DATA_SALT_LEN);
|
||
|
bcopy(drror->drr_iv, rwa->or_iv, ZIO_DATA_IV_LEN);
|
||
|
bcopy(drror->drr_mac, rwa->or_mac, ZIO_DATA_MAC_LEN);
|
||
|
rwa->or_byteorder = byteorder;
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/* used to destroy the drc_ds on error */
|
||
|
static void
|
||
|
dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
|
||
|
{
|
||
|
dsl_dataset_t *ds = drc->drc_ds;
|
||
|
ds_hold_flags_t dsflags = (drc->drc_raw) ? 0 : DS_HOLD_FLAG_DECRYPT;
|
||
|
|
||
|
/*
|
||
|
* Wait for the txg sync before cleaning up the receive. For
|
||
|
* resumable receives, this ensures that our resume state has
|
||
|
* been written out to disk. For raw receives, this ensures
|
||
|
* that the user accounting code will not attempt to do anything
|
||
|
* after we stopped receiving the dataset.
|
||
|
*/
|
||
|
txg_wait_synced(ds->ds_dir->dd_pool, 0);
|
||
|
ds->ds_objset->os_raw_receive = B_FALSE;
|
||
|
|
||
|
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
|
||
|
if (drc->drc_resumable && !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
|
||
|
rrw_exit(&ds->ds_bp_rwlock, FTAG);
|
||
|
dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
|
||
|
} else {
|
||
|
char name[ZFS_MAX_DATASET_NAME_LEN];
|
||
|
rrw_exit(&ds->ds_bp_rwlock, FTAG);
|
||
|
dsl_dataset_name(ds, name);
|
||
|
dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
|
||
|
(void) dsl_destroy_head(name);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
receive_cksum(struct receive_arg *ra, int len, void *buf)
|
||
|
{
|
||
|
if (ra->byteswap) {
|
||
|
(void) fletcher_4_incremental_byteswap(buf, len, &ra->cksum);
|
||
|
} else {
|
||
|
(void) fletcher_4_incremental_native(buf, len, &ra->cksum);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Read the payload into a buffer of size len, and update the current record's
|
||
|
* payload field.
|
||
|
* Allocate ra->next_rrd and read the next record's header into
|
||
|
* ra->next_rrd->header.
|
||
|
* Verify checksum of payload and next record.
|
||
|
*/
|
||
|
static int
|
||
|
receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf)
|
||
|
{
|
||
|
int err;
|
||
|
zio_cksum_t cksum_orig;
|
||
|
zio_cksum_t *cksump;
|
||
|
|
||
|
if (len != 0) {
|
||
|
ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
|
||
|
err = receive_read(ra, len, buf);
|
||
|
if (err != 0)
|
||
|
return (err);
|
||
|
receive_cksum(ra, len, buf);
|
||
|
|
||
|
/* note: rrd is NULL when reading the begin record's payload */
|
||
|
if (ra->rrd != NULL) {
|
||
|
ra->rrd->payload = buf;
|
||
|
ra->rrd->payload_size = len;
|
||
|
ra->rrd->bytes_read = ra->bytes_read;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ra->prev_cksum = ra->cksum;
|
||
|
|
||
|
ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
|
||
|
err = receive_read(ra, sizeof (ra->next_rrd->header),
|
||
|
&ra->next_rrd->header);
|
||
|
ra->next_rrd->bytes_read = ra->bytes_read;
|
||
|
|
||
|
if (err != 0) {
|
||
|
kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
|
||
|
ra->next_rrd = NULL;
|
||
|
return (err);
|
||
|
}
|
||
|
if (ra->next_rrd->header.drr_type == DRR_BEGIN) {
|
||
|
kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
|
||
|
ra->next_rrd = NULL;
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Note: checksum is of everything up to but not including the
|
||
|
* checksum itself.
|
||
|
*/
|
||
|
ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
|
||
|
==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
|
||
|
receive_cksum(ra,
|
||
|
offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
|
||
|
&ra->next_rrd->header);
|
||
|
|
||
|
cksum_orig = ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
|
||
|
cksump = &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
|
||
|
|
||
|
if (ra->byteswap)
|
||
|
byteswap_record(&ra->next_rrd->header);
|
||
|
|
||
|
if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
|
||
|
!ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) {
|
||
|
kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
|
||
|
ra->next_rrd = NULL;
|
||
|
return (SET_ERROR(ECKSUM));
|
||
|
}
|
||
|
|
||
|
receive_cksum(ra, sizeof (cksum_orig), &cksum_orig);
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
objlist_create(struct objlist *list)
|
||
|
{
|
||
|
list_create(&list->list, sizeof (struct receive_objnode),
|
||
|
offsetof(struct receive_objnode, node));
|
||
|
list->last_lookup = 0;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
objlist_destroy(struct objlist *list)
|
||
|
{
|
||
|
for (struct receive_objnode *n = list_remove_head(&list->list);
|
||
|
n != NULL; n = list_remove_head(&list->list)) {
|
||
|
kmem_free(n, sizeof (*n));
|
||
|
}
|
||
|
list_destroy(&list->list);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This function looks through the objlist to see if the specified object number
|
||
|
* is contained in the objlist. In the process, it will remove all object
|
||
|
* numbers in the list that are smaller than the specified object number. Thus,
|
||
|
* any lookup of an object number smaller than a previously looked up object
|
||
|
* number will always return false; therefore, all lookups should be done in
|
||
|
* ascending order.
|
||
|
*/
|
||
|
static boolean_t
|
||
|
objlist_exists(struct objlist *list, uint64_t object)
|
||
|
{
|
||
|
struct receive_objnode *node = list_head(&list->list);
|
||
|
ASSERT3U(object, >=, list->last_lookup);
|
||
|
list->last_lookup = object;
|
||
|
while (node != NULL && node->object < object) {
|
||
|
VERIFY3P(node, ==, list_remove_head(&list->list));
|
||
|
kmem_free(node, sizeof (*node));
|
||
|
node = list_head(&list->list);
|
||
|
}
|
||
|
return (node != NULL && node->object == object);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The objlist is a list of object numbers stored in ascending order. However,
|
||
|
* the insertion of new object numbers does not seek out the correct location to
|
||
|
* store a new object number; instead, it appends it to the list for simplicity.
|
||
|
* Thus, any users must take care to only insert new object numbers in ascending
|
||
|
* order.
|
||
|
*/
|
||
|
static void
|
||
|
objlist_insert(struct objlist *list, uint64_t object)
|
||
|
{
|
||
|
struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP);
|
||
|
node->object = object;
|
||
|
#ifdef ZFS_DEBUG
|
||
|
{
|
||
|
struct receive_objnode *last_object = list_tail(&list->list);
|
||
|
uint64_t last_objnum = (last_object != NULL ? last_object->object : 0);
|
||
|
ASSERT3U(node->object, >, last_objnum);
|
||
|
}
|
||
|
#endif
|
||
|
list_insert_tail(&list->list, node);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Issue the prefetch reads for any necessary indirect blocks.
|
||
|
*
|
||
|
* We use the object ignore list to tell us whether or not to issue prefetches
|
||
|
* for a given object. We do this for both correctness (in case the blocksize
|
||
|
* of an object has changed) and performance (if the object doesn't exist, don't
|
||
|
* needlessly try to issue prefetches). We also trim the list as we go through
|
||
|
* the stream to prevent it from growing to an unbounded size.
|
||
|
*
|
||
|
* The object numbers within will always be in sorted order, and any write
|
||
|
* records we see will also be in sorted order, but they're not sorted with
|
||
|
* respect to each other (i.e. we can get several object records before
|
||
|
* receiving each object's write records). As a result, once we've reached a
|
||
|
* given object number, we can safely remove any reference to lower object
|
||
|
* numbers in the ignore list. In practice, we receive up to 32 object records
|
||
|
* before receiving write records, so the list can have up to 32 nodes in it.
|
||
|
*/
|
||
|
/* ARGSUSED */
|
||
|
static void
|
||
|
receive_read_prefetch(struct receive_arg *ra,
|
||
|
uint64_t object, uint64_t offset, uint64_t length)
|
||
|
{
|
||
|
if (!objlist_exists(&ra->ignore_objlist, object)) {
|
||
|
dmu_prefetch(ra->os, object, 1, offset, length,
|
||
|
ZIO_PRIORITY_SYNC_READ);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Read records off the stream, issuing any necessary prefetches.
|
||
|
*/
|
||
|
static int
|
||
|
receive_read_record(struct receive_arg *ra)
|
||
|
{
|
||
|
int err;
|
||
|
|
||
|
switch (ra->rrd->header.drr_type) {
|
||
|
case DRR_OBJECT:
|
||
|
{
|
||
|
struct drr_object *drro = &ra->rrd->header.drr_u.drr_object;
|
||
|
uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
|
||
|
void *buf = kmem_zalloc(size, KM_SLEEP);
|
||
|
dmu_object_info_t doi;
|
||
|
|
||
|
err = receive_read_payload_and_next_header(ra, size, buf);
|
||
|
if (err != 0) {
|
||
|
kmem_free(buf, size);
|
||
|
return (err);
|
||
|
}
|
||
|
err = dmu_object_info(ra->os, drro->drr_object, &doi);
|
||
|
/*
|
||
|
* See receive_read_prefetch for an explanation why we're
|
||
|
* storing this object in the ignore_obj_list.
|
||
|
*/
|
||
|
if (err == ENOENT || err == EEXIST ||
|
||
|
(err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
|
||
|
objlist_insert(&ra->ignore_objlist, drro->drr_object);
|
||
|
err = 0;
|
||
|
}
|
||
|
return (err);
|
||
|
}
|
||
|
case DRR_FREEOBJECTS:
|
||
|
{
|
||
|
err = receive_read_payload_and_next_header(ra, 0, NULL);
|
||
|
return (err);
|
||
|
}
|
||
|
case DRR_WRITE:
|
||
|
{
|
||
|
struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write;
|
||
|
arc_buf_t *abuf;
|
||
|
boolean_t is_meta = DMU_OT_IS_METADATA(drrw->drr_type);
|
||
|
|
||
|
if (ra->raw) {
|
||
|
boolean_t byteorder = ZFS_HOST_BYTEORDER ^
|
||
|
!!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
|
||
|
ra->byteswap;
|
||
|
|
||
|
abuf = arc_loan_raw_buf(dmu_objset_spa(ra->os),
|
||
|
drrw->drr_object, byteorder, drrw->drr_salt,
|
||
|
drrw->drr_iv, drrw->drr_mac, drrw->drr_type,
|
||
|
drrw->drr_compressed_size, drrw->drr_logical_size,
|
||
|
drrw->drr_compressiontype);
|
||
|
} else if (DRR_WRITE_COMPRESSED(drrw)) {
|
||
|
ASSERT3U(drrw->drr_compressed_size, >, 0);
|
||
|
ASSERT3U(drrw->drr_logical_size, >=,
|
||
|
drrw->drr_compressed_size);
|
||
|
ASSERT(!is_meta);
|
||
|
abuf = arc_loan_compressed_buf(
|
||
|
dmu_objset_spa(ra->os),
|
||
|
drrw->drr_compressed_size, drrw->drr_logical_size,
|
||
|
drrw->drr_compressiontype);
|
||
|
} else {
|
||
|
abuf = arc_loan_buf(dmu_objset_spa(ra->os),
|
||
|
is_meta, drrw->drr_logical_size);
|
||
|
}
|
||
|
|
||
|
err = receive_read_payload_and_next_header(ra,
|
||
|
DRR_WRITE_PAYLOAD_SIZE(drrw), abuf->b_data);
|
||
|
if (err != 0) {
|
||
|
dmu_return_arcbuf(abuf);
|
||
|
return (err);
|
||
|
}
|
||
|
ra->rrd->arc_buf = abuf;
|
||
|
receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset,
|
||
|
drrw->drr_logical_size);
|
||
|
return (err);
|
||
|
}
|
||
|
case DRR_WRITE_BYREF:
|
||
|
{
|
||
|
struct drr_write_byref *drrwb =
|
||
|
&ra->rrd->header.drr_u.drr_write_byref;
|
||
|
err = receive_read_payload_and_next_header(ra, 0, NULL);
|
||
|
receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset,
|
||
|
drrwb->drr_length);
|
||
|
return (err);
|
||
|
}
|
||
|
case DRR_WRITE_EMBEDDED:
|
||
|
{
|
||
|
struct drr_write_embedded *drrwe =
|
||
|
&ra->rrd->header.drr_u.drr_write_embedded;
|
||
|
uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
|
||
|
void *buf = kmem_zalloc(size, KM_SLEEP);
|
||
|
|
||
|
err = receive_read_payload_and_next_header(ra, size, buf);
|
||
|
if (err != 0) {
|
||
|
kmem_free(buf, size);
|
||
|
return (err);
|
||
|
}
|
||
|
|
||
|
receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset,
|
||
|
drrwe->drr_length);
|
||
|
return (err);
|
||
|
}
|
||
|
case DRR_FREE:
|
||
|
{
|
||
|
/*
|
||
|
* It might be beneficial to prefetch indirect blocks here, but
|
||
|
* we don't really have the data to decide for sure.
|
||
|
*/
|
||
|
err = receive_read_payload_and_next_header(ra, 0, NULL);
|
||
|
return (err);
|
||
|
}
|
||
|
case DRR_END:
|
||
|
{
|
||
|
struct drr_end *drre = &ra->rrd->header.drr_u.drr_end;
|
||
|
if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum))
|
||
|
return (SET_ERROR(ECKSUM));
|
||
|
return (0);
|
||
|
}
|
||
|
case DRR_SPILL:
|
||
|
{
|
||
|
struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill;
|
||
|
arc_buf_t *abuf;
|
||
|
int len = DRR_SPILL_PAYLOAD_SIZE(drrs);
|
||
|
|
||
|
/* DRR_SPILL records are either raw or uncompressed */
|
||
|
if (ra->raw) {
|
||
|
boolean_t byteorder = ZFS_HOST_BYTEORDER ^
|
||
|
!!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
|
||
|
ra->byteswap;
|
||
|
|
||
|
abuf = arc_loan_raw_buf(dmu_objset_spa(ra->os),
|
||
|
dmu_objset_id(ra->os), byteorder, drrs->drr_salt,
|
||
|
drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
|
||
|
drrs->drr_compressed_size, drrs->drr_length,
|
||
|
drrs->drr_compressiontype);
|
||
|
} else {
|
||
|
abuf = arc_loan_buf(dmu_objset_spa(ra->os),
|
||
|
DMU_OT_IS_METADATA(drrs->drr_type),
|
||
|
drrs->drr_length);
|
||
|
}
|
||
|
|
||
|
err = receive_read_payload_and_next_header(ra, len,
|
||
|
abuf->b_data);
|
||
|
if (err != 0) {
|
||
|
dmu_return_arcbuf(abuf);
|
||
|
return (err);
|
||
|
}
|
||
|
ra->rrd->arc_buf = abuf;
|
||
|
return (err);
|
||
|
}
|
||
|
case DRR_OBJECT_RANGE:
|
||
|
{
|
||
|
err = receive_read_payload_and_next_header(ra, 0, NULL);
|
||
|
return (err);
|
||
|
}
|
||
|
default:
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dprintf_drr(struct receive_record_arg *rrd, int err)
|
||
|
{
|
||
|
#ifdef ZFS_DEBUG
|
||
|
switch (rrd->header.drr_type) {
|
||
|
case DRR_OBJECT:
|
||
|
{
|
||
|
struct drr_object *drro = &rrd->header.drr_u.drr_object;
|
||
|
dprintf("drr_type = OBJECT obj = %llu type = %u "
|
||
|
"bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
|
||
|
"compress = %u dn_slots = %u err = %d\n",
|
||
|
drro->drr_object, drro->drr_type, drro->drr_bonustype,
|
||
|
drro->drr_blksz, drro->drr_bonuslen,
|
||
|
drro->drr_checksumtype, drro->drr_compress,
|
||
|
drro->drr_dn_slots, err);
|
||
|
break;
|
||
|
}
|
||
|
case DRR_FREEOBJECTS:
|
||
|
{
|
||
|
struct drr_freeobjects *drrfo =
|
||
|
&rrd->header.drr_u.drr_freeobjects;
|
||
|
dprintf("drr_type = FREEOBJECTS firstobj = %llu "
|
||
|
"numobjs = %llu err = %d\n",
|
||
|
drrfo->drr_firstobj, drrfo->drr_numobjs, err);
|
||
|
break;
|
||
|
}
|
||
|
case DRR_WRITE:
|
||
|
{
|
||
|
struct drr_write *drrw = &rrd->header.drr_u.drr_write;
|
||
|
dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
|
||
|
"lsize = %llu cksumtype = %u cksumflags = %u "
|
||
|
"compress = %u psize = %llu err = %d\n",
|
||
|
drrw->drr_object, drrw->drr_type, drrw->drr_offset,
|
||
|
drrw->drr_logical_size, drrw->drr_checksumtype,
|
||
|
drrw->drr_flags, drrw->drr_compressiontype,
|
||
|
drrw->drr_compressed_size, err);
|
||
|
break;
|
||
|
}
|
||
|
case DRR_WRITE_BYREF:
|
||
|
{
|
||
|
struct drr_write_byref *drrwbr =
|
||
|
&rrd->header.drr_u.drr_write_byref;
|
||
|
dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
|
||
|
"length = %llu toguid = %llx refguid = %llx "
|
||
|
"refobject = %llu refoffset = %llu cksumtype = %u "
|
||
|
"cksumflags = %u err = %d\n",
|
||
|
drrwbr->drr_object, drrwbr->drr_offset,
|
||
|
drrwbr->drr_length, drrwbr->drr_toguid,
|
||
|
drrwbr->drr_refguid, drrwbr->drr_refobject,
|
||
|
drrwbr->drr_refoffset, drrwbr->drr_checksumtype,
|
||
|
drrwbr->drr_flags, err);
|
||
|
break;
|
||
|
}
|
||
|
case DRR_WRITE_EMBEDDED:
|
||
|
{
|
||
|
struct drr_write_embedded *drrwe =
|
||
|
&rrd->header.drr_u.drr_write_embedded;
|
||
|
dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
|
||
|
"length = %llu compress = %u etype = %u lsize = %u "
|
||
|
"psize = %u err = %d\n",
|
||
|
drrwe->drr_object, drrwe->drr_offset, drrwe->drr_length,
|
||
|
drrwe->drr_compression, drrwe->drr_etype,
|
||
|
drrwe->drr_lsize, drrwe->drr_psize, err);
|
||
|
break;
|
||
|
}
|
||
|
case DRR_FREE:
|
||
|
{
|
||
|
struct drr_free *drrf = &rrd->header.drr_u.drr_free;
|
||
|
dprintf("drr_type = FREE obj = %llu offset = %llu "
|
||
|
"length = %lld err = %d\n",
|
||
|
drrf->drr_object, drrf->drr_offset, drrf->drr_length,
|
||
|
err);
|
||
|
break;
|
||
|
}
|
||
|
case DRR_SPILL:
|
||
|
{
|
||
|
struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
|
||
|
dprintf("drr_type = SPILL obj = %llu length = %llu "
|
||
|
"err = %d\n", drrs->drr_object, drrs->drr_length, err);
|
||
|
break;
|
||
|
}
|
||
|
default:
|
||
|
return;
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Commit the records to the pool.
|
||
|
*/
|
||
|
static int
|
||
|
receive_process_record(struct receive_writer_arg *rwa,
|
||
|
struct receive_record_arg *rrd)
|
||
|
{
|
||
|
int err;
|
||
|
|
||
|
/* Processing in order, therefore bytes_read should be increasing. */
|
||
|
ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
|
||
|
rwa->bytes_read = rrd->bytes_read;
|
||
|
|
||
|
switch (rrd->header.drr_type) {
|
||
|
case DRR_OBJECT:
|
||
|
{
|
||
|
struct drr_object *drro = &rrd->header.drr_u.drr_object;
|
||
|
err = receive_object(rwa, drro, rrd->payload);
|
||
|
kmem_free(rrd->payload, rrd->payload_size);
|
||
|
rrd->payload = NULL;
|
||
|
break;
|
||
|
}
|
||
|
case DRR_FREEOBJECTS:
|
||
|
{
|
||
|
struct drr_freeobjects *drrfo =
|
||
|
&rrd->header.drr_u.drr_freeobjects;
|
||
|
err = receive_freeobjects(rwa, drrfo);
|
||
|
break;
|
||
|
}
|
||
|
case DRR_WRITE:
|
||
|
{
|
||
|
struct drr_write *drrw = &rrd->header.drr_u.drr_write;
|
||
|
err = receive_write(rwa, drrw, rrd->arc_buf);
|
||
|
/* if receive_write() is successful, it consumes the arc_buf */
|
||
|
if (err != 0)
|
||
|
dmu_return_arcbuf(rrd->arc_buf);
|
||
|
rrd->arc_buf = NULL;
|
||
|
rrd->payload = NULL;
|
||
|
break;
|
||
|
}
|
||
|
case DRR_WRITE_BYREF:
|
||
|
{
|
||
|
struct drr_write_byref *drrwbr =
|
||
|
&rrd->header.drr_u.drr_write_byref;
|
||
|
err = receive_write_byref(rwa, drrwbr);
|
||
|
break;
|
||
|
}
|
||
|
case DRR_WRITE_EMBEDDED:
|
||
|
{
|
||
|
struct drr_write_embedded *drrwe =
|
||
|
&rrd->header.drr_u.drr_write_embedded;
|
||
|
err = receive_write_embedded(rwa, drrwe, rrd->payload);
|
||
|
kmem_free(rrd->payload, rrd->payload_size);
|
||
|
rrd->payload = NULL;
|
||
|
break;
|
||
|
}
|
||
|
case DRR_FREE:
|
||
|
{
|
||
|
struct drr_free *drrf = &rrd->header.drr_u.drr_free;
|
||
|
err = receive_free(rwa, drrf);
|
||
|
break;
|
||
|
}
|
||
|
case DRR_SPILL:
|
||
|
{
|
||
|
struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
|
||
|
err = receive_spill(rwa, drrs, rrd->arc_buf);
|
||
|
/* if receive_spill() is successful, it consumes the arc_buf */
|
||
|
if (err != 0)
|
||
|
dmu_return_arcbuf(rrd->arc_buf);
|
||
|
rrd->arc_buf = NULL;
|
||
|
rrd->payload = NULL;
|
||
|
break;
|
||
|
}
|
||
|
case DRR_OBJECT_RANGE:
|
||
|
{
|
||
|
struct drr_object_range *drror =
|
||
|
&rrd->header.drr_u.drr_object_range;
|
||
|
return (receive_object_range(rwa, drror));
|
||
|
}
|
||
|
default:
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
}
|
||
|
|
||
|
if (err != 0)
|
||
|
dprintf_drr(rrd, err);
|
||
|
|
||
|
return (err);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* dmu_recv_stream's worker thread; pull records off the queue, and then call
|
||
|
* receive_process_record When we're done, signal the main thread and exit.
|
||
|
*/
|
||
|
static void
|
||
|
receive_writer_thread(void *arg)
|
||
|
{
|
||
|
struct receive_writer_arg *rwa = arg;
|
||
|
struct receive_record_arg *rrd;
|
||
|
fstrans_cookie_t cookie = spl_fstrans_mark();
|
||
|
|
||
|
for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
|
||
|
rrd = bqueue_dequeue(&rwa->q)) {
|
||
|
/*
|
||
|
* If there's an error, the main thread will stop putting things
|
||
|
* on the queue, but we need to clear everything in it before we
|
||
|
* can exit.
|
||
|
*/
|
||
|
if (rwa->err == 0) {
|
||
|
rwa->err = receive_process_record(rwa, rrd);
|
||
|
} else if (rrd->arc_buf != NULL) {
|
||
|
dmu_return_arcbuf(rrd->arc_buf);
|
||
|
rrd->arc_buf = NULL;
|
||
|
rrd->payload = NULL;
|
||
|
} else if (rrd->payload != NULL) {
|
||
|
kmem_free(rrd->payload, rrd->payload_size);
|
||
|
rrd->payload = NULL;
|
||
|
}
|
||
|
kmem_free(rrd, sizeof (*rrd));
|
||
|
}
|
||
|
kmem_free(rrd, sizeof (*rrd));
|
||
|
mutex_enter(&rwa->mutex);
|
||
|
rwa->done = B_TRUE;
|
||
|
cv_signal(&rwa->cv);
|
||
|
mutex_exit(&rwa->mutex);
|
||
|
spl_fstrans_unmark(cookie);
|
||
|
thread_exit();
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
resume_check(struct receive_arg *ra, nvlist_t *begin_nvl)
|
||
|
{
|
||
|
uint64_t val;
|
||
|
objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset;
|
||
|
uint64_t dsobj = dmu_objset_id(ra->os);
|
||
|
uint64_t resume_obj, resume_off;
|
||
|
|
||
|
if (nvlist_lookup_uint64(begin_nvl,
|
||
|
"resume_object", &resume_obj) != 0 ||
|
||
|
nvlist_lookup_uint64(begin_nvl,
|
||
|
"resume_offset", &resume_off) != 0) {
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
}
|
||
|
VERIFY0(zap_lookup(mos, dsobj,
|
||
|
DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
|
||
|
if (resume_obj != val)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
VERIFY0(zap_lookup(mos, dsobj,
|
||
|
DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
|
||
|
if (resume_off != val)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Read in the stream's records, one by one, and apply them to the pool. There
|
||
|
* are two threads involved; the thread that calls this function will spin up a
|
||
|
* worker thread, read the records off the stream one by one, and issue
|
||
|
* prefetches for any necessary indirect blocks. It will then push the records
|
||
|
* onto an internal blocking queue. The worker thread will pull the records off
|
||
|
* the queue, and actually write the data into the DMU. This way, the worker
|
||
|
* thread doesn't have to wait for reads to complete, since everything it needs
|
||
|
* (the indirect blocks) will be prefetched.
|
||
|
*
|
||
|
* NB: callers *must* call dmu_recv_end() if this succeeds.
|
||
|
*/
|
||
|
int
|
||
|
dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp,
|
||
|
int cleanup_fd, uint64_t *action_handlep)
|
||
|
{
|
||
|
int err = 0;
|
||
|
struct receive_arg *ra;
|
||
|
struct receive_writer_arg *rwa;
|
||
|
int featureflags;
|
||
|
uint32_t payloadlen;
|
||
|
void *payload;
|
||
|
nvlist_t *begin_nvl = NULL;
|
||
|
|
||
|
ra = kmem_zalloc(sizeof (*ra), KM_SLEEP);
|
||
|
rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
|
||
|
|
||
|
ra->byteswap = drc->drc_byteswap;
|
||
|
ra->raw = drc->drc_raw;
|
||
|
ra->cksum = drc->drc_cksum;
|
||
|
ra->vp = vp;
|
||
|
ra->voff = *voffp;
|
||
|
|
||
|
if (dsl_dataset_is_zapified(drc->drc_ds)) {
|
||
|
(void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
|
||
|
drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
|
||
|
sizeof (ra->bytes_read), 1, &ra->bytes_read);
|
||
|
}
|
||
|
|
||
|
objlist_create(&ra->ignore_objlist);
|
||
|
|
||
|
/* these were verified in dmu_recv_begin */
|
||
|
ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
|
||
|
DMU_SUBSTREAM);
|
||
|
ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
|
||
|
|
||
|
/*
|
||
|
* Open the objset we are modifying.
|
||
|
*/
|
||
|
VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra->os));
|
||
|
|
||
|
ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
|
||
|
|
||
|
featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
|
||
|
ra->featureflags = featureflags;
|
||
|
|
||
|
ASSERT0(ra->os->os_encrypted &&
|
||
|
(featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
|
||
|
|
||
|
/* if this stream is dedup'ed, set up the avl tree for guid mapping */
|
||
|
if (featureflags & DMU_BACKUP_FEATURE_DEDUP) {
|
||
|
minor_t minor;
|
||
|
|
||
|
if (cleanup_fd == -1) {
|
||
|
err = SET_ERROR(EBADF);
|
||
|
goto out;
|
||
|
}
|
||
|
err = zfs_onexit_fd_hold(cleanup_fd, &minor);
|
||
|
if (err != 0) {
|
||
|
cleanup_fd = -1;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (*action_handlep == 0) {
|
||
|
rwa->guid_to_ds_map =
|
||
|
kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
|
||
|
avl_create(rwa->guid_to_ds_map, guid_compare,
|
||
|
sizeof (guid_map_entry_t),
|
||
|
offsetof(guid_map_entry_t, avlnode));
|
||
|
err = zfs_onexit_add_cb(minor,
|
||
|
free_guid_map_onexit, rwa->guid_to_ds_map,
|
||
|
action_handlep);
|
||
|
if (err != 0)
|
||
|
goto out;
|
||
|
} else {
|
||
|
err = zfs_onexit_cb_data(minor, *action_handlep,
|
||
|
(void **)&rwa->guid_to_ds_map);
|
||
|
if (err != 0)
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
drc->drc_guid_to_ds_map = rwa->guid_to_ds_map;
|
||
|
}
|
||
|
|
||
|
payloadlen = drc->drc_drr_begin->drr_payloadlen;
|
||
|
payload = NULL;
|
||
|
if (payloadlen != 0)
|
||
|
payload = kmem_alloc(payloadlen, KM_SLEEP);
|
||
|
|
||
|
err = receive_read_payload_and_next_header(ra, payloadlen, payload);
|
||
|
if (err != 0) {
|
||
|
if (payloadlen != 0)
|
||
|
kmem_free(payload, payloadlen);
|
||
|
goto out;
|
||
|
}
|
||
|
if (payloadlen != 0) {
|
||
|
err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP);
|
||
|
kmem_free(payload, payloadlen);
|
||
|
if (err != 0)
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/* handle DSL encryption key payload */
|
||
|
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
|
||
|
nvlist_t *keynvl = NULL;
|
||
|
|
||
|
ASSERT(ra->os->os_encrypted);
|
||
|
ASSERT(drc->drc_raw);
|
||
|
|
||
|
err = nvlist_lookup_nvlist(begin_nvl, "crypt_keydata", &keynvl);
|
||
|
if (err != 0)
|
||
|
goto out;
|
||
|
|
||
|
/*
|
||
|
* If this is a new dataset we set the key immediately.
|
||
|
* Otherwise we don't want to change the key until we
|
||
|
* are sure the rest of the receive succeeded so we stash
|
||
|
* the keynvl away until then.
|
||
|
*/
|
||
|
err = dsl_crypto_recv_raw(spa_name(ra->os->os_spa),
|
||
|
drc->drc_ds->ds_object, drc->drc_drrb->drr_type,
|
||
|
keynvl, drc->drc_newfs);
|
||
|
if (err != 0)
|
||
|
goto out;
|
||
|
|
||
|
if (!drc->drc_newfs)
|
||
|
drc->drc_keynvl = fnvlist_dup(keynvl);
|
||
|
}
|
||
|
|
||
|
if (featureflags & DMU_BACKUP_FEATURE_RESUMING) {
|
||
|
err = resume_check(ra, begin_nvl);
|
||
|
if (err != 0)
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
(void) bqueue_init(&rwa->q,
|
||
|
MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
|
||
|
offsetof(struct receive_record_arg, node));
|
||
|
cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
|
||
|
mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
|
||
|
rwa->os = ra->os;
|
||
|
rwa->byteswap = drc->drc_byteswap;
|
||
|
rwa->resumable = drc->drc_resumable;
|
||
|
rwa->raw = drc->drc_raw;
|
||
|
rwa->os->os_raw_receive = drc->drc_raw;
|
||
|
|
||
|
(void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
|
||
|
TS_RUN, minclsyspri);
|
||
|
/*
|
||
|
* We're reading rwa->err without locks, which is safe since we are the
|
||
|
* only reader, and the worker thread is the only writer. It's ok if we
|
||
|
* miss a write for an iteration or two of the loop, since the writer
|
||
|
* thread will keep freeing records we send it until we send it an eos
|
||
|
* marker.
|
||
|
*
|
||
|
* We can leave this loop in 3 ways: First, if rwa->err is
|
||
|
* non-zero. In that case, the writer thread will free the rrd we just
|
||
|
* pushed. Second, if we're interrupted; in that case, either it's the
|
||
|
* first loop and ra->rrd was never allocated, or it's later and ra->rrd
|
||
|
* has been handed off to the writer thread who will free it. Finally,
|
||
|
* if receive_read_record fails or we're at the end of the stream, then
|
||
|
* we free ra->rrd and exit.
|
||
|
*/
|
||
|
while (rwa->err == 0) {
|
||
|
if (issig(JUSTLOOKING) && issig(FORREAL)) {
|
||
|
err = SET_ERROR(EINTR);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
ASSERT3P(ra->rrd, ==, NULL);
|
||
|
ra->rrd = ra->next_rrd;
|
||
|
ra->next_rrd = NULL;
|
||
|
/* Allocates and loads header into ra->next_rrd */
|
||
|
err = receive_read_record(ra);
|
||
|
|
||
|
if (ra->rrd->header.drr_type == DRR_END || err != 0) {
|
||
|
kmem_free(ra->rrd, sizeof (*ra->rrd));
|
||
|
ra->rrd = NULL;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
bqueue_enqueue(&rwa->q, ra->rrd,
|
||
|
sizeof (struct receive_record_arg) + ra->rrd->payload_size);
|
||
|
ra->rrd = NULL;
|
||
|
}
|
||
|
if (ra->next_rrd == NULL)
|
||
|
ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
|
||
|
ra->next_rrd->eos_marker = B_TRUE;
|
||
|
bqueue_enqueue(&rwa->q, ra->next_rrd, 1);
|
||
|
|
||
|
mutex_enter(&rwa->mutex);
|
||
|
while (!rwa->done) {
|
||
|
cv_wait(&rwa->cv, &rwa->mutex);
|
||
|
}
|
||
|
mutex_exit(&rwa->mutex);
|
||
|
|
||
|
/*
|
||
|
* If we are receiving a full stream as a clone, all object IDs which
|
||
|
* are greater than the maximum ID referenced in the stream are
|
||
|
* by definition unused and must be freed.
|
||
|
*/
|
||
|
if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
|
||
|
uint64_t obj = rwa->max_object + 1;
|
||
|
int free_err = 0;
|
||
|
int next_err = 0;
|
||
|
|
||
|
while (next_err == 0) {
|
||
|
free_err = dmu_free_long_object(rwa->os, obj);
|
||
|
if (free_err != 0 && free_err != ENOENT)
|
||
|
break;
|
||
|
|
||
|
next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
|
||
|
}
|
||
|
|
||
|
if (err == 0) {
|
||
|
if (free_err != 0 && free_err != ENOENT)
|
||
|
err = free_err;
|
||
|
else if (next_err != ESRCH)
|
||
|
err = next_err;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cv_destroy(&rwa->cv);
|
||
|
mutex_destroy(&rwa->mutex);
|
||
|
bqueue_destroy(&rwa->q);
|
||
|
if (err == 0)
|
||
|
err = rwa->err;
|
||
|
|
||
|
out:
|
||
|
nvlist_free(begin_nvl);
|
||
|
if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1))
|
||
|
zfs_onexit_fd_rele(cleanup_fd);
|
||
|
|
||
|
if (err != 0) {
|
||
|
/*
|
||
|
* Clean up references. If receive is not resumable,
|
||
|
* destroy what we created, so we don't leave it in
|
||
|
* the inconsistent state.
|
||
|
*/
|
||
|
dmu_recv_cleanup_ds(drc);
|
||
|
nvlist_free(drc->drc_keynvl);
|
||
|
}
|
||
|
|
||
|
*voffp = ra->voff;
|
||
|
objlist_destroy(&ra->ignore_objlist);
|
||
|
kmem_free(ra, sizeof (*ra));
|
||
|
kmem_free(rwa, sizeof (*rwa));
|
||
|
return (err);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
dmu_recv_end_check(void *arg, dmu_tx_t *tx)
|
||
|
{
|
||
|
dmu_recv_cookie_t *drc = arg;
|
||
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
||
|
int error;
|
||
|
|
||
|
ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
|
||
|
|
||
|
if (!drc->drc_newfs) {
|
||
|
dsl_dataset_t *origin_head;
|
||
|
|
||
|
error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
|
||
|
if (error != 0)
|
||
|
return (error);
|
||
|
if (drc->drc_force) {
|
||
|
/*
|
||
|
* We will destroy any snapshots in tofs (i.e. before
|
||
|
* origin_head) that are after the origin (which is
|
||
|
* the snap before drc_ds, because drc_ds can not
|
||
|
* have any snaps of its own).
|
||
|
*/
|
||
|
uint64_t obj;
|
||
|
|
||
|
obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
|
||
|
while (obj !=
|
||
|
dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
|
||
|
dsl_dataset_t *snap;
|
||
|
error = dsl_dataset_hold_obj(dp, obj, FTAG,
|
||
|
&snap);
|
||
|
if (error != 0)
|
||
|
break;
|
||
|
if (snap->ds_dir != origin_head->ds_dir)
|
||
|
error = SET_ERROR(EINVAL);
|
||
|
if (error == 0) {
|
||
|
error = dsl_destroy_snapshot_check_impl(
|
||
|
snap, B_FALSE);
|
||
|
}
|
||
|
obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
|
||
|
dsl_dataset_rele(snap, FTAG);
|
||
|
if (error != 0)
|
||
|
break;
|
||
|
}
|
||
|
if (error != 0) {
|
||
|
dsl_dataset_rele(origin_head, FTAG);
|
||
|
return (error);
|
||
|
}
|
||
|
}
|
||
|
if (drc->drc_keynvl != NULL) {
|
||
|
error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
|
||
|
drc->drc_keynvl, tx);
|
||
|
if (error != 0) {
|
||
|
dsl_dataset_rele(origin_head, FTAG);
|
||
|
return (error);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
|
||
|
origin_head, drc->drc_force, drc->drc_owner, tx);
|
||
|
if (error != 0) {
|
||
|
dsl_dataset_rele(origin_head, FTAG);
|
||
|
return (error);
|
||
|
}
|
||
|
error = dsl_dataset_snapshot_check_impl(origin_head,
|
||
|
drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
|
||
|
dsl_dataset_rele(origin_head, FTAG);
|
||
|
if (error != 0)
|
||
|
return (error);
|
||
|
|
||
|
error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
|
||
|
} else {
|
||
|
error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
|
||
|
drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
|
||
|
}
|
||
|
return (error);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
|
||
|
{
|
||
|
dmu_recv_cookie_t *drc = arg;
|
||
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
||
|
boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
|
||
|
|
||
|
spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
|
||
|
tx, "snap=%s", drc->drc_tosnap);
|
||
|
drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
|
||
|
|
||
|
if (!drc->drc_newfs) {
|
||
|
dsl_dataset_t *origin_head;
|
||
|
|
||
|
VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
|
||
|
&origin_head));
|
||
|
|
||
|
if (drc->drc_force) {
|
||
|
/*
|
||
|
* Destroy any snapshots of drc_tofs (origin_head)
|
||
|
* after the origin (the snap before drc_ds).
|
||
|
*/
|
||
|
uint64_t obj;
|
||
|
|
||
|
obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
|
||
|
while (obj !=
|
||
|
dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
|
||
|
dsl_dataset_t *snap;
|
||
|
VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
|
||
|
&snap));
|
||
|
ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
|
||
|
obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
|
||
|
dsl_destroy_snapshot_sync_impl(snap,
|
||
|
B_FALSE, tx);
|
||
|
dsl_dataset_rele(snap, FTAG);
|
||
|
}
|
||
|
}
|
||
|
if (drc->drc_keynvl != NULL) {
|
||
|
dsl_crypto_recv_raw_key_sync(drc->drc_ds,
|
||
|
drc->drc_keynvl, tx);
|
||
|
nvlist_free(drc->drc_keynvl);
|
||
|
drc->drc_keynvl = NULL;
|
||
|
}
|
||
|
|
||
|
VERIFY3P(drc->drc_ds->ds_prev, ==, origin_head->ds_prev);
|
||
|
|
||
|
dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
|
||
|
origin_head, tx);
|
||
|
dsl_dataset_snapshot_sync_impl(origin_head,
|
||
|
drc->drc_tosnap, tx);
|
||
|
|
||
|
/* set snapshot's creation time and guid */
|
||
|
dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
|
||
|
dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
|
||
|
drc->drc_drrb->drr_creation_time;
|
||
|
dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
|
||
|
drc->drc_drrb->drr_toguid;
|
||
|
dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
|
||
|
~DS_FLAG_INCONSISTENT;
|
||
|
|
||
|
dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
|
||
|
dsl_dataset_phys(origin_head)->ds_flags &=
|
||
|
~DS_FLAG_INCONSISTENT;
|
||
|
|
||
|
drc->drc_newsnapobj =
|
||
|
dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
|
||
|
|
||
|
dsl_dataset_rele(origin_head, FTAG);
|
||
|
dsl_destroy_head_sync_impl(drc->drc_ds, tx);
|
||
|
|
||
|
if (drc->drc_owner != NULL)
|
||
|
VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
|
||
|
} else {
|
||
|
dsl_dataset_t *ds = drc->drc_ds;
|
||
|
|
||
|
dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
|
||
|
|
||
|
/* set snapshot's creation time and guid */
|
||
|
dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
|
||
|
dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
|
||
|
drc->drc_drrb->drr_creation_time;
|
||
|
dsl_dataset_phys(ds->ds_prev)->ds_guid =
|
||
|
drc->drc_drrb->drr_toguid;
|
||
|
dsl_dataset_phys(ds->ds_prev)->ds_flags &=
|
||
|
~DS_FLAG_INCONSISTENT;
|
||
|
|
||
|
dmu_buf_will_dirty(ds->ds_dbuf, tx);
|
||
|
dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
|
||
|
if (dsl_dataset_has_resume_receive_state(ds)) {
|
||
|
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
|
||
|
DS_FIELD_RESUME_FROMGUID, tx);
|
||
|
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
|
||
|
DS_FIELD_RESUME_OBJECT, tx);
|
||
|
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
|
||
|
DS_FIELD_RESUME_OFFSET, tx);
|
||
|
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
|
||
|
DS_FIELD_RESUME_BYTES, tx);
|
||
|
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
|
||
|
DS_FIELD_RESUME_TOGUID, tx);
|
||
|
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
|
||
|
DS_FIELD_RESUME_TONAME, tx);
|
||
|
}
|
||
|
drc->drc_newsnapobj =
|
||
|
dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
|
||
|
}
|
||
|
zvol_create_minors(dp->dp_spa, drc->drc_tofs, B_TRUE);
|
||
|
|
||
|
/*
|
||
|
* Release the hold from dmu_recv_begin. This must be done before
|
||
|
* we return to open context, so that when we free the dataset's dnode
|
||
|
* we can evict its bonus buffer. Since the dataset may be destroyed
|
||
|
* at this point (and therefore won't have a valid pointer to the spa)
|
||
|
* we release the key mapping manually here while we do have a valid
|
||
|
* pointer, if it exists.
|
||
|
*/
|
||
|
if (!drc->drc_raw && encrypted) {
|
||
|
(void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
|
||
|
drc->drc_ds->ds_object, drc->drc_ds);
|
||
|
}
|
||
|
dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
|
||
|
drc->drc_ds = NULL;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj,
|
||
|
boolean_t raw)
|
||
|
{
|
||
|
dsl_pool_t *dp;
|
||
|
dsl_dataset_t *snapds;
|
||
|
guid_map_entry_t *gmep;
|
||
|
objset_t *os;
|
||
|
ds_hold_flags_t dsflags = (raw) ? 0 : DS_HOLD_FLAG_DECRYPT;
|
||
|
int err;
|
||
|
|
||
|
ASSERT(guid_map != NULL);
|
||
|
|
||
|
err = dsl_pool_hold(name, FTAG, &dp);
|
||
|
if (err != 0)
|
||
|
return (err);
|
||
|
gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP);
|
||
|
err = dsl_dataset_own_obj(dp, snapobj, dsflags, gmep, &snapds);
|
||
|
if (err == 0) {
|
||
|
/*
|
||
|
* If this is a deduplicated raw send stream, we need
|
||
|
* to make sure that we can still read raw blocks from
|
||
|
* earlier datasets in the stream, so we set the
|
||
|
* os_raw_receive flag now.
|
||
|
*/
|
||
|
if (raw) {
|
||
|
err = dmu_objset_from_ds(snapds, &os);
|
||
|
if (err != 0) {
|
||
|
dsl_dataset_disown(snapds, dsflags, FTAG);
|
||
|
dsl_pool_rele(dp, FTAG);
|
||
|
kmem_free(gmep, sizeof (*gmep));
|
||
|
return (err);
|
||
|
}
|
||
|
os->os_raw_receive = B_TRUE;
|
||
|
}
|
||
|
|
||
|
gmep->raw = raw;
|
||
|
gmep->guid = dsl_dataset_phys(snapds)->ds_guid;
|
||
|
gmep->gme_ds = snapds;
|
||
|
avl_add(guid_map, gmep);
|
||
|
} else {
|
||
|
kmem_free(gmep, sizeof (*gmep));
|
||
|
}
|
||
|
|
||
|
dsl_pool_rele(dp, FTAG);
|
||
|
return (err);
|
||
|
}
|
||
|
|
||
|
static int dmu_recv_end_modified_blocks = 3;
|
||
|
|
||
|
static int
|
||
|
dmu_recv_existing_end(dmu_recv_cookie_t *drc)
|
||
|
{
|
||
|
#ifdef _KERNEL
|
||
|
/*
|
||
|
* We will be destroying the ds; make sure its origin is unmounted if
|
||
|
* necessary.
|
||
|
*/
|
||
|
char name[ZFS_MAX_DATASET_NAME_LEN];
|
||
|
dsl_dataset_name(drc->drc_ds, name);
|
||
|
zfs_destroy_unmount_origin(name);
|
||
|
#endif
|
||
|
|
||
|
return (dsl_sync_task(drc->drc_tofs,
|
||
|
dmu_recv_end_check, dmu_recv_end_sync, drc,
|
||
|
dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
dmu_recv_new_end(dmu_recv_cookie_t *drc)
|
||
|
{
|
||
|
return (dsl_sync_task(drc->drc_tofs,
|
||
|
dmu_recv_end_check, dmu_recv_end_sync, drc,
|
||
|
dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
|
||
|
}
|
||
|
|
||
|
int
|
||
|
dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
|
||
|
{
|
||
|
int error;
|
||
|
|
||
|
drc->drc_owner = owner;
|
||
|
|
||
|
if (drc->drc_newfs)
|
||
|
error = dmu_recv_new_end(drc);
|
||
|
else
|
||
|
error = dmu_recv_existing_end(drc);
|
||
|
|
||
|
if (error != 0) {
|
||
|
dmu_recv_cleanup_ds(drc);
|
||
|
nvlist_free(drc->drc_keynvl);
|
||
|
} else if (drc->drc_guid_to_ds_map != NULL) {
|
||
|
(void) add_ds_to_guidmap(drc->drc_tofs, drc->drc_guid_to_ds_map,
|
||
|
drc->drc_newsnapobj, drc->drc_raw);
|
||
|
}
|
||
|
return (error);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Return TRUE if this objset is currently being received into.
|
||
|
*/
|
||
|
boolean_t
|
||
|
dmu_objset_is_receiving(objset_t *os)
|
||
|
{
|
||
|
return (os->os_dsl_dataset != NULL &&
|
||
|
os->os_dsl_dataset->ds_owner == dmu_recv_tag);
|
||
|
}
|
||
|
|
||
|
#if defined(_KERNEL)
|
||
|
module_param(zfs_recv_queue_length, int, 0644);
|
||
|
MODULE_PARM_DESC(zfs_recv_queue_length, "Maximum receive queue length");
|
||
|
#endif
|