696 lines
18 KiB
C
696 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Test for s390x CMMA migration
|
|
*
|
|
* Copyright IBM Corp. 2023
|
|
*
|
|
* Authors:
|
|
* Nico Boehr <nrb@linux.ibm.com>
|
|
*/
|
|
|
|
#define _GNU_SOURCE /* for program_invocation_short_name */
|
|
#include <fcntl.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/ioctl.h>
|
|
|
|
#include "test_util.h"
|
|
#include "kvm_util.h"
|
|
#include "kselftest.h"
|
|
|
|
#define MAIN_PAGE_COUNT 512
|
|
|
|
#define TEST_DATA_PAGE_COUNT 512
|
|
#define TEST_DATA_MEMSLOT 1
|
|
#define TEST_DATA_START_GFN 4096
|
|
|
|
#define TEST_DATA_TWO_PAGE_COUNT 256
|
|
#define TEST_DATA_TWO_MEMSLOT 2
|
|
#define TEST_DATA_TWO_START_GFN 8192
|
|
|
|
static char cmma_value_buf[MAIN_PAGE_COUNT + TEST_DATA_PAGE_COUNT];
|
|
|
|
/**
|
|
* Dirty CMMA attributes of exactly one page in the TEST_DATA memslot,
|
|
* so use_cmma goes on and the CMMA related ioctls do something.
|
|
*/
|
|
static void guest_do_one_essa(void)
|
|
{
|
|
asm volatile(
|
|
/* load TEST_DATA_START_GFN into r1 */
|
|
" llilf 1,%[start_gfn]\n"
|
|
/* calculate the address from the gfn */
|
|
" sllg 1,1,12(0)\n"
|
|
/* set the first page in TEST_DATA memslot to STABLE */
|
|
" .insn rrf,0xb9ab0000,2,1,1,0\n"
|
|
/* hypercall */
|
|
" diag 0,0,0x501\n"
|
|
"0: j 0b"
|
|
:
|
|
: [start_gfn] "L"(TEST_DATA_START_GFN)
|
|
: "r1", "r2", "memory", "cc"
|
|
);
|
|
}
|
|
|
|
/**
|
|
* Touch CMMA attributes of all pages in TEST_DATA memslot. Set them to stable
|
|
* state.
|
|
*/
|
|
static void guest_dirty_test_data(void)
|
|
{
|
|
asm volatile(
|
|
/* r1 = TEST_DATA_START_GFN */
|
|
" xgr 1,1\n"
|
|
" llilf 1,%[start_gfn]\n"
|
|
/* r5 = TEST_DATA_PAGE_COUNT */
|
|
" lghi 5,%[page_count]\n"
|
|
/* r5 += r1 */
|
|
"2: agfr 5,1\n"
|
|
/* r2 = r1 << 12 */
|
|
"1: sllg 2,1,12(0)\n"
|
|
/* essa(r4, r2, SET_STABLE) */
|
|
" .insn rrf,0xb9ab0000,4,2,1,0\n"
|
|
/* i++ */
|
|
" agfi 1,1\n"
|
|
/* if r1 < r5 goto 1 */
|
|
" cgrjl 1,5,1b\n"
|
|
/* hypercall */
|
|
" diag 0,0,0x501\n"
|
|
"0: j 0b"
|
|
:
|
|
: [start_gfn] "L"(TEST_DATA_START_GFN),
|
|
[page_count] "L"(TEST_DATA_PAGE_COUNT)
|
|
:
|
|
/* the counter in our loop over the pages */
|
|
"r1",
|
|
/* the calculated page physical address */
|
|
"r2",
|
|
/* ESSA output register */
|
|
"r4",
|
|
/* last page */
|
|
"r5",
|
|
"cc", "memory"
|
|
);
|
|
}
|
|
|
|
static void create_main_memslot(struct kvm_vm *vm)
|
|
{
|
|
int i;
|
|
|
|
vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, MAIN_PAGE_COUNT, 0);
|
|
/* set the array of memslots to zero like __vm_create does */
|
|
for (i = 0; i < NR_MEM_REGIONS; i++)
|
|
vm->memslots[i] = 0;
|
|
}
|
|
|
|
static void create_test_memslot(struct kvm_vm *vm)
|
|
{
|
|
vm_userspace_mem_region_add(vm,
|
|
VM_MEM_SRC_ANONYMOUS,
|
|
TEST_DATA_START_GFN << vm->page_shift,
|
|
TEST_DATA_MEMSLOT,
|
|
TEST_DATA_PAGE_COUNT,
|
|
0
|
|
);
|
|
vm->memslots[MEM_REGION_TEST_DATA] = TEST_DATA_MEMSLOT;
|
|
}
|
|
|
|
static void create_memslots(struct kvm_vm *vm)
|
|
{
|
|
/*
|
|
* Our VM has the following memory layout:
|
|
* +------+---------------------------+
|
|
* | GFN | Memslot |
|
|
* +------+---------------------------+
|
|
* | 0 | |
|
|
* | ... | MAIN (Code, Stack, ...) |
|
|
* | 511 | |
|
|
* +------+---------------------------+
|
|
* | 4096 | |
|
|
* | ... | TEST_DATA |
|
|
* | 4607 | |
|
|
* +------+---------------------------+
|
|
*/
|
|
create_main_memslot(vm);
|
|
create_test_memslot(vm);
|
|
}
|
|
|
|
static void finish_vm_setup(struct kvm_vm *vm)
|
|
{
|
|
struct userspace_mem_region *slot0;
|
|
|
|
kvm_vm_elf_load(vm, program_invocation_name);
|
|
|
|
slot0 = memslot2region(vm, 0);
|
|
ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
|
|
|
|
kvm_arch_vm_post_create(vm);
|
|
}
|
|
|
|
static struct kvm_vm *create_vm_two_memslots(void)
|
|
{
|
|
struct kvm_vm *vm;
|
|
|
|
vm = vm_create_barebones();
|
|
|
|
create_memslots(vm);
|
|
|
|
finish_vm_setup(vm);
|
|
|
|
return vm;
|
|
}
|
|
|
|
static void enable_cmma(struct kvm_vm *vm)
|
|
{
|
|
int r;
|
|
|
|
r = __kvm_device_attr_set(vm->fd, KVM_S390_VM_MEM_CTRL, KVM_S390_VM_MEM_ENABLE_CMMA, NULL);
|
|
TEST_ASSERT(!r, "enabling cmma failed r=%d errno=%d", r, errno);
|
|
}
|
|
|
|
static void enable_dirty_tracking(struct kvm_vm *vm)
|
|
{
|
|
vm_mem_region_set_flags(vm, 0, KVM_MEM_LOG_DIRTY_PAGES);
|
|
vm_mem_region_set_flags(vm, TEST_DATA_MEMSLOT, KVM_MEM_LOG_DIRTY_PAGES);
|
|
}
|
|
|
|
static int __enable_migration_mode(struct kvm_vm *vm)
|
|
{
|
|
return __kvm_device_attr_set(vm->fd,
|
|
KVM_S390_VM_MIGRATION,
|
|
KVM_S390_VM_MIGRATION_START,
|
|
NULL
|
|
);
|
|
}
|
|
|
|
static void enable_migration_mode(struct kvm_vm *vm)
|
|
{
|
|
int r = __enable_migration_mode(vm);
|
|
|
|
TEST_ASSERT(!r, "enabling migration mode failed r=%d errno=%d", r, errno);
|
|
}
|
|
|
|
static bool is_migration_mode_on(struct kvm_vm *vm)
|
|
{
|
|
u64 out;
|
|
int r;
|
|
|
|
r = __kvm_device_attr_get(vm->fd,
|
|
KVM_S390_VM_MIGRATION,
|
|
KVM_S390_VM_MIGRATION_STATUS,
|
|
&out
|
|
);
|
|
TEST_ASSERT(!r, "getting migration mode status failed r=%d errno=%d", r, errno);
|
|
return out;
|
|
}
|
|
|
|
static int vm_get_cmma_bits(struct kvm_vm *vm, u64 flags, int *errno_out)
|
|
{
|
|
struct kvm_s390_cmma_log args;
|
|
int rc;
|
|
|
|
errno = 0;
|
|
|
|
args = (struct kvm_s390_cmma_log){
|
|
.start_gfn = 0,
|
|
.count = sizeof(cmma_value_buf),
|
|
.flags = flags,
|
|
.values = (__u64)&cmma_value_buf[0]
|
|
};
|
|
rc = __vm_ioctl(vm, KVM_S390_GET_CMMA_BITS, &args);
|
|
|
|
*errno_out = errno;
|
|
return rc;
|
|
}
|
|
|
|
static void test_get_cmma_basic(void)
|
|
{
|
|
struct kvm_vm *vm = create_vm_two_memslots();
|
|
struct kvm_vcpu *vcpu;
|
|
int rc, errno_out;
|
|
|
|
/* GET_CMMA_BITS without CMMA enabled should fail */
|
|
rc = vm_get_cmma_bits(vm, 0, &errno_out);
|
|
TEST_ASSERT_EQ(rc, -1);
|
|
TEST_ASSERT_EQ(errno_out, ENXIO);
|
|
|
|
enable_cmma(vm);
|
|
vcpu = vm_vcpu_add(vm, 1, guest_do_one_essa);
|
|
|
|
vcpu_run(vcpu);
|
|
|
|
/* GET_CMMA_BITS without migration mode and without peeking should fail */
|
|
rc = vm_get_cmma_bits(vm, 0, &errno_out);
|
|
TEST_ASSERT_EQ(rc, -1);
|
|
TEST_ASSERT_EQ(errno_out, EINVAL);
|
|
|
|
/* GET_CMMA_BITS without migration mode and with peeking should work */
|
|
rc = vm_get_cmma_bits(vm, KVM_S390_CMMA_PEEK, &errno_out);
|
|
TEST_ASSERT_EQ(rc, 0);
|
|
TEST_ASSERT_EQ(errno_out, 0);
|
|
|
|
enable_dirty_tracking(vm);
|
|
enable_migration_mode(vm);
|
|
|
|
/* GET_CMMA_BITS with invalid flags */
|
|
rc = vm_get_cmma_bits(vm, 0xfeedc0fe, &errno_out);
|
|
TEST_ASSERT_EQ(rc, -1);
|
|
TEST_ASSERT_EQ(errno_out, EINVAL);
|
|
|
|
kvm_vm_free(vm);
|
|
}
|
|
|
|
static void assert_exit_was_hypercall(struct kvm_vcpu *vcpu)
|
|
{
|
|
TEST_ASSERT_EQ(vcpu->run->exit_reason, 13);
|
|
TEST_ASSERT_EQ(vcpu->run->s390_sieic.icptcode, 4);
|
|
TEST_ASSERT_EQ(vcpu->run->s390_sieic.ipa, 0x8300);
|
|
TEST_ASSERT_EQ(vcpu->run->s390_sieic.ipb, 0x5010000);
|
|
}
|
|
|
|
static void test_migration_mode(void)
|
|
{
|
|
struct kvm_vm *vm = vm_create_barebones();
|
|
struct kvm_vcpu *vcpu;
|
|
u64 orig_psw;
|
|
int rc;
|
|
|
|
/* enabling migration mode on a VM without memory should fail */
|
|
rc = __enable_migration_mode(vm);
|
|
TEST_ASSERT_EQ(rc, -1);
|
|
TEST_ASSERT_EQ(errno, EINVAL);
|
|
TEST_ASSERT(!is_migration_mode_on(vm), "migration mode should still be off");
|
|
errno = 0;
|
|
|
|
create_memslots(vm);
|
|
finish_vm_setup(vm);
|
|
|
|
enable_cmma(vm);
|
|
vcpu = vm_vcpu_add(vm, 1, guest_do_one_essa);
|
|
orig_psw = vcpu->run->psw_addr;
|
|
|
|
/*
|
|
* Execute one essa instruction in the guest. Otherwise the guest will
|
|
* not have use_cmm enabled and GET_CMMA_BITS will return no pages.
|
|
*/
|
|
vcpu_run(vcpu);
|
|
assert_exit_was_hypercall(vcpu);
|
|
|
|
/* migration mode when memslots have dirty tracking off should fail */
|
|
rc = __enable_migration_mode(vm);
|
|
TEST_ASSERT_EQ(rc, -1);
|
|
TEST_ASSERT_EQ(errno, EINVAL);
|
|
TEST_ASSERT(!is_migration_mode_on(vm), "migration mode should still be off");
|
|
errno = 0;
|
|
|
|
/* enable dirty tracking */
|
|
enable_dirty_tracking(vm);
|
|
|
|
/* enabling migration mode should work now */
|
|
rc = __enable_migration_mode(vm);
|
|
TEST_ASSERT_EQ(rc, 0);
|
|
TEST_ASSERT(is_migration_mode_on(vm), "migration mode should be on");
|
|
errno = 0;
|
|
|
|
/* execute another ESSA instruction to see this goes fine */
|
|
vcpu->run->psw_addr = orig_psw;
|
|
vcpu_run(vcpu);
|
|
assert_exit_was_hypercall(vcpu);
|
|
|
|
/*
|
|
* With migration mode on, create a new memslot with dirty tracking off.
|
|
* This should turn off migration mode.
|
|
*/
|
|
TEST_ASSERT(is_migration_mode_on(vm), "migration mode should be on");
|
|
vm_userspace_mem_region_add(vm,
|
|
VM_MEM_SRC_ANONYMOUS,
|
|
TEST_DATA_TWO_START_GFN << vm->page_shift,
|
|
TEST_DATA_TWO_MEMSLOT,
|
|
TEST_DATA_TWO_PAGE_COUNT,
|
|
0
|
|
);
|
|
TEST_ASSERT(!is_migration_mode_on(vm),
|
|
"creating memslot without dirty tracking turns off migration mode"
|
|
);
|
|
|
|
/* ESSA instructions should still execute fine */
|
|
vcpu->run->psw_addr = orig_psw;
|
|
vcpu_run(vcpu);
|
|
assert_exit_was_hypercall(vcpu);
|
|
|
|
/*
|
|
* Turn on dirty tracking on the new memslot.
|
|
* It should be possible to turn migration mode back on again.
|
|
*/
|
|
vm_mem_region_set_flags(vm, TEST_DATA_TWO_MEMSLOT, KVM_MEM_LOG_DIRTY_PAGES);
|
|
rc = __enable_migration_mode(vm);
|
|
TEST_ASSERT_EQ(rc, 0);
|
|
TEST_ASSERT(is_migration_mode_on(vm), "migration mode should be on");
|
|
errno = 0;
|
|
|
|
/*
|
|
* Turn off dirty tracking again, this time with just a flag change.
|
|
* Again, migration mode should turn off.
|
|
*/
|
|
TEST_ASSERT(is_migration_mode_on(vm), "migration mode should be on");
|
|
vm_mem_region_set_flags(vm, TEST_DATA_TWO_MEMSLOT, 0);
|
|
TEST_ASSERT(!is_migration_mode_on(vm),
|
|
"disabling dirty tracking should turn off migration mode"
|
|
);
|
|
|
|
/* ESSA instructions should still execute fine */
|
|
vcpu->run->psw_addr = orig_psw;
|
|
vcpu_run(vcpu);
|
|
assert_exit_was_hypercall(vcpu);
|
|
|
|
kvm_vm_free(vm);
|
|
}
|
|
|
|
/**
|
|
* Given a VM with the MAIN and TEST_DATA memslot, assert that both slots have
|
|
* CMMA attributes of all pages in both memslots and nothing more dirty.
|
|
* This has the useful side effect of ensuring nothing is CMMA dirty after this
|
|
* function.
|
|
*/
|
|
static void assert_all_slots_cmma_dirty(struct kvm_vm *vm)
|
|
{
|
|
struct kvm_s390_cmma_log args;
|
|
|
|
/*
|
|
* First iteration - everything should be dirty.
|
|
* Start at the main memslot...
|
|
*/
|
|
args = (struct kvm_s390_cmma_log){
|
|
.start_gfn = 0,
|
|
.count = sizeof(cmma_value_buf),
|
|
.flags = 0,
|
|
.values = (__u64)&cmma_value_buf[0]
|
|
};
|
|
memset(cmma_value_buf, 0xff, sizeof(cmma_value_buf));
|
|
vm_ioctl(vm, KVM_S390_GET_CMMA_BITS, &args);
|
|
TEST_ASSERT_EQ(args.count, MAIN_PAGE_COUNT);
|
|
TEST_ASSERT_EQ(args.remaining, TEST_DATA_PAGE_COUNT);
|
|
TEST_ASSERT_EQ(args.start_gfn, 0);
|
|
|
|
/* ...and then - after a hole - the TEST_DATA memslot should follow */
|
|
args = (struct kvm_s390_cmma_log){
|
|
.start_gfn = MAIN_PAGE_COUNT,
|
|
.count = sizeof(cmma_value_buf),
|
|
.flags = 0,
|
|
.values = (__u64)&cmma_value_buf[0]
|
|
};
|
|
memset(cmma_value_buf, 0xff, sizeof(cmma_value_buf));
|
|
vm_ioctl(vm, KVM_S390_GET_CMMA_BITS, &args);
|
|
TEST_ASSERT_EQ(args.count, TEST_DATA_PAGE_COUNT);
|
|
TEST_ASSERT_EQ(args.start_gfn, TEST_DATA_START_GFN);
|
|
TEST_ASSERT_EQ(args.remaining, 0);
|
|
|
|
/* ...and nothing else should be there */
|
|
args = (struct kvm_s390_cmma_log){
|
|
.start_gfn = TEST_DATA_START_GFN + TEST_DATA_PAGE_COUNT,
|
|
.count = sizeof(cmma_value_buf),
|
|
.flags = 0,
|
|
.values = (__u64)&cmma_value_buf[0]
|
|
};
|
|
memset(cmma_value_buf, 0xff, sizeof(cmma_value_buf));
|
|
vm_ioctl(vm, KVM_S390_GET_CMMA_BITS, &args);
|
|
TEST_ASSERT_EQ(args.count, 0);
|
|
TEST_ASSERT_EQ(args.start_gfn, 0);
|
|
TEST_ASSERT_EQ(args.remaining, 0);
|
|
}
|
|
|
|
/**
|
|
* Given a VM, assert no pages are CMMA dirty.
|
|
*/
|
|
static void assert_no_pages_cmma_dirty(struct kvm_vm *vm)
|
|
{
|
|
struct kvm_s390_cmma_log args;
|
|
|
|
/* If we start from GFN 0 again, nothing should be dirty. */
|
|
args = (struct kvm_s390_cmma_log){
|
|
.start_gfn = 0,
|
|
.count = sizeof(cmma_value_buf),
|
|
.flags = 0,
|
|
.values = (__u64)&cmma_value_buf[0]
|
|
};
|
|
memset(cmma_value_buf, 0xff, sizeof(cmma_value_buf));
|
|
vm_ioctl(vm, KVM_S390_GET_CMMA_BITS, &args);
|
|
if (args.count || args.remaining || args.start_gfn)
|
|
TEST_FAIL("pages are still dirty start_gfn=0x%llx count=%u remaining=%llu",
|
|
args.start_gfn,
|
|
args.count,
|
|
args.remaining
|
|
);
|
|
}
|
|
|
|
static void test_get_inital_dirty(void)
|
|
{
|
|
struct kvm_vm *vm = create_vm_two_memslots();
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
enable_cmma(vm);
|
|
vcpu = vm_vcpu_add(vm, 1, guest_do_one_essa);
|
|
|
|
/*
|
|
* Execute one essa instruction in the guest. Otherwise the guest will
|
|
* not have use_cmm enabled and GET_CMMA_BITS will return no pages.
|
|
*/
|
|
vcpu_run(vcpu);
|
|
assert_exit_was_hypercall(vcpu);
|
|
|
|
enable_dirty_tracking(vm);
|
|
enable_migration_mode(vm);
|
|
|
|
assert_all_slots_cmma_dirty(vm);
|
|
|
|
/* Start from the beginning again and make sure nothing else is dirty */
|
|
assert_no_pages_cmma_dirty(vm);
|
|
|
|
kvm_vm_free(vm);
|
|
}
|
|
|
|
static void query_cmma_range(struct kvm_vm *vm,
|
|
u64 start_gfn, u64 gfn_count,
|
|
struct kvm_s390_cmma_log *res_out)
|
|
{
|
|
*res_out = (struct kvm_s390_cmma_log){
|
|
.start_gfn = start_gfn,
|
|
.count = gfn_count,
|
|
.flags = 0,
|
|
.values = (__u64)&cmma_value_buf[0]
|
|
};
|
|
memset(cmma_value_buf, 0xff, sizeof(cmma_value_buf));
|
|
vm_ioctl(vm, KVM_S390_GET_CMMA_BITS, res_out);
|
|
}
|
|
|
|
/**
|
|
* Assert the given cmma_log struct that was executed by query_cmma_range()
|
|
* indicates the first dirty gfn is at first_dirty_gfn and contains exactly
|
|
* dirty_gfn_count CMMA values.
|
|
*/
|
|
static void assert_cmma_dirty(u64 first_dirty_gfn,
|
|
u64 dirty_gfn_count,
|
|
const struct kvm_s390_cmma_log *res)
|
|
{
|
|
TEST_ASSERT_EQ(res->start_gfn, first_dirty_gfn);
|
|
TEST_ASSERT_EQ(res->count, dirty_gfn_count);
|
|
for (size_t i = 0; i < dirty_gfn_count; i++)
|
|
TEST_ASSERT_EQ(cmma_value_buf[0], 0x0); /* stable state */
|
|
TEST_ASSERT_EQ(cmma_value_buf[dirty_gfn_count], 0xff); /* not touched */
|
|
}
|
|
|
|
static void test_get_skip_holes(void)
|
|
{
|
|
size_t gfn_offset;
|
|
struct kvm_vm *vm = create_vm_two_memslots();
|
|
struct kvm_s390_cmma_log log;
|
|
struct kvm_vcpu *vcpu;
|
|
u64 orig_psw;
|
|
|
|
enable_cmma(vm);
|
|
vcpu = vm_vcpu_add(vm, 1, guest_dirty_test_data);
|
|
|
|
orig_psw = vcpu->run->psw_addr;
|
|
|
|
/*
|
|
* Execute some essa instructions in the guest. Otherwise the guest will
|
|
* not have use_cmm enabled and GET_CMMA_BITS will return no pages.
|
|
*/
|
|
vcpu_run(vcpu);
|
|
assert_exit_was_hypercall(vcpu);
|
|
|
|
enable_dirty_tracking(vm);
|
|
enable_migration_mode(vm);
|
|
|
|
/* un-dirty all pages */
|
|
assert_all_slots_cmma_dirty(vm);
|
|
|
|
/* Then, dirty just the TEST_DATA memslot */
|
|
vcpu->run->psw_addr = orig_psw;
|
|
vcpu_run(vcpu);
|
|
|
|
gfn_offset = TEST_DATA_START_GFN;
|
|
/**
|
|
* Query CMMA attributes of one page, starting at page 0. Since the
|
|
* main memslot was not touched by the VM, this should yield the first
|
|
* page of the TEST_DATA memslot.
|
|
* The dirty bitmap should now look like this:
|
|
* 0: not dirty
|
|
* [0x1, 0x200): dirty
|
|
*/
|
|
query_cmma_range(vm, 0, 1, &log);
|
|
assert_cmma_dirty(gfn_offset, 1, &log);
|
|
gfn_offset++;
|
|
|
|
/**
|
|
* Query CMMA attributes of 32 (0x20) pages past the end of the TEST_DATA
|
|
* memslot. This should wrap back to the beginning of the TEST_DATA
|
|
* memslot, page 1.
|
|
* The dirty bitmap should now look like this:
|
|
* [0, 0x21): not dirty
|
|
* [0x21, 0x200): dirty
|
|
*/
|
|
query_cmma_range(vm, TEST_DATA_START_GFN + TEST_DATA_PAGE_COUNT, 0x20, &log);
|
|
assert_cmma_dirty(gfn_offset, 0x20, &log);
|
|
gfn_offset += 0x20;
|
|
|
|
/* Skip 32 pages */
|
|
gfn_offset += 0x20;
|
|
|
|
/**
|
|
* After skipping 32 pages, query the next 32 (0x20) pages.
|
|
* The dirty bitmap should now look like this:
|
|
* [0, 0x21): not dirty
|
|
* [0x21, 0x41): dirty
|
|
* [0x41, 0x61): not dirty
|
|
* [0x61, 0x200): dirty
|
|
*/
|
|
query_cmma_range(vm, gfn_offset, 0x20, &log);
|
|
assert_cmma_dirty(gfn_offset, 0x20, &log);
|
|
gfn_offset += 0x20;
|
|
|
|
/**
|
|
* Query 1 page from the beginning of the TEST_DATA memslot. This should
|
|
* yield page 0x21.
|
|
* The dirty bitmap should now look like this:
|
|
* [0, 0x22): not dirty
|
|
* [0x22, 0x41): dirty
|
|
* [0x41, 0x61): not dirty
|
|
* [0x61, 0x200): dirty
|
|
*/
|
|
query_cmma_range(vm, TEST_DATA_START_GFN, 1, &log);
|
|
assert_cmma_dirty(TEST_DATA_START_GFN + 0x21, 1, &log);
|
|
gfn_offset++;
|
|
|
|
/**
|
|
* Query 15 (0xF) pages from page 0x23 in TEST_DATA memslot.
|
|
* This should yield pages [0x23, 0x33).
|
|
* The dirty bitmap should now look like this:
|
|
* [0, 0x22): not dirty
|
|
* 0x22: dirty
|
|
* [0x23, 0x33): not dirty
|
|
* [0x33, 0x41): dirty
|
|
* [0x41, 0x61): not dirty
|
|
* [0x61, 0x200): dirty
|
|
*/
|
|
gfn_offset = TEST_DATA_START_GFN + 0x23;
|
|
query_cmma_range(vm, gfn_offset, 15, &log);
|
|
assert_cmma_dirty(gfn_offset, 15, &log);
|
|
|
|
/**
|
|
* Query 17 (0x11) pages from page 0x22 in TEST_DATA memslot.
|
|
* This should yield page [0x22, 0x33)
|
|
* The dirty bitmap should now look like this:
|
|
* [0, 0x33): not dirty
|
|
* [0x33, 0x41): dirty
|
|
* [0x41, 0x61): not dirty
|
|
* [0x61, 0x200): dirty
|
|
*/
|
|
gfn_offset = TEST_DATA_START_GFN + 0x22;
|
|
query_cmma_range(vm, gfn_offset, 17, &log);
|
|
assert_cmma_dirty(gfn_offset, 17, &log);
|
|
|
|
/**
|
|
* Query 25 (0x19) pages from page 0x40 in TEST_DATA memslot.
|
|
* This should yield page 0x40 and nothing more, since there are more
|
|
* than 16 non-dirty pages after page 0x40.
|
|
* The dirty bitmap should now look like this:
|
|
* [0, 0x33): not dirty
|
|
* [0x33, 0x40): dirty
|
|
* [0x40, 0x61): not dirty
|
|
* [0x61, 0x200): dirty
|
|
*/
|
|
gfn_offset = TEST_DATA_START_GFN + 0x40;
|
|
query_cmma_range(vm, gfn_offset, 25, &log);
|
|
assert_cmma_dirty(gfn_offset, 1, &log);
|
|
|
|
/**
|
|
* Query pages [0x33, 0x40).
|
|
* The dirty bitmap should now look like this:
|
|
* [0, 0x61): not dirty
|
|
* [0x61, 0x200): dirty
|
|
*/
|
|
gfn_offset = TEST_DATA_START_GFN + 0x33;
|
|
query_cmma_range(vm, gfn_offset, 0x40 - 0x33, &log);
|
|
assert_cmma_dirty(gfn_offset, 0x40 - 0x33, &log);
|
|
|
|
/**
|
|
* Query the remaining pages [0x61, 0x200).
|
|
*/
|
|
gfn_offset = TEST_DATA_START_GFN;
|
|
query_cmma_range(vm, gfn_offset, TEST_DATA_PAGE_COUNT - 0x61, &log);
|
|
assert_cmma_dirty(TEST_DATA_START_GFN + 0x61, TEST_DATA_PAGE_COUNT - 0x61, &log);
|
|
|
|
assert_no_pages_cmma_dirty(vm);
|
|
}
|
|
|
|
struct testdef {
|
|
const char *name;
|
|
void (*test)(void);
|
|
} testlist[] = {
|
|
{ "migration mode and dirty tracking", test_migration_mode },
|
|
{ "GET_CMMA_BITS: basic calls", test_get_cmma_basic },
|
|
{ "GET_CMMA_BITS: all pages are dirty initally", test_get_inital_dirty },
|
|
{ "GET_CMMA_BITS: holes are skipped", test_get_skip_holes },
|
|
};
|
|
|
|
/**
|
|
* The kernel may support CMMA, but the machine may not (i.e. if running as
|
|
* guest-3).
|
|
*
|
|
* In this case, the CMMA capabilities are all there, but the CMMA-related
|
|
* ioctls fail. To find out whether the machine supports CMMA, create a
|
|
* temporary VM and then query the CMMA feature of the VM.
|
|
*/
|
|
static int machine_has_cmma(void)
|
|
{
|
|
struct kvm_vm *vm = vm_create_barebones();
|
|
int r;
|
|
|
|
r = !__kvm_has_device_attr(vm->fd, KVM_S390_VM_MEM_CTRL, KVM_S390_VM_MEM_ENABLE_CMMA);
|
|
kvm_vm_free(vm);
|
|
|
|
return r;
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
int idx;
|
|
|
|
TEST_REQUIRE(kvm_has_cap(KVM_CAP_SYNC_REGS));
|
|
TEST_REQUIRE(kvm_has_cap(KVM_CAP_S390_CMMA_MIGRATION));
|
|
TEST_REQUIRE(machine_has_cmma());
|
|
|
|
ksft_print_header();
|
|
|
|
ksft_set_plan(ARRAY_SIZE(testlist));
|
|
|
|
for (idx = 0; idx < ARRAY_SIZE(testlist); idx++) {
|
|
testlist[idx].test();
|
|
ksft_test_result_pass("%s\n", testlist[idx].name);
|
|
}
|
|
|
|
ksft_finished(); /* Print results and exit() accordingly */
|
|
}
|