1358 lines
28 KiB
C
1358 lines
28 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#define _GNU_SOURCE
|
|
|
|
#include <linux/limits.h>
|
|
#include <linux/oom.h>
|
|
#include <fcntl.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <unistd.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/wait.h>
|
|
#include <arpa/inet.h>
|
|
#include <netinet/in.h>
|
|
#include <netdb.h>
|
|
#include <errno.h>
|
|
#include <sys/mman.h>
|
|
|
|
#include "../kselftest.h"
|
|
#include "cgroup_util.h"
|
|
|
|
static bool has_localevents;
|
|
static bool has_recursiveprot;
|
|
|
|
/*
|
|
* This test creates two nested cgroups with and without enabling
|
|
* the memory controller.
|
|
*/
|
|
static int test_memcg_subtree_control(const char *root)
|
|
{
|
|
char *parent, *child, *parent2 = NULL, *child2 = NULL;
|
|
int ret = KSFT_FAIL;
|
|
char buf[PAGE_SIZE];
|
|
|
|
/* Create two nested cgroups with the memory controller enabled */
|
|
parent = cg_name(root, "memcg_test_0");
|
|
child = cg_name(root, "memcg_test_0/memcg_test_1");
|
|
if (!parent || !child)
|
|
goto cleanup_free;
|
|
|
|
if (cg_create(parent))
|
|
goto cleanup_free;
|
|
|
|
if (cg_write(parent, "cgroup.subtree_control", "+memory"))
|
|
goto cleanup_parent;
|
|
|
|
if (cg_create(child))
|
|
goto cleanup_parent;
|
|
|
|
if (cg_read_strstr(child, "cgroup.controllers", "memory"))
|
|
goto cleanup_child;
|
|
|
|
/* Create two nested cgroups without enabling memory controller */
|
|
parent2 = cg_name(root, "memcg_test_1");
|
|
child2 = cg_name(root, "memcg_test_1/memcg_test_1");
|
|
if (!parent2 || !child2)
|
|
goto cleanup_free2;
|
|
|
|
if (cg_create(parent2))
|
|
goto cleanup_free2;
|
|
|
|
if (cg_create(child2))
|
|
goto cleanup_parent2;
|
|
|
|
if (cg_read(child2, "cgroup.controllers", buf, sizeof(buf)))
|
|
goto cleanup_all;
|
|
|
|
if (!cg_read_strstr(child2, "cgroup.controllers", "memory"))
|
|
goto cleanup_all;
|
|
|
|
ret = KSFT_PASS;
|
|
|
|
cleanup_all:
|
|
cg_destroy(child2);
|
|
cleanup_parent2:
|
|
cg_destroy(parent2);
|
|
cleanup_free2:
|
|
free(parent2);
|
|
free(child2);
|
|
cleanup_child:
|
|
cg_destroy(child);
|
|
cleanup_parent:
|
|
cg_destroy(parent);
|
|
cleanup_free:
|
|
free(parent);
|
|
free(child);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int alloc_anon_50M_check(const char *cgroup, void *arg)
|
|
{
|
|
size_t size = MB(50);
|
|
char *buf, *ptr;
|
|
long anon, current;
|
|
int ret = -1;
|
|
|
|
buf = malloc(size);
|
|
if (buf == NULL) {
|
|
fprintf(stderr, "malloc() failed\n");
|
|
return -1;
|
|
}
|
|
|
|
for (ptr = buf; ptr < buf + size; ptr += PAGE_SIZE)
|
|
*ptr = 0;
|
|
|
|
current = cg_read_long(cgroup, "memory.current");
|
|
if (current < size)
|
|
goto cleanup;
|
|
|
|
if (!values_close(size, current, 3))
|
|
goto cleanup;
|
|
|
|
anon = cg_read_key_long(cgroup, "memory.stat", "anon ");
|
|
if (anon < 0)
|
|
goto cleanup;
|
|
|
|
if (!values_close(anon, current, 3))
|
|
goto cleanup;
|
|
|
|
ret = 0;
|
|
cleanup:
|
|
free(buf);
|
|
return ret;
|
|
}
|
|
|
|
static int alloc_pagecache_50M_check(const char *cgroup, void *arg)
|
|
{
|
|
size_t size = MB(50);
|
|
int ret = -1;
|
|
long current, file;
|
|
int fd;
|
|
|
|
fd = get_temp_fd();
|
|
if (fd < 0)
|
|
return -1;
|
|
|
|
if (alloc_pagecache(fd, size))
|
|
goto cleanup;
|
|
|
|
current = cg_read_long(cgroup, "memory.current");
|
|
if (current < size)
|
|
goto cleanup;
|
|
|
|
file = cg_read_key_long(cgroup, "memory.stat", "file ");
|
|
if (file < 0)
|
|
goto cleanup;
|
|
|
|
if (!values_close(file, current, 10))
|
|
goto cleanup;
|
|
|
|
ret = 0;
|
|
|
|
cleanup:
|
|
close(fd);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This test create a memory cgroup, allocates
|
|
* some anonymous memory and some pagecache
|
|
* and check memory.current and some memory.stat values.
|
|
*/
|
|
static int test_memcg_current(const char *root)
|
|
{
|
|
int ret = KSFT_FAIL;
|
|
long current;
|
|
char *memcg;
|
|
|
|
memcg = cg_name(root, "memcg_test");
|
|
if (!memcg)
|
|
goto cleanup;
|
|
|
|
if (cg_create(memcg))
|
|
goto cleanup;
|
|
|
|
current = cg_read_long(memcg, "memory.current");
|
|
if (current != 0)
|
|
goto cleanup;
|
|
|
|
if (cg_run(memcg, alloc_anon_50M_check, NULL))
|
|
goto cleanup;
|
|
|
|
if (cg_run(memcg, alloc_pagecache_50M_check, NULL))
|
|
goto cleanup;
|
|
|
|
ret = KSFT_PASS;
|
|
|
|
cleanup:
|
|
cg_destroy(memcg);
|
|
free(memcg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int alloc_pagecache_50M_noexit(const char *cgroup, void *arg)
|
|
{
|
|
int fd = (long)arg;
|
|
int ppid = getppid();
|
|
|
|
if (alloc_pagecache(fd, MB(50)))
|
|
return -1;
|
|
|
|
while (getppid() == ppid)
|
|
sleep(1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int alloc_anon_noexit(const char *cgroup, void *arg)
|
|
{
|
|
int ppid = getppid();
|
|
size_t size = (unsigned long)arg;
|
|
char *buf, *ptr;
|
|
|
|
buf = malloc(size);
|
|
if (buf == NULL) {
|
|
fprintf(stderr, "malloc() failed\n");
|
|
return -1;
|
|
}
|
|
|
|
for (ptr = buf; ptr < buf + size; ptr += PAGE_SIZE)
|
|
*ptr = 0;
|
|
|
|
while (getppid() == ppid)
|
|
sleep(1);
|
|
|
|
free(buf);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Wait until processes are killed asynchronously by the OOM killer
|
|
* If we exceed a timeout, fail.
|
|
*/
|
|
static int cg_test_proc_killed(const char *cgroup)
|
|
{
|
|
int limit;
|
|
|
|
for (limit = 10; limit > 0; limit--) {
|
|
if (cg_read_strcmp(cgroup, "cgroup.procs", "") == 0)
|
|
return 0;
|
|
|
|
usleep(100000);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static bool reclaim_until(const char *memcg, long goal);
|
|
|
|
/*
|
|
* First, this test creates the following hierarchy:
|
|
* A memory.min = 0, memory.max = 200M
|
|
* A/B memory.min = 50M
|
|
* A/B/C memory.min = 75M, memory.current = 50M
|
|
* A/B/D memory.min = 25M, memory.current = 50M
|
|
* A/B/E memory.min = 0, memory.current = 50M
|
|
* A/B/F memory.min = 500M, memory.current = 0
|
|
*
|
|
* (or memory.low if we test soft protection)
|
|
*
|
|
* Usages are pagecache and the test keeps a running
|
|
* process in every leaf cgroup.
|
|
* Then it creates A/G and creates a significant
|
|
* memory pressure in A.
|
|
*
|
|
* Then it checks actual memory usages and expects that:
|
|
* A/B memory.current ~= 50M
|
|
* A/B/C memory.current ~= 29M
|
|
* A/B/D memory.current ~= 21M
|
|
* A/B/E memory.current ~= 0
|
|
* A/B/F memory.current = 0
|
|
* (for origin of the numbers, see model in memcg_protection.m.)
|
|
*
|
|
* After that it tries to allocate more than there is
|
|
* unprotected memory in A available, and checks that:
|
|
* a) memory.min protects pagecache even in this case,
|
|
* b) memory.low allows reclaiming page cache with low events.
|
|
*
|
|
* Then we try to reclaim from A/B/C using memory.reclaim until its
|
|
* usage reaches 10M.
|
|
* This makes sure that:
|
|
* (a) We ignore the protection of the reclaim target memcg.
|
|
* (b) The previously calculated emin value (~29M) should be dismissed.
|
|
*/
|
|
static int test_memcg_protection(const char *root, bool min)
|
|
{
|
|
int ret = KSFT_FAIL, rc;
|
|
char *parent[3] = {NULL};
|
|
char *children[4] = {NULL};
|
|
const char *attribute = min ? "memory.min" : "memory.low";
|
|
long c[4];
|
|
long current;
|
|
int i, attempts;
|
|
int fd;
|
|
|
|
fd = get_temp_fd();
|
|
if (fd < 0)
|
|
goto cleanup;
|
|
|
|
parent[0] = cg_name(root, "memcg_test_0");
|
|
if (!parent[0])
|
|
goto cleanup;
|
|
|
|
parent[1] = cg_name(parent[0], "memcg_test_1");
|
|
if (!parent[1])
|
|
goto cleanup;
|
|
|
|
parent[2] = cg_name(parent[0], "memcg_test_2");
|
|
if (!parent[2])
|
|
goto cleanup;
|
|
|
|
if (cg_create(parent[0]))
|
|
goto cleanup;
|
|
|
|
if (cg_read_long(parent[0], attribute)) {
|
|
/* No memory.min on older kernels is fine */
|
|
if (min)
|
|
ret = KSFT_SKIP;
|
|
goto cleanup;
|
|
}
|
|
|
|
if (cg_write(parent[0], "cgroup.subtree_control", "+memory"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(parent[0], "memory.max", "200M"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(parent[0], "memory.swap.max", "0"))
|
|
goto cleanup;
|
|
|
|
if (cg_create(parent[1]))
|
|
goto cleanup;
|
|
|
|
if (cg_write(parent[1], "cgroup.subtree_control", "+memory"))
|
|
goto cleanup;
|
|
|
|
if (cg_create(parent[2]))
|
|
goto cleanup;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(children); i++) {
|
|
children[i] = cg_name_indexed(parent[1], "child_memcg", i);
|
|
if (!children[i])
|
|
goto cleanup;
|
|
|
|
if (cg_create(children[i]))
|
|
goto cleanup;
|
|
|
|
if (i > 2)
|
|
continue;
|
|
|
|
cg_run_nowait(children[i], alloc_pagecache_50M_noexit,
|
|
(void *)(long)fd);
|
|
}
|
|
|
|
if (cg_write(parent[1], attribute, "50M"))
|
|
goto cleanup;
|
|
if (cg_write(children[0], attribute, "75M"))
|
|
goto cleanup;
|
|
if (cg_write(children[1], attribute, "25M"))
|
|
goto cleanup;
|
|
if (cg_write(children[2], attribute, "0"))
|
|
goto cleanup;
|
|
if (cg_write(children[3], attribute, "500M"))
|
|
goto cleanup;
|
|
|
|
attempts = 0;
|
|
while (!values_close(cg_read_long(parent[1], "memory.current"),
|
|
MB(150), 3)) {
|
|
if (attempts++ > 5)
|
|
break;
|
|
sleep(1);
|
|
}
|
|
|
|
if (cg_run(parent[2], alloc_anon, (void *)MB(148)))
|
|
goto cleanup;
|
|
|
|
if (!values_close(cg_read_long(parent[1], "memory.current"), MB(50), 3))
|
|
goto cleanup;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(children); i++)
|
|
c[i] = cg_read_long(children[i], "memory.current");
|
|
|
|
if (!values_close(c[0], MB(29), 10))
|
|
goto cleanup;
|
|
|
|
if (!values_close(c[1], MB(21), 10))
|
|
goto cleanup;
|
|
|
|
if (c[3] != 0)
|
|
goto cleanup;
|
|
|
|
rc = cg_run(parent[2], alloc_anon, (void *)MB(170));
|
|
if (min && !rc)
|
|
goto cleanup;
|
|
else if (!min && rc) {
|
|
fprintf(stderr,
|
|
"memory.low prevents from allocating anon memory\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
current = min ? MB(50) : MB(30);
|
|
if (!values_close(cg_read_long(parent[1], "memory.current"), current, 3))
|
|
goto cleanup;
|
|
|
|
if (!reclaim_until(children[0], MB(10)))
|
|
goto cleanup;
|
|
|
|
if (min) {
|
|
ret = KSFT_PASS;
|
|
goto cleanup;
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(children); i++) {
|
|
int no_low_events_index = 1;
|
|
long low, oom;
|
|
|
|
oom = cg_read_key_long(children[i], "memory.events", "oom ");
|
|
low = cg_read_key_long(children[i], "memory.events", "low ");
|
|
|
|
if (oom)
|
|
goto cleanup;
|
|
if (i <= no_low_events_index && low <= 0)
|
|
goto cleanup;
|
|
if (i > no_low_events_index && low)
|
|
goto cleanup;
|
|
|
|
}
|
|
|
|
ret = KSFT_PASS;
|
|
|
|
cleanup:
|
|
for (i = ARRAY_SIZE(children) - 1; i >= 0; i--) {
|
|
if (!children[i])
|
|
continue;
|
|
|
|
cg_destroy(children[i]);
|
|
free(children[i]);
|
|
}
|
|
|
|
for (i = ARRAY_SIZE(parent) - 1; i >= 0; i--) {
|
|
if (!parent[i])
|
|
continue;
|
|
|
|
cg_destroy(parent[i]);
|
|
free(parent[i]);
|
|
}
|
|
close(fd);
|
|
return ret;
|
|
}
|
|
|
|
static int test_memcg_min(const char *root)
|
|
{
|
|
return test_memcg_protection(root, true);
|
|
}
|
|
|
|
static int test_memcg_low(const char *root)
|
|
{
|
|
return test_memcg_protection(root, false);
|
|
}
|
|
|
|
static int alloc_pagecache_max_30M(const char *cgroup, void *arg)
|
|
{
|
|
size_t size = MB(50);
|
|
int ret = -1;
|
|
long current, high, max;
|
|
int fd;
|
|
|
|
high = cg_read_long(cgroup, "memory.high");
|
|
max = cg_read_long(cgroup, "memory.max");
|
|
if (high != MB(30) && max != MB(30))
|
|
return -1;
|
|
|
|
fd = get_temp_fd();
|
|
if (fd < 0)
|
|
return -1;
|
|
|
|
if (alloc_pagecache(fd, size))
|
|
goto cleanup;
|
|
|
|
current = cg_read_long(cgroup, "memory.current");
|
|
if (!values_close(current, MB(30), 5))
|
|
goto cleanup;
|
|
|
|
ret = 0;
|
|
|
|
cleanup:
|
|
close(fd);
|
|
return ret;
|
|
|
|
}
|
|
|
|
/*
|
|
* This test checks that memory.high limits the amount of
|
|
* memory which can be consumed by either anonymous memory
|
|
* or pagecache.
|
|
*/
|
|
static int test_memcg_high(const char *root)
|
|
{
|
|
int ret = KSFT_FAIL;
|
|
char *memcg;
|
|
long high;
|
|
|
|
memcg = cg_name(root, "memcg_test");
|
|
if (!memcg)
|
|
goto cleanup;
|
|
|
|
if (cg_create(memcg))
|
|
goto cleanup;
|
|
|
|
if (cg_read_strcmp(memcg, "memory.high", "max\n"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(memcg, "memory.swap.max", "0"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(memcg, "memory.high", "30M"))
|
|
goto cleanup;
|
|
|
|
if (cg_run(memcg, alloc_anon, (void *)MB(31)))
|
|
goto cleanup;
|
|
|
|
if (!cg_run(memcg, alloc_pagecache_50M_check, NULL))
|
|
goto cleanup;
|
|
|
|
if (cg_run(memcg, alloc_pagecache_max_30M, NULL))
|
|
goto cleanup;
|
|
|
|
high = cg_read_key_long(memcg, "memory.events", "high ");
|
|
if (high <= 0)
|
|
goto cleanup;
|
|
|
|
ret = KSFT_PASS;
|
|
|
|
cleanup:
|
|
cg_destroy(memcg);
|
|
free(memcg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int alloc_anon_mlock(const char *cgroup, void *arg)
|
|
{
|
|
size_t size = (size_t)arg;
|
|
void *buf;
|
|
|
|
buf = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON,
|
|
0, 0);
|
|
if (buf == MAP_FAILED)
|
|
return -1;
|
|
|
|
mlock(buf, size);
|
|
munmap(buf, size);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This test checks that memory.high is able to throttle big single shot
|
|
* allocation i.e. large allocation within one kernel entry.
|
|
*/
|
|
static int test_memcg_high_sync(const char *root)
|
|
{
|
|
int ret = KSFT_FAIL, pid, fd = -1;
|
|
char *memcg;
|
|
long pre_high, pre_max;
|
|
long post_high, post_max;
|
|
|
|
memcg = cg_name(root, "memcg_test");
|
|
if (!memcg)
|
|
goto cleanup;
|
|
|
|
if (cg_create(memcg))
|
|
goto cleanup;
|
|
|
|
pre_high = cg_read_key_long(memcg, "memory.events", "high ");
|
|
pre_max = cg_read_key_long(memcg, "memory.events", "max ");
|
|
if (pre_high < 0 || pre_max < 0)
|
|
goto cleanup;
|
|
|
|
if (cg_write(memcg, "memory.swap.max", "0"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(memcg, "memory.high", "30M"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(memcg, "memory.max", "140M"))
|
|
goto cleanup;
|
|
|
|
fd = memcg_prepare_for_wait(memcg);
|
|
if (fd < 0)
|
|
goto cleanup;
|
|
|
|
pid = cg_run_nowait(memcg, alloc_anon_mlock, (void *)MB(200));
|
|
if (pid < 0)
|
|
goto cleanup;
|
|
|
|
cg_wait_for(fd);
|
|
|
|
post_high = cg_read_key_long(memcg, "memory.events", "high ");
|
|
post_max = cg_read_key_long(memcg, "memory.events", "max ");
|
|
if (post_high < 0 || post_max < 0)
|
|
goto cleanup;
|
|
|
|
if (pre_high == post_high || pre_max != post_max)
|
|
goto cleanup;
|
|
|
|
ret = KSFT_PASS;
|
|
|
|
cleanup:
|
|
if (fd >= 0)
|
|
close(fd);
|
|
cg_destroy(memcg);
|
|
free(memcg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This test checks that memory.max limits the amount of
|
|
* memory which can be consumed by either anonymous memory
|
|
* or pagecache.
|
|
*/
|
|
static int test_memcg_max(const char *root)
|
|
{
|
|
int ret = KSFT_FAIL;
|
|
char *memcg;
|
|
long current, max;
|
|
|
|
memcg = cg_name(root, "memcg_test");
|
|
if (!memcg)
|
|
goto cleanup;
|
|
|
|
if (cg_create(memcg))
|
|
goto cleanup;
|
|
|
|
if (cg_read_strcmp(memcg, "memory.max", "max\n"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(memcg, "memory.swap.max", "0"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(memcg, "memory.max", "30M"))
|
|
goto cleanup;
|
|
|
|
/* Should be killed by OOM killer */
|
|
if (!cg_run(memcg, alloc_anon, (void *)MB(100)))
|
|
goto cleanup;
|
|
|
|
if (cg_run(memcg, alloc_pagecache_max_30M, NULL))
|
|
goto cleanup;
|
|
|
|
current = cg_read_long(memcg, "memory.current");
|
|
if (current > MB(30) || !current)
|
|
goto cleanup;
|
|
|
|
max = cg_read_key_long(memcg, "memory.events", "max ");
|
|
if (max <= 0)
|
|
goto cleanup;
|
|
|
|
ret = KSFT_PASS;
|
|
|
|
cleanup:
|
|
cg_destroy(memcg);
|
|
free(memcg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Reclaim from @memcg until usage reaches @goal by writing to
|
|
* memory.reclaim.
|
|
*
|
|
* This function will return false if the usage is already below the
|
|
* goal.
|
|
*
|
|
* This function assumes that writing to memory.reclaim is the only
|
|
* source of change in memory.current (no concurrent allocations or
|
|
* reclaim).
|
|
*
|
|
* This function makes sure memory.reclaim is sane. It will return
|
|
* false if memory.reclaim's error codes do not make sense, even if
|
|
* the usage goal was satisfied.
|
|
*/
|
|
static bool reclaim_until(const char *memcg, long goal)
|
|
{
|
|
char buf[64];
|
|
int retries, err;
|
|
long current, to_reclaim;
|
|
bool reclaimed = false;
|
|
|
|
for (retries = 5; retries > 0; retries--) {
|
|
current = cg_read_long(memcg, "memory.current");
|
|
|
|
if (current < goal || values_close(current, goal, 3))
|
|
break;
|
|
/* Did memory.reclaim return 0 incorrectly? */
|
|
else if (reclaimed)
|
|
return false;
|
|
|
|
to_reclaim = current - goal;
|
|
snprintf(buf, sizeof(buf), "%ld", to_reclaim);
|
|
err = cg_write(memcg, "memory.reclaim", buf);
|
|
if (!err)
|
|
reclaimed = true;
|
|
else if (err != -EAGAIN)
|
|
return false;
|
|
}
|
|
return reclaimed;
|
|
}
|
|
|
|
/*
|
|
* This test checks that memory.reclaim reclaims the given
|
|
* amount of memory (from both anon and file, if possible).
|
|
*/
|
|
static int test_memcg_reclaim(const char *root)
|
|
{
|
|
int ret = KSFT_FAIL, fd, retries;
|
|
char *memcg;
|
|
long current, expected_usage;
|
|
|
|
memcg = cg_name(root, "memcg_test");
|
|
if (!memcg)
|
|
goto cleanup;
|
|
|
|
if (cg_create(memcg))
|
|
goto cleanup;
|
|
|
|
current = cg_read_long(memcg, "memory.current");
|
|
if (current != 0)
|
|
goto cleanup;
|
|
|
|
fd = get_temp_fd();
|
|
if (fd < 0)
|
|
goto cleanup;
|
|
|
|
cg_run_nowait(memcg, alloc_pagecache_50M_noexit, (void *)(long)fd);
|
|
|
|
/*
|
|
* If swap is enabled, try to reclaim from both anon and file, else try
|
|
* to reclaim from file only.
|
|
*/
|
|
if (is_swap_enabled()) {
|
|
cg_run_nowait(memcg, alloc_anon_noexit, (void *) MB(50));
|
|
expected_usage = MB(100);
|
|
} else
|
|
expected_usage = MB(50);
|
|
|
|
/*
|
|
* Wait until current usage reaches the expected usage (or we run out of
|
|
* retries).
|
|
*/
|
|
retries = 5;
|
|
while (!values_close(cg_read_long(memcg, "memory.current"),
|
|
expected_usage, 10)) {
|
|
if (retries--) {
|
|
sleep(1);
|
|
continue;
|
|
} else {
|
|
fprintf(stderr,
|
|
"failed to allocate %ld for memcg reclaim test\n",
|
|
expected_usage);
|
|
goto cleanup;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reclaim until current reaches 30M, this makes sure we hit both anon
|
|
* and file if swap is enabled.
|
|
*/
|
|
if (!reclaim_until(memcg, MB(30)))
|
|
goto cleanup;
|
|
|
|
ret = KSFT_PASS;
|
|
cleanup:
|
|
cg_destroy(memcg);
|
|
free(memcg);
|
|
close(fd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int alloc_anon_50M_check_swap(const char *cgroup, void *arg)
|
|
{
|
|
long mem_max = (long)arg;
|
|
size_t size = MB(50);
|
|
char *buf, *ptr;
|
|
long mem_current, swap_current;
|
|
int ret = -1;
|
|
|
|
buf = malloc(size);
|
|
if (buf == NULL) {
|
|
fprintf(stderr, "malloc() failed\n");
|
|
return -1;
|
|
}
|
|
|
|
for (ptr = buf; ptr < buf + size; ptr += PAGE_SIZE)
|
|
*ptr = 0;
|
|
|
|
mem_current = cg_read_long(cgroup, "memory.current");
|
|
if (!mem_current || !values_close(mem_current, mem_max, 3))
|
|
goto cleanup;
|
|
|
|
swap_current = cg_read_long(cgroup, "memory.swap.current");
|
|
if (!swap_current ||
|
|
!values_close(mem_current + swap_current, size, 3))
|
|
goto cleanup;
|
|
|
|
ret = 0;
|
|
cleanup:
|
|
free(buf);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This test checks that memory.swap.max limits the amount of
|
|
* anonymous memory which can be swapped out.
|
|
*/
|
|
static int test_memcg_swap_max(const char *root)
|
|
{
|
|
int ret = KSFT_FAIL;
|
|
char *memcg;
|
|
long max;
|
|
|
|
if (!is_swap_enabled())
|
|
return KSFT_SKIP;
|
|
|
|
memcg = cg_name(root, "memcg_test");
|
|
if (!memcg)
|
|
goto cleanup;
|
|
|
|
if (cg_create(memcg))
|
|
goto cleanup;
|
|
|
|
if (cg_read_long(memcg, "memory.swap.current")) {
|
|
ret = KSFT_SKIP;
|
|
goto cleanup;
|
|
}
|
|
|
|
if (cg_read_strcmp(memcg, "memory.max", "max\n"))
|
|
goto cleanup;
|
|
|
|
if (cg_read_strcmp(memcg, "memory.swap.max", "max\n"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(memcg, "memory.swap.max", "30M"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(memcg, "memory.max", "30M"))
|
|
goto cleanup;
|
|
|
|
/* Should be killed by OOM killer */
|
|
if (!cg_run(memcg, alloc_anon, (void *)MB(100)))
|
|
goto cleanup;
|
|
|
|
if (cg_read_key_long(memcg, "memory.events", "oom ") != 1)
|
|
goto cleanup;
|
|
|
|
if (cg_read_key_long(memcg, "memory.events", "oom_kill ") != 1)
|
|
goto cleanup;
|
|
|
|
if (cg_run(memcg, alloc_anon_50M_check_swap, (void *)MB(30)))
|
|
goto cleanup;
|
|
|
|
max = cg_read_key_long(memcg, "memory.events", "max ");
|
|
if (max <= 0)
|
|
goto cleanup;
|
|
|
|
ret = KSFT_PASS;
|
|
|
|
cleanup:
|
|
cg_destroy(memcg);
|
|
free(memcg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This test disables swapping and tries to allocate anonymous memory
|
|
* up to OOM. Then it checks for oom and oom_kill events in
|
|
* memory.events.
|
|
*/
|
|
static int test_memcg_oom_events(const char *root)
|
|
{
|
|
int ret = KSFT_FAIL;
|
|
char *memcg;
|
|
|
|
memcg = cg_name(root, "memcg_test");
|
|
if (!memcg)
|
|
goto cleanup;
|
|
|
|
if (cg_create(memcg))
|
|
goto cleanup;
|
|
|
|
if (cg_write(memcg, "memory.max", "30M"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(memcg, "memory.swap.max", "0"))
|
|
goto cleanup;
|
|
|
|
if (!cg_run(memcg, alloc_anon, (void *)MB(100)))
|
|
goto cleanup;
|
|
|
|
if (cg_read_strcmp(memcg, "cgroup.procs", ""))
|
|
goto cleanup;
|
|
|
|
if (cg_read_key_long(memcg, "memory.events", "oom ") != 1)
|
|
goto cleanup;
|
|
|
|
if (cg_read_key_long(memcg, "memory.events", "oom_kill ") != 1)
|
|
goto cleanup;
|
|
|
|
ret = KSFT_PASS;
|
|
|
|
cleanup:
|
|
cg_destroy(memcg);
|
|
free(memcg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct tcp_server_args {
|
|
unsigned short port;
|
|
int ctl[2];
|
|
};
|
|
|
|
static int tcp_server(const char *cgroup, void *arg)
|
|
{
|
|
struct tcp_server_args *srv_args = arg;
|
|
struct sockaddr_in6 saddr = { 0 };
|
|
socklen_t slen = sizeof(saddr);
|
|
int sk, client_sk, ctl_fd, yes = 1, ret = -1;
|
|
|
|
close(srv_args->ctl[0]);
|
|
ctl_fd = srv_args->ctl[1];
|
|
|
|
saddr.sin6_family = AF_INET6;
|
|
saddr.sin6_addr = in6addr_any;
|
|
saddr.sin6_port = htons(srv_args->port);
|
|
|
|
sk = socket(AF_INET6, SOCK_STREAM, 0);
|
|
if (sk < 0)
|
|
return ret;
|
|
|
|
if (setsockopt(sk, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(yes)) < 0)
|
|
goto cleanup;
|
|
|
|
if (bind(sk, (struct sockaddr *)&saddr, slen)) {
|
|
write(ctl_fd, &errno, sizeof(errno));
|
|
goto cleanup;
|
|
}
|
|
|
|
if (listen(sk, 1))
|
|
goto cleanup;
|
|
|
|
ret = 0;
|
|
if (write(ctl_fd, &ret, sizeof(ret)) != sizeof(ret)) {
|
|
ret = -1;
|
|
goto cleanup;
|
|
}
|
|
|
|
client_sk = accept(sk, NULL, NULL);
|
|
if (client_sk < 0)
|
|
goto cleanup;
|
|
|
|
ret = -1;
|
|
for (;;) {
|
|
uint8_t buf[0x100000];
|
|
|
|
if (write(client_sk, buf, sizeof(buf)) <= 0) {
|
|
if (errno == ECONNRESET)
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
close(client_sk);
|
|
|
|
cleanup:
|
|
close(sk);
|
|
return ret;
|
|
}
|
|
|
|
static int tcp_client(const char *cgroup, unsigned short port)
|
|
{
|
|
const char server[] = "localhost";
|
|
struct addrinfo *ai;
|
|
char servport[6];
|
|
int retries = 0x10; /* nice round number */
|
|
int sk, ret;
|
|
long allocated;
|
|
|
|
allocated = cg_read_long(cgroup, "memory.current");
|
|
snprintf(servport, sizeof(servport), "%hd", port);
|
|
ret = getaddrinfo(server, servport, NULL, &ai);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sk = socket(ai->ai_family, ai->ai_socktype, ai->ai_protocol);
|
|
if (sk < 0)
|
|
goto free_ainfo;
|
|
|
|
ret = connect(sk, ai->ai_addr, ai->ai_addrlen);
|
|
if (ret < 0)
|
|
goto close_sk;
|
|
|
|
ret = KSFT_FAIL;
|
|
while (retries--) {
|
|
uint8_t buf[0x100000];
|
|
long current, sock;
|
|
|
|
if (read(sk, buf, sizeof(buf)) <= 0)
|
|
goto close_sk;
|
|
|
|
current = cg_read_long(cgroup, "memory.current");
|
|
sock = cg_read_key_long(cgroup, "memory.stat", "sock ");
|
|
|
|
if (current < 0 || sock < 0)
|
|
goto close_sk;
|
|
|
|
/* exclude the memory not related to socket connection */
|
|
if (values_close(current - allocated, sock, 10)) {
|
|
ret = KSFT_PASS;
|
|
break;
|
|
}
|
|
}
|
|
|
|
close_sk:
|
|
close(sk);
|
|
free_ainfo:
|
|
freeaddrinfo(ai);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This test checks socket memory accounting.
|
|
* The test forks a TCP server listens on a random port between 1000
|
|
* and 61000. Once it gets a client connection, it starts writing to
|
|
* its socket.
|
|
* The TCP client interleaves reads from the socket with check whether
|
|
* memory.current and memory.stat.sock are similar.
|
|
*/
|
|
static int test_memcg_sock(const char *root)
|
|
{
|
|
int bind_retries = 5, ret = KSFT_FAIL, pid, err;
|
|
unsigned short port;
|
|
char *memcg;
|
|
|
|
memcg = cg_name(root, "memcg_test");
|
|
if (!memcg)
|
|
goto cleanup;
|
|
|
|
if (cg_create(memcg))
|
|
goto cleanup;
|
|
|
|
while (bind_retries--) {
|
|
struct tcp_server_args args;
|
|
|
|
if (pipe(args.ctl))
|
|
goto cleanup;
|
|
|
|
port = args.port = 1000 + rand() % 60000;
|
|
|
|
pid = cg_run_nowait(memcg, tcp_server, &args);
|
|
if (pid < 0)
|
|
goto cleanup;
|
|
|
|
close(args.ctl[1]);
|
|
if (read(args.ctl[0], &err, sizeof(err)) != sizeof(err))
|
|
goto cleanup;
|
|
close(args.ctl[0]);
|
|
|
|
if (!err)
|
|
break;
|
|
if (err != EADDRINUSE)
|
|
goto cleanup;
|
|
|
|
waitpid(pid, NULL, 0);
|
|
}
|
|
|
|
if (err == EADDRINUSE) {
|
|
ret = KSFT_SKIP;
|
|
goto cleanup;
|
|
}
|
|
|
|
if (tcp_client(memcg, port) != KSFT_PASS)
|
|
goto cleanup;
|
|
|
|
waitpid(pid, &err, 0);
|
|
if (WEXITSTATUS(err))
|
|
goto cleanup;
|
|
|
|
if (cg_read_long(memcg, "memory.current") < 0)
|
|
goto cleanup;
|
|
|
|
if (cg_read_key_long(memcg, "memory.stat", "sock "))
|
|
goto cleanup;
|
|
|
|
ret = KSFT_PASS;
|
|
|
|
cleanup:
|
|
cg_destroy(memcg);
|
|
free(memcg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This test disables swapping and tries to allocate anonymous memory
|
|
* up to OOM with memory.group.oom set. Then it checks that all
|
|
* processes in the leaf were killed. It also checks that oom_events
|
|
* were propagated to the parent level.
|
|
*/
|
|
static int test_memcg_oom_group_leaf_events(const char *root)
|
|
{
|
|
int ret = KSFT_FAIL;
|
|
char *parent, *child;
|
|
long parent_oom_events;
|
|
|
|
parent = cg_name(root, "memcg_test_0");
|
|
child = cg_name(root, "memcg_test_0/memcg_test_1");
|
|
|
|
if (!parent || !child)
|
|
goto cleanup;
|
|
|
|
if (cg_create(parent))
|
|
goto cleanup;
|
|
|
|
if (cg_create(child))
|
|
goto cleanup;
|
|
|
|
if (cg_write(parent, "cgroup.subtree_control", "+memory"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(child, "memory.max", "50M"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(child, "memory.swap.max", "0"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(child, "memory.oom.group", "1"))
|
|
goto cleanup;
|
|
|
|
cg_run_nowait(parent, alloc_anon_noexit, (void *) MB(60));
|
|
cg_run_nowait(child, alloc_anon_noexit, (void *) MB(1));
|
|
cg_run_nowait(child, alloc_anon_noexit, (void *) MB(1));
|
|
if (!cg_run(child, alloc_anon, (void *)MB(100)))
|
|
goto cleanup;
|
|
|
|
if (cg_test_proc_killed(child))
|
|
goto cleanup;
|
|
|
|
if (cg_read_key_long(child, "memory.events", "oom_kill ") <= 0)
|
|
goto cleanup;
|
|
|
|
parent_oom_events = cg_read_key_long(
|
|
parent, "memory.events", "oom_kill ");
|
|
/*
|
|
* If memory_localevents is not enabled (the default), the parent should
|
|
* count OOM events in its children groups. Otherwise, it should not
|
|
* have observed any events.
|
|
*/
|
|
if (has_localevents && parent_oom_events != 0)
|
|
goto cleanup;
|
|
else if (!has_localevents && parent_oom_events <= 0)
|
|
goto cleanup;
|
|
|
|
ret = KSFT_PASS;
|
|
|
|
cleanup:
|
|
if (child)
|
|
cg_destroy(child);
|
|
if (parent)
|
|
cg_destroy(parent);
|
|
free(child);
|
|
free(parent);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This test disables swapping and tries to allocate anonymous memory
|
|
* up to OOM with memory.group.oom set. Then it checks that all
|
|
* processes in the parent and leaf were killed.
|
|
*/
|
|
static int test_memcg_oom_group_parent_events(const char *root)
|
|
{
|
|
int ret = KSFT_FAIL;
|
|
char *parent, *child;
|
|
|
|
parent = cg_name(root, "memcg_test_0");
|
|
child = cg_name(root, "memcg_test_0/memcg_test_1");
|
|
|
|
if (!parent || !child)
|
|
goto cleanup;
|
|
|
|
if (cg_create(parent))
|
|
goto cleanup;
|
|
|
|
if (cg_create(child))
|
|
goto cleanup;
|
|
|
|
if (cg_write(parent, "memory.max", "80M"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(parent, "memory.swap.max", "0"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(parent, "memory.oom.group", "1"))
|
|
goto cleanup;
|
|
|
|
cg_run_nowait(parent, alloc_anon_noexit, (void *) MB(60));
|
|
cg_run_nowait(child, alloc_anon_noexit, (void *) MB(1));
|
|
cg_run_nowait(child, alloc_anon_noexit, (void *) MB(1));
|
|
|
|
if (!cg_run(child, alloc_anon, (void *)MB(100)))
|
|
goto cleanup;
|
|
|
|
if (cg_test_proc_killed(child))
|
|
goto cleanup;
|
|
if (cg_test_proc_killed(parent))
|
|
goto cleanup;
|
|
|
|
ret = KSFT_PASS;
|
|
|
|
cleanup:
|
|
if (child)
|
|
cg_destroy(child);
|
|
if (parent)
|
|
cg_destroy(parent);
|
|
free(child);
|
|
free(parent);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This test disables swapping and tries to allocate anonymous memory
|
|
* up to OOM with memory.group.oom set. Then it checks that all
|
|
* processes were killed except those set with OOM_SCORE_ADJ_MIN
|
|
*/
|
|
static int test_memcg_oom_group_score_events(const char *root)
|
|
{
|
|
int ret = KSFT_FAIL;
|
|
char *memcg;
|
|
int safe_pid;
|
|
|
|
memcg = cg_name(root, "memcg_test_0");
|
|
|
|
if (!memcg)
|
|
goto cleanup;
|
|
|
|
if (cg_create(memcg))
|
|
goto cleanup;
|
|
|
|
if (cg_write(memcg, "memory.max", "50M"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(memcg, "memory.swap.max", "0"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(memcg, "memory.oom.group", "1"))
|
|
goto cleanup;
|
|
|
|
safe_pid = cg_run_nowait(memcg, alloc_anon_noexit, (void *) MB(1));
|
|
if (set_oom_adj_score(safe_pid, OOM_SCORE_ADJ_MIN))
|
|
goto cleanup;
|
|
|
|
cg_run_nowait(memcg, alloc_anon_noexit, (void *) MB(1));
|
|
if (!cg_run(memcg, alloc_anon, (void *)MB(100)))
|
|
goto cleanup;
|
|
|
|
if (cg_read_key_long(memcg, "memory.events", "oom_kill ") != 3)
|
|
goto cleanup;
|
|
|
|
if (kill(safe_pid, SIGKILL))
|
|
goto cleanup;
|
|
|
|
ret = KSFT_PASS;
|
|
|
|
cleanup:
|
|
if (memcg)
|
|
cg_destroy(memcg);
|
|
free(memcg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define T(x) { x, #x }
|
|
struct memcg_test {
|
|
int (*fn)(const char *root);
|
|
const char *name;
|
|
} tests[] = {
|
|
T(test_memcg_subtree_control),
|
|
T(test_memcg_current),
|
|
T(test_memcg_min),
|
|
T(test_memcg_low),
|
|
T(test_memcg_high),
|
|
T(test_memcg_high_sync),
|
|
T(test_memcg_max),
|
|
T(test_memcg_reclaim),
|
|
T(test_memcg_oom_events),
|
|
T(test_memcg_swap_max),
|
|
T(test_memcg_sock),
|
|
T(test_memcg_oom_group_leaf_events),
|
|
T(test_memcg_oom_group_parent_events),
|
|
T(test_memcg_oom_group_score_events),
|
|
};
|
|
#undef T
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
char root[PATH_MAX];
|
|
int i, proc_status, ret = EXIT_SUCCESS;
|
|
|
|
if (cg_find_unified_root(root, sizeof(root)))
|
|
ksft_exit_skip("cgroup v2 isn't mounted\n");
|
|
|
|
/*
|
|
* Check that memory controller is available:
|
|
* memory is listed in cgroup.controllers
|
|
*/
|
|
if (cg_read_strstr(root, "cgroup.controllers", "memory"))
|
|
ksft_exit_skip("memory controller isn't available\n");
|
|
|
|
if (cg_read_strstr(root, "cgroup.subtree_control", "memory"))
|
|
if (cg_write(root, "cgroup.subtree_control", "+memory"))
|
|
ksft_exit_skip("Failed to set memory controller\n");
|
|
|
|
proc_status = proc_mount_contains("memory_recursiveprot");
|
|
if (proc_status < 0)
|
|
ksft_exit_skip("Failed to query cgroup mount option\n");
|
|
has_recursiveprot = proc_status;
|
|
|
|
proc_status = proc_mount_contains("memory_localevents");
|
|
if (proc_status < 0)
|
|
ksft_exit_skip("Failed to query cgroup mount option\n");
|
|
has_localevents = proc_status;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(tests); i++) {
|
|
switch (tests[i].fn(root)) {
|
|
case KSFT_PASS:
|
|
ksft_test_result_pass("%s\n", tests[i].name);
|
|
break;
|
|
case KSFT_SKIP:
|
|
ksft_test_result_skip("%s\n", tests[i].name);
|
|
break;
|
|
default:
|
|
ret = EXIT_FAILURE;
|
|
ksft_test_result_fail("%s\n", tests[i].name);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|