mirror_ubuntu-kernels/tools/testing/selftests/arm64/abi/hwcap.c

779 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2022 ARM Limited.
*/
#include <errno.h>
#include <signal.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/auxv.h>
#include <sys/prctl.h>
#include <asm/hwcap.h>
#include <asm/sigcontext.h>
#include <asm/unistd.h>
#include "../../kselftest.h"
#define TESTS_PER_HWCAP 3
/*
* Function expected to generate exception when the feature is not
* supported and return when it is supported. If the specific exception
* is generated then the handler must be able to skip over the
* instruction safely.
*
* Note that it is expected that for many architecture extensions
* there are no specific traps due to no architecture state being
* added so we may not fault if running on a kernel which doesn't know
* to add the hwcap.
*/
typedef void (*sig_fn)(void);
static void aes_sigill(void)
{
/* AESE V0.16B, V0.16B */
asm volatile(".inst 0x4e284800" : : : );
}
static void atomics_sigill(void)
{
/* STADD W0, [SP] */
asm volatile(".inst 0xb82003ff" : : : );
}
static void crc32_sigill(void)
{
/* CRC32W W0, W0, W1 */
asm volatile(".inst 0x1ac14800" : : : );
}
static void cssc_sigill(void)
{
/* CNT x0, x0 */
asm volatile(".inst 0xdac01c00" : : : "x0");
}
static void fp_sigill(void)
{
asm volatile("fmov s0, #1");
}
static void ilrcpc_sigill(void)
{
/* LDAPUR W0, [SP, #8] */
asm volatile(".inst 0x994083e0" : : : );
}
static void jscvt_sigill(void)
{
/* FJCVTZS W0, D0 */
asm volatile(".inst 0x1e7e0000" : : : );
}
static void lrcpc_sigill(void)
{
/* LDAPR W0, [SP, #0] */
asm volatile(".inst 0xb8bfc3e0" : : : );
}
static void lse128_sigill(void)
{
u64 __attribute__ ((aligned (16))) mem[2] = { 10, 20 };
register u64 *memp asm ("x0") = mem;
register u64 val0 asm ("x1") = 5;
register u64 val1 asm ("x2") = 4;
/* SWPP X1, X2, [X0] */
asm volatile(".inst 0x19228001"
: "+r" (memp), "+r" (val0), "+r" (val1)
:
: "cc", "memory");
}
static void mops_sigill(void)
{
char dst[1], src[1];
register char *dstp asm ("x0") = dst;
register char *srcp asm ("x1") = src;
register long size asm ("x2") = 1;
/* CPYP [x0]!, [x1]!, x2! */
asm volatile(".inst 0x1d010440"
: "+r" (dstp), "+r" (srcp), "+r" (size)
:
: "cc", "memory");
}
static void pmull_sigill(void)
{
/* PMULL V0.1Q, V0.1D, V0.1D */
asm volatile(".inst 0x0ee0e000" : : : );
}
static void rng_sigill(void)
{
asm volatile("mrs x0, S3_3_C2_C4_0" : : : "x0");
}
static void sha1_sigill(void)
{
/* SHA1H S0, S0 */
asm volatile(".inst 0x5e280800" : : : );
}
static void sha2_sigill(void)
{
/* SHA256H Q0, Q0, V0.4S */
asm volatile(".inst 0x5e004000" : : : );
}
static void sha512_sigill(void)
{
/* SHA512H Q0, Q0, V0.2D */
asm volatile(".inst 0xce608000" : : : );
}
static void sme_sigill(void)
{
/* RDSVL x0, #0 */
asm volatile(".inst 0x04bf5800" : : : "x0");
}
static void sme2_sigill(void)
{
/* SMSTART ZA */
asm volatile("msr S0_3_C4_C5_3, xzr" : : : );
/* ZERO ZT0 */
asm volatile(".inst 0xc0480001" : : : );
/* SMSTOP */
asm volatile("msr S0_3_C4_C6_3, xzr" : : : );
}
static void sme2p1_sigill(void)
{
/* SMSTART SM */
asm volatile("msr S0_3_C4_C3_3, xzr" : : : );
/* BFCLAMP { Z0.H - Z1.H }, Z0.H, Z0.H */
asm volatile(".inst 0xc120C000" : : : );
/* SMSTOP */
asm volatile("msr S0_3_C4_C6_3, xzr" : : : );
}
static void smei16i32_sigill(void)
{
/* SMSTART */
asm volatile("msr S0_3_C4_C7_3, xzr" : : : );
/* SMOPA ZA0.S, P0/M, P0/M, Z0.B, Z0.B */
asm volatile(".inst 0xa0800000" : : : );
/* SMSTOP */
asm volatile("msr S0_3_C4_C6_3, xzr" : : : );
}
static void smebi32i32_sigill(void)
{
/* SMSTART */
asm volatile("msr S0_3_C4_C7_3, xzr" : : : );
/* BMOPA ZA0.S, P0/M, P0/M, Z0.B, Z0.B */
asm volatile(".inst 0x80800008" : : : );
/* SMSTOP */
asm volatile("msr S0_3_C4_C6_3, xzr" : : : );
}
static void smeb16b16_sigill(void)
{
/* SMSTART */
asm volatile("msr S0_3_C4_C7_3, xzr" : : : );
/* BFADD ZA.H[W0, 0], {Z0.H-Z1.H} */
asm volatile(".inst 0xC1E41C00" : : : );
/* SMSTOP */
asm volatile("msr S0_3_C4_C6_3, xzr" : : : );
}
static void smef16f16_sigill(void)
{
/* SMSTART */
asm volatile("msr S0_3_C4_C7_3, xzr" : : : );
/* FADD ZA.H[W0, 0], { Z0.H-Z1.H } */
asm volatile(".inst 0xc1a41C00" : : : );
/* SMSTOP */
asm volatile("msr S0_3_C4_C6_3, xzr" : : : );
}
static void sve_sigill(void)
{
/* RDVL x0, #0 */
asm volatile(".inst 0x04bf5000" : : : "x0");
}
static void sve2_sigill(void)
{
/* SQABS Z0.b, P0/M, Z0.B */
asm volatile(".inst 0x4408A000" : : : "z0");
}
static void sve2p1_sigill(void)
{
/* BFADD Z0.H, Z0.H, Z0.H */
asm volatile(".inst 0x65000000" : : : "z0");
}
static void sveaes_sigill(void)
{
/* AESD z0.b, z0.b, z0.b */
asm volatile(".inst 0x4522e400" : : : "z0");
}
static void sveb16b16_sigill(void)
{
/* BFADD ZA.H[W0, 0], {Z0.H-Z1.H} */
asm volatile(".inst 0xC1E41C00" : : : );
}
static void svepmull_sigill(void)
{
/* PMULLB Z0.Q, Z0.D, Z0.D */
asm volatile(".inst 0x45006800" : : : "z0");
}
static void svebitperm_sigill(void)
{
/* BDEP Z0.B, Z0.B, Z0.B */
asm volatile(".inst 0x4500b400" : : : "z0");
}
static void svesha3_sigill(void)
{
/* EOR3 Z0.D, Z0.D, Z0.D, Z0.D */
asm volatile(".inst 0x4203800" : : : "z0");
}
static void svesm4_sigill(void)
{
/* SM4E Z0.S, Z0.S, Z0.S */
asm volatile(".inst 0x4523e000" : : : "z0");
}
static void svei8mm_sigill(void)
{
/* USDOT Z0.S, Z0.B, Z0.B[0] */
asm volatile(".inst 0x44a01800" : : : "z0");
}
static void svef32mm_sigill(void)
{
/* FMMLA Z0.S, Z0.S, Z0.S */
asm volatile(".inst 0x64a0e400" : : : "z0");
}
static void svef64mm_sigill(void)
{
/* FMMLA Z0.D, Z0.D, Z0.D */
asm volatile(".inst 0x64e0e400" : : : "z0");
}
static void svebf16_sigill(void)
{
/* BFCVT Z0.H, P0/M, Z0.S */
asm volatile(".inst 0x658aa000" : : : "z0");
}
static void hbc_sigill(void)
{
/* BC.EQ +4 */
asm volatile("cmp xzr, xzr\n"
".inst 0x54000030" : : : "cc");
}
static void uscat_sigbus(void)
{
/* unaligned atomic access */
asm volatile("ADD x1, sp, #2" : : : );
/* STADD W0, [X1] */
asm volatile(".inst 0xb820003f" : : : );
}
static void lrcpc3_sigill(void)
{
int data[2] = { 1, 2 };
register int *src asm ("x0") = data;
register int data0 asm ("w2") = 0;
register int data1 asm ("w3") = 0;
/* LDIAPP w2, w3, [x0] */
asm volatile(".inst 0x99431802"
: "=r" (data0), "=r" (data1) : "r" (src) :);
}
static const struct hwcap_data {
const char *name;
unsigned long at_hwcap;
unsigned long hwcap_bit;
const char *cpuinfo;
sig_fn sigill_fn;
bool sigill_reliable;
sig_fn sigbus_fn;
bool sigbus_reliable;
} hwcaps[] = {
{
.name = "AES",
.at_hwcap = AT_HWCAP,
.hwcap_bit = HWCAP_AES,
.cpuinfo = "aes",
.sigill_fn = aes_sigill,
},
{
.name = "CRC32",
.at_hwcap = AT_HWCAP,
.hwcap_bit = HWCAP_CRC32,
.cpuinfo = "crc32",
.sigill_fn = crc32_sigill,
},
{
.name = "CSSC",
.at_hwcap = AT_HWCAP2,
.hwcap_bit = HWCAP2_CSSC,
.cpuinfo = "cssc",
.sigill_fn = cssc_sigill,
},
{
.name = "FP",
.at_hwcap = AT_HWCAP,
.hwcap_bit = HWCAP_FP,
.cpuinfo = "fp",
.sigill_fn = fp_sigill,
},
{
.name = "JSCVT",
.at_hwcap = AT_HWCAP,
.hwcap_bit = HWCAP_JSCVT,
.cpuinfo = "jscvt",
.sigill_fn = jscvt_sigill,
},
{
.name = "LRCPC",
.at_hwcap = AT_HWCAP,
.hwcap_bit = HWCAP_LRCPC,
.cpuinfo = "lrcpc",
.sigill_fn = lrcpc_sigill,
},
{
.name = "LRCPC2",
.at_hwcap = AT_HWCAP,
.hwcap_bit = HWCAP_ILRCPC,
.cpuinfo = "ilrcpc",
.sigill_fn = ilrcpc_sigill,
},
{
.name = "LRCPC3",
.at_hwcap = AT_HWCAP2,
.hwcap_bit = HWCAP2_LRCPC3,
.cpuinfo = "lrcpc3",
.sigill_fn = lrcpc3_sigill,
},
{
.name = "LSE",
.at_hwcap = AT_HWCAP,
.hwcap_bit = HWCAP_ATOMICS,
.cpuinfo = "atomics",
.sigill_fn = atomics_sigill,
},
{
.name = "LSE2",
.at_hwcap = AT_HWCAP,
.hwcap_bit = HWCAP_USCAT,
.cpuinfo = "uscat",
.sigill_fn = atomics_sigill,
.sigbus_fn = uscat_sigbus,
.sigbus_reliable = true,
},
{
.name = "LSE128",
.at_hwcap = AT_HWCAP2,
.hwcap_bit = HWCAP2_LSE128,
.cpuinfo = "lse128",
.sigill_fn = lse128_sigill,
},
{
.name = "MOPS",
.at_hwcap = AT_HWCAP2,
.hwcap_bit = HWCAP2_MOPS,
.cpuinfo = "mops",
.sigill_fn = mops_sigill,
.sigill_reliable = true,
},
{
.name = "PMULL",
.at_hwcap = AT_HWCAP,
.hwcap_bit = HWCAP_PMULL,
.cpuinfo = "pmull",
.sigill_fn = pmull_sigill,
},
{
.name = "RNG",
.at_hwcap = AT_HWCAP2,
.hwcap_bit = HWCAP2_RNG,
.cpuinfo = "rng",
.sigill_fn = rng_sigill,
},
{
.name = "RPRFM",
.at_hwcap = AT_HWCAP2,
.hwcap_bit = HWCAP2_RPRFM,
.cpuinfo = "rprfm",
},
{
.name = "SHA1",
.at_hwcap = AT_HWCAP,
.hwcap_bit = HWCAP_SHA1,
.cpuinfo = "sha1",
.sigill_fn = sha1_sigill,
},
{
.name = "SHA2",
.at_hwcap = AT_HWCAP,
.hwcap_bit = HWCAP_SHA2,
.cpuinfo = "sha2",
.sigill_fn = sha2_sigill,
},
{
.name = "SHA512",
.at_hwcap = AT_HWCAP,
.hwcap_bit = HWCAP_SHA512,
.cpuinfo = "sha512",
.sigill_fn = sha512_sigill,
},
{
.name = "SME",
.at_hwcap = AT_HWCAP2,
.hwcap_bit = HWCAP2_SME,
.cpuinfo = "sme",
.sigill_fn = sme_sigill,
.sigill_reliable = true,
},
{
.name = "SME2",
.at_hwcap = AT_HWCAP2,
.hwcap_bit = HWCAP2_SME2,
.cpuinfo = "sme2",
.sigill_fn = sme2_sigill,
.sigill_reliable = true,
},
{
.name = "SME 2.1",
.at_hwcap = AT_HWCAP2,
.hwcap_bit = HWCAP2_SME2P1,
.cpuinfo = "sme2p1",
.sigill_fn = sme2p1_sigill,
},
{
.name = "SME I16I32",
.at_hwcap = AT_HWCAP2,
.hwcap_bit = HWCAP2_SME_I16I32,
.cpuinfo = "smei16i32",
.sigill_fn = smei16i32_sigill,
},
{
.name = "SME BI32I32",
.at_hwcap = AT_HWCAP2,
.hwcap_bit = HWCAP2_SME_BI32I32,
.cpuinfo = "smebi32i32",
.sigill_fn = smebi32i32_sigill,
},
{
.name = "SME B16B16",
.at_hwcap = AT_HWCAP2,
.hwcap_bit = HWCAP2_SME_B16B16,
.cpuinfo = "smeb16b16",
.sigill_fn = smeb16b16_sigill,
},
{
.name = "SME F16F16",
.at_hwcap = AT_HWCAP2,
.hwcap_bit = HWCAP2_SME_F16F16,
.cpuinfo = "smef16f16",
.sigill_fn = smef16f16_sigill,
},
{
.name = "SVE",
.at_hwcap = AT_HWCAP,
.hwcap_bit = HWCAP_SVE,
.cpuinfo = "sve",
.sigill_fn = sve_sigill,
.sigill_reliable = true,
},
{
.name = "SVE 2",
.at_hwcap = AT_HWCAP2,
.hwcap_bit = HWCAP2_SVE2,
.cpuinfo = "sve2",
.sigill_fn = sve2_sigill,
},
{
.name = "SVE 2.1",
.at_hwcap = AT_HWCAP2,
.hwcap_bit = HWCAP2_SVE2P1,
.cpuinfo = "sve2p1",
.sigill_fn = sve2p1_sigill,
},
{
.name = "SVE AES",
.at_hwcap = AT_HWCAP2,
.hwcap_bit = HWCAP2_SVEAES,
.cpuinfo = "sveaes",
.sigill_fn = sveaes_sigill,
},
{
.name = "SVE2 B16B16",
.at_hwcap = AT_HWCAP2,
.hwcap_bit = HWCAP2_SVE_B16B16,
.cpuinfo = "sveb16b16",
.sigill_fn = sveb16b16_sigill,
},
{
.name = "SVE2 PMULL",
.at_hwcap = AT_HWCAP2,
.hwcap_bit = HWCAP2_SVEPMULL,
.cpuinfo = "svepmull",
.sigill_fn = svepmull_sigill,
},
{
.name = "SVE2 BITPERM",
.at_hwcap = AT_HWCAP2,
.hwcap_bit = HWCAP2_SVEBITPERM,
.cpuinfo = "svebitperm",
.sigill_fn = svebitperm_sigill,
},
{
.name = "SVE2 SHA3",
.at_hwcap = AT_HWCAP2,
.hwcap_bit = HWCAP2_SVESHA3,
.cpuinfo = "svesha3",
.sigill_fn = svesha3_sigill,
},
{
.name = "SVE2 SM4",
.at_hwcap = AT_HWCAP2,
.hwcap_bit = HWCAP2_SVESM4,
.cpuinfo = "svesm4",
.sigill_fn = svesm4_sigill,
},
{
.name = "SVE2 I8MM",
.at_hwcap = AT_HWCAP2,
.hwcap_bit = HWCAP2_SVEI8MM,
.cpuinfo = "svei8mm",
.sigill_fn = svei8mm_sigill,
},
{
.name = "SVE2 F32MM",
.at_hwcap = AT_HWCAP2,
.hwcap_bit = HWCAP2_SVEF32MM,
.cpuinfo = "svef32mm",
.sigill_fn = svef32mm_sigill,
},
{
.name = "SVE2 F64MM",
.at_hwcap = AT_HWCAP2,
.hwcap_bit = HWCAP2_SVEF64MM,
.cpuinfo = "svef64mm",
.sigill_fn = svef64mm_sigill,
},
{
.name = "SVE2 BF16",
.at_hwcap = AT_HWCAP2,
.hwcap_bit = HWCAP2_SVEBF16,
.cpuinfo = "svebf16",
.sigill_fn = svebf16_sigill,
},
{
.name = "SVE2 EBF16",
.at_hwcap = AT_HWCAP2,
.hwcap_bit = HWCAP2_SVE_EBF16,
.cpuinfo = "sveebf16",
},
{
.name = "HBC",
.at_hwcap = AT_HWCAP2,
.hwcap_bit = HWCAP2_HBC,
.cpuinfo = "hbc",
.sigill_fn = hbc_sigill,
.sigill_reliable = true,
},
};
typedef void (*sighandler_fn)(int, siginfo_t *, void *);
#define DEF_SIGHANDLER_FUNC(SIG, NUM) \
static bool seen_##SIG; \
static void handle_##SIG(int sig, siginfo_t *info, void *context) \
{ \
ucontext_t *uc = context; \
\
seen_##SIG = true; \
/* Skip over the offending instruction */ \
uc->uc_mcontext.pc += 4; \
}
DEF_SIGHANDLER_FUNC(sigill, SIGILL);
DEF_SIGHANDLER_FUNC(sigbus, SIGBUS);
bool cpuinfo_present(const char *name)
{
FILE *f;
char buf[2048], name_space[30], name_newline[30];
char *s;
/*
* The feature should appear with a leading space and either a
* trailing space or a newline.
*/
snprintf(name_space, sizeof(name_space), " %s ", name);
snprintf(name_newline, sizeof(name_newline), " %s\n", name);
f = fopen("/proc/cpuinfo", "r");
if (!f) {
ksft_print_msg("Failed to open /proc/cpuinfo\n");
return false;
}
while (fgets(buf, sizeof(buf), f)) {
/* Features: line? */
if (strncmp(buf, "Features\t:", strlen("Features\t:")) != 0)
continue;
/* All CPUs should be symmetric, don't read any more */
fclose(f);
s = strstr(buf, name_space);
if (s)
return true;
s = strstr(buf, name_newline);
if (s)
return true;
return false;
}
ksft_print_msg("Failed to find Features in /proc/cpuinfo\n");
fclose(f);
return false;
}
static int install_sigaction(int signum, sighandler_fn handler)
{
int ret;
struct sigaction sa;
memset(&sa, 0, sizeof(sa));
sa.sa_sigaction = handler;
sa.sa_flags = SA_RESTART | SA_SIGINFO;
sigemptyset(&sa.sa_mask);
ret = sigaction(signum, &sa, NULL);
if (ret < 0)
ksft_exit_fail_msg("Failed to install SIGNAL handler: %s (%d)\n",
strerror(errno), errno);
return ret;
}
static void uninstall_sigaction(int signum)
{
if (sigaction(signum, NULL, NULL) < 0)
ksft_exit_fail_msg("Failed to uninstall SIGNAL handler: %s (%d)\n",
strerror(errno), errno);
}
#define DEF_INST_RAISE_SIG(SIG, NUM) \
static bool inst_raise_##SIG(const struct hwcap_data *hwcap, \
bool have_hwcap) \
{ \
if (!hwcap->SIG##_fn) { \
ksft_test_result_skip(#SIG"_%s\n", hwcap->name); \
/* assume that it would raise exception in default */ \
return true; \
} \
\
install_sigaction(NUM, handle_##SIG); \
\
seen_##SIG = false; \
hwcap->SIG##_fn(); \
\
if (have_hwcap) { \
/* Should be able to use the extension */ \
ksft_test_result(!seen_##SIG, \
#SIG"_%s\n", hwcap->name); \
} else if (hwcap->SIG##_reliable) { \
/* Guaranteed a SIGNAL */ \
ksft_test_result(seen_##SIG, \
#SIG"_%s\n", hwcap->name); \
} else { \
/* Missing SIGNAL might be fine */ \
ksft_print_msg(#SIG"_%sreported for %s\n", \
seen_##SIG ? "" : "not ", \
hwcap->name); \
ksft_test_result_skip(#SIG"_%s\n", \
hwcap->name); \
} \
\
uninstall_sigaction(NUM); \
return seen_##SIG; \
}
DEF_INST_RAISE_SIG(sigill, SIGILL);
DEF_INST_RAISE_SIG(sigbus, SIGBUS);
int main(void)
{
int i;
const struct hwcap_data *hwcap;
bool have_cpuinfo, have_hwcap, raise_sigill;
ksft_print_header();
ksft_set_plan(ARRAY_SIZE(hwcaps) * TESTS_PER_HWCAP);
for (i = 0; i < ARRAY_SIZE(hwcaps); i++) {
hwcap = &hwcaps[i];
have_hwcap = getauxval(hwcap->at_hwcap) & hwcap->hwcap_bit;
have_cpuinfo = cpuinfo_present(hwcap->cpuinfo);
if (have_hwcap)
ksft_print_msg("%s present\n", hwcap->name);
ksft_test_result(have_hwcap == have_cpuinfo,
"cpuinfo_match_%s\n", hwcap->name);
/*
* Testing for SIGBUS only makes sense after make sure
* that the instruction does not cause a SIGILL signal.
*/
raise_sigill = inst_raise_sigill(hwcap, have_hwcap);
if (!raise_sigill)
inst_raise_sigbus(hwcap, have_hwcap);
else
ksft_test_result_skip("sigbus_%s\n", hwcap->name);
}
ksft_print_cnts();
return 0;
}