mirror_ubuntu-kernels/tools/perf/util/bpf_skel/lock_contention.bpf.c

566 lines
13 KiB
C

// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
// Copyright (c) 2022 Google
#include "vmlinux.h"
#include <bpf/bpf_helpers.h>
#include <bpf/bpf_tracing.h>
#include <bpf/bpf_core_read.h>
#include <asm-generic/errno-base.h>
#include "lock_data.h"
/* for collect_lock_syms(). 4096 was rejected by the verifier */
#define MAX_CPUS 1024
/* lock contention flags from include/trace/events/lock.h */
#define LCB_F_SPIN (1U << 0)
#define LCB_F_READ (1U << 1)
#define LCB_F_WRITE (1U << 2)
#define LCB_F_RT (1U << 3)
#define LCB_F_PERCPU (1U << 4)
#define LCB_F_MUTEX (1U << 5)
struct tstamp_data {
__u64 timestamp;
__u64 lock;
__u32 flags;
__s32 stack_id;
};
/* callstack storage */
struct {
__uint(type, BPF_MAP_TYPE_STACK_TRACE);
__uint(key_size, sizeof(__u32));
__uint(value_size, sizeof(__u64));
__uint(max_entries, MAX_ENTRIES);
} stacks SEC(".maps");
/* maintain timestamp at the beginning of contention */
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__type(key, int);
__type(value, struct tstamp_data);
__uint(max_entries, MAX_ENTRIES);
} tstamp SEC(".maps");
/* maintain per-CPU timestamp at the beginning of contention */
struct {
__uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
__uint(key_size, sizeof(__u32));
__uint(value_size, sizeof(struct tstamp_data));
__uint(max_entries, 1);
} tstamp_cpu SEC(".maps");
/* actual lock contention statistics */
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(struct contention_key));
__uint(value_size, sizeof(struct contention_data));
__uint(max_entries, MAX_ENTRIES);
} lock_stat SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(__u32));
__uint(value_size, sizeof(struct contention_task_data));
__uint(max_entries, MAX_ENTRIES);
} task_data SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(__u64));
__uint(value_size, sizeof(__u32));
__uint(max_entries, MAX_ENTRIES);
} lock_syms SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(__u32));
__uint(value_size, sizeof(__u8));
__uint(max_entries, 1);
} cpu_filter SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(__u32));
__uint(value_size, sizeof(__u8));
__uint(max_entries, 1);
} task_filter SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(__u32));
__uint(value_size, sizeof(__u8));
__uint(max_entries, 1);
} type_filter SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(__u64));
__uint(value_size, sizeof(__u8));
__uint(max_entries, 1);
} addr_filter SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(__u64));
__uint(value_size, sizeof(__u8));
__uint(max_entries, 1);
} cgroup_filter SEC(".maps");
struct rw_semaphore___old {
struct task_struct *owner;
} __attribute__((preserve_access_index));
struct rw_semaphore___new {
atomic_long_t owner;
} __attribute__((preserve_access_index));
struct mm_struct___old {
struct rw_semaphore mmap_sem;
} __attribute__((preserve_access_index));
struct mm_struct___new {
struct rw_semaphore mmap_lock;
} __attribute__((preserve_access_index));
/* control flags */
int enabled;
int has_cpu;
int has_task;
int has_type;
int has_addr;
int has_cgroup;
int needs_callstack;
int stack_skip;
int lock_owner;
int use_cgroup_v2;
int perf_subsys_id = -1;
/* determine the key of lock stat */
int aggr_mode;
/* error stat */
int task_fail;
int stack_fail;
int time_fail;
int data_fail;
int task_map_full;
int data_map_full;
static inline __u64 get_current_cgroup_id(void)
{
struct task_struct *task;
struct cgroup *cgrp;
if (use_cgroup_v2)
return bpf_get_current_cgroup_id();
task = bpf_get_current_task_btf();
if (perf_subsys_id == -1) {
#if __has_builtin(__builtin_preserve_enum_value)
perf_subsys_id = bpf_core_enum_value(enum cgroup_subsys_id,
perf_event_cgrp_id);
#else
perf_subsys_id = perf_event_cgrp_id;
#endif
}
cgrp = BPF_CORE_READ(task, cgroups, subsys[perf_subsys_id], cgroup);
return BPF_CORE_READ(cgrp, kn, id);
}
static inline int can_record(u64 *ctx)
{
if (has_cpu) {
__u32 cpu = bpf_get_smp_processor_id();
__u8 *ok;
ok = bpf_map_lookup_elem(&cpu_filter, &cpu);
if (!ok)
return 0;
}
if (has_task) {
__u8 *ok;
__u32 pid = bpf_get_current_pid_tgid();
ok = bpf_map_lookup_elem(&task_filter, &pid);
if (!ok)
return 0;
}
if (has_type) {
__u8 *ok;
__u32 flags = (__u32)ctx[1];
ok = bpf_map_lookup_elem(&type_filter, &flags);
if (!ok)
return 0;
}
if (has_addr) {
__u8 *ok;
__u64 addr = ctx[0];
ok = bpf_map_lookup_elem(&addr_filter, &addr);
if (!ok)
return 0;
}
if (has_cgroup) {
__u8 *ok;
__u64 cgrp = get_current_cgroup_id();
ok = bpf_map_lookup_elem(&cgroup_filter, &cgrp);
if (!ok)
return 0;
}
return 1;
}
static inline int update_task_data(struct task_struct *task)
{
struct contention_task_data *p;
int pid, err;
err = bpf_core_read(&pid, sizeof(pid), &task->pid);
if (err)
return -1;
p = bpf_map_lookup_elem(&task_data, &pid);
if (p == NULL && !task_map_full) {
struct contention_task_data data = {};
BPF_CORE_READ_STR_INTO(&data.comm, task, comm);
if (bpf_map_update_elem(&task_data, &pid, &data, BPF_NOEXIST) == -E2BIG)
task_map_full = 1;
}
return 0;
}
#ifndef __has_builtin
# define __has_builtin(x) 0
#endif
static inline struct task_struct *get_lock_owner(__u64 lock, __u32 flags)
{
struct task_struct *task;
__u64 owner = 0;
if (flags & LCB_F_MUTEX) {
struct mutex *mutex = (void *)lock;
owner = BPF_CORE_READ(mutex, owner.counter);
} else if (flags == LCB_F_READ || flags == LCB_F_WRITE) {
/*
* Support for the BPF_TYPE_MATCHES argument to the
* __builtin_preserve_type_info builtin was added at some point during
* development of clang 15 and it's what is needed for
* bpf_core_type_matches.
*/
#if __has_builtin(__builtin_preserve_type_info) && __clang_major__ >= 15
if (bpf_core_type_matches(struct rw_semaphore___old)) {
struct rw_semaphore___old *rwsem = (void *)lock;
owner = (unsigned long)BPF_CORE_READ(rwsem, owner);
} else if (bpf_core_type_matches(struct rw_semaphore___new)) {
struct rw_semaphore___new *rwsem = (void *)lock;
owner = BPF_CORE_READ(rwsem, owner.counter);
}
#else
/* assume new struct */
struct rw_semaphore *rwsem = (void *)lock;
owner = BPF_CORE_READ(rwsem, owner.counter);
#endif
}
if (!owner)
return NULL;
task = (void *)(owner & ~7UL);
return task;
}
static inline __u32 check_lock_type(__u64 lock, __u32 flags)
{
struct task_struct *curr;
struct mm_struct___old *mm_old;
struct mm_struct___new *mm_new;
struct sighand_struct *sighand;
switch (flags) {
case LCB_F_READ: /* rwsem */
case LCB_F_WRITE:
curr = bpf_get_current_task_btf();
if (curr->mm == NULL)
break;
mm_new = (void *)curr->mm;
if (bpf_core_field_exists(mm_new->mmap_lock)) {
if (&mm_new->mmap_lock == (void *)lock)
return LCD_F_MMAP_LOCK;
break;
}
mm_old = (void *)curr->mm;
if (bpf_core_field_exists(mm_old->mmap_sem)) {
if (&mm_old->mmap_sem == (void *)lock)
return LCD_F_MMAP_LOCK;
}
break;
case LCB_F_SPIN: /* spinlock */
curr = bpf_get_current_task_btf();
sighand = curr->sighand;
if (sighand && &sighand->siglock == (void *)lock)
return LCD_F_SIGHAND_LOCK;
break;
default:
break;
}
return 0;
}
static inline struct tstamp_data *get_tstamp_elem(__u32 flags)
{
__u32 pid;
struct tstamp_data *pelem;
/* Use per-cpu array map for spinlock and rwlock */
if (flags == (LCB_F_SPIN | LCB_F_READ) || flags == LCB_F_SPIN ||
flags == (LCB_F_SPIN | LCB_F_WRITE)) {
__u32 idx = 0;
pelem = bpf_map_lookup_elem(&tstamp_cpu, &idx);
/* Do not update the element for nested locks */
if (pelem && pelem->lock)
pelem = NULL;
return pelem;
}
pid = bpf_get_current_pid_tgid();
pelem = bpf_map_lookup_elem(&tstamp, &pid);
/* Do not update the element for nested locks */
if (pelem && pelem->lock)
return NULL;
if (pelem == NULL) {
struct tstamp_data zero = {};
if (bpf_map_update_elem(&tstamp, &pid, &zero, BPF_NOEXIST) < 0) {
__sync_fetch_and_add(&task_fail, 1);
return NULL;
}
pelem = bpf_map_lookup_elem(&tstamp, &pid);
if (pelem == NULL) {
__sync_fetch_and_add(&task_fail, 1);
return NULL;
}
}
return pelem;
}
SEC("tp_btf/contention_begin")
int contention_begin(u64 *ctx)
{
struct tstamp_data *pelem;
if (!enabled || !can_record(ctx))
return 0;
pelem = get_tstamp_elem(ctx[1]);
if (pelem == NULL)
return 0;
pelem->timestamp = bpf_ktime_get_ns();
pelem->lock = (__u64)ctx[0];
pelem->flags = (__u32)ctx[1];
if (needs_callstack) {
pelem->stack_id = bpf_get_stackid(ctx, &stacks,
BPF_F_FAST_STACK_CMP | stack_skip);
if (pelem->stack_id < 0)
__sync_fetch_and_add(&stack_fail, 1);
} else if (aggr_mode == LOCK_AGGR_TASK) {
struct task_struct *task;
if (lock_owner) {
task = get_lock_owner(pelem->lock, pelem->flags);
/* The flags is not used anymore. Pass the owner pid. */
if (task)
pelem->flags = BPF_CORE_READ(task, pid);
else
pelem->flags = -1U;
} else {
task = bpf_get_current_task_btf();
}
if (task) {
if (update_task_data(task) < 0 && lock_owner)
pelem->flags = -1U;
}
}
return 0;
}
SEC("tp_btf/contention_end")
int contention_end(u64 *ctx)
{
__u32 pid = 0, idx = 0;
struct tstamp_data *pelem;
struct contention_key key = {};
struct contention_data *data;
__u64 duration;
bool need_delete = false;
if (!enabled)
return 0;
/*
* For spinlock and rwlock, it needs to get the timestamp for the
* per-cpu map. However, contention_end does not have the flags
* so it cannot know whether it reads percpu or hash map.
*
* Try per-cpu map first and check if there's active contention.
* If it is, do not read hash map because it cannot go to sleeping
* locks before releasing the spinning locks.
*/
pelem = bpf_map_lookup_elem(&tstamp_cpu, &idx);
if (pelem && pelem->lock) {
if (pelem->lock != ctx[0])
return 0;
} else {
pid = bpf_get_current_pid_tgid();
pelem = bpf_map_lookup_elem(&tstamp, &pid);
if (!pelem || pelem->lock != ctx[0])
return 0;
need_delete = true;
}
duration = bpf_ktime_get_ns() - pelem->timestamp;
if ((__s64)duration < 0) {
pelem->lock = 0;
if (need_delete)
bpf_map_delete_elem(&tstamp, &pid);
__sync_fetch_and_add(&time_fail, 1);
return 0;
}
switch (aggr_mode) {
case LOCK_AGGR_CALLER:
key.stack_id = pelem->stack_id;
break;
case LOCK_AGGR_TASK:
if (lock_owner)
key.pid = pelem->flags;
else {
if (!need_delete)
pid = bpf_get_current_pid_tgid();
key.pid = pid;
}
if (needs_callstack)
key.stack_id = pelem->stack_id;
break;
case LOCK_AGGR_ADDR:
key.lock_addr_or_cgroup = pelem->lock;
if (needs_callstack)
key.stack_id = pelem->stack_id;
break;
case LOCK_AGGR_CGROUP:
key.lock_addr_or_cgroup = get_current_cgroup_id();
break;
default:
/* should not happen */
return 0;
}
data = bpf_map_lookup_elem(&lock_stat, &key);
if (!data) {
if (data_map_full) {
pelem->lock = 0;
if (need_delete)
bpf_map_delete_elem(&tstamp, &pid);
__sync_fetch_and_add(&data_fail, 1);
return 0;
}
struct contention_data first = {
.total_time = duration,
.max_time = duration,
.min_time = duration,
.count = 1,
.flags = pelem->flags,
};
int err;
if (aggr_mode == LOCK_AGGR_ADDR)
first.flags |= check_lock_type(pelem->lock, pelem->flags);
err = bpf_map_update_elem(&lock_stat, &key, &first, BPF_NOEXIST);
if (err < 0) {
if (err == -E2BIG)
data_map_full = 1;
__sync_fetch_and_add(&data_fail, 1);
}
pelem->lock = 0;
if (need_delete)
bpf_map_delete_elem(&tstamp, &pid);
return 0;
}
__sync_fetch_and_add(&data->total_time, duration);
__sync_fetch_and_add(&data->count, 1);
/* FIXME: need atomic operations */
if (data->max_time < duration)
data->max_time = duration;
if (data->min_time > duration)
data->min_time = duration;
pelem->lock = 0;
if (need_delete)
bpf_map_delete_elem(&tstamp, &pid);
return 0;
}
extern struct rq runqueues __ksym;
struct rq___old {
raw_spinlock_t lock;
} __attribute__((preserve_access_index));
struct rq___new {
raw_spinlock_t __lock;
} __attribute__((preserve_access_index));
SEC("raw_tp/bpf_test_finish")
int BPF_PROG(collect_lock_syms)
{
__u64 lock_addr, lock_off;
__u32 lock_flag;
if (bpf_core_field_exists(struct rq___new, __lock))
lock_off = offsetof(struct rq___new, __lock);
else
lock_off = offsetof(struct rq___old, lock);
for (int i = 0; i < MAX_CPUS; i++) {
struct rq *rq = bpf_per_cpu_ptr(&runqueues, i);
if (rq == NULL)
break;
lock_addr = (__u64)(void *)rq + lock_off;
lock_flag = LOCK_CLASS_RQLOCK;
bpf_map_update_elem(&lock_syms, &lock_addr, &lock_flag, BPF_ANY);
}
return 0;
}
char LICENSE[] SEC("license") = "Dual BSD/GPL";