mirror_ubuntu-kernels/net/dsa/port.c

2076 lines
50 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Handling of a single switch port
*
* Copyright (c) 2017 Savoir-faire Linux Inc.
* Vivien Didelot <vivien.didelot@savoirfairelinux.com>
*/
#include <linux/if_bridge.h>
#include <linux/netdevice.h>
#include <linux/notifier.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include "dsa.h"
#include "port.h"
#include "switch.h"
#include "tag_8021q.h"
#include "user.h"
/**
* dsa_port_notify - Notify the switching fabric of changes to a port
* @dp: port on which change occurred
* @e: event, must be of type DSA_NOTIFIER_*
* @v: event-specific value.
*
* Notify all switches in the DSA tree that this port's switch belongs to,
* including this switch itself, of an event. Allows the other switches to
* reconfigure themselves for cross-chip operations. Can also be used to
* reconfigure ports without net_devices (CPU ports, DSA links) whenever
* a user port's state changes.
*/
static int dsa_port_notify(const struct dsa_port *dp, unsigned long e, void *v)
{
return dsa_tree_notify(dp->ds->dst, e, v);
}
static void dsa_port_notify_bridge_fdb_flush(const struct dsa_port *dp, u16 vid)
{
struct net_device *brport_dev = dsa_port_to_bridge_port(dp);
struct switchdev_notifier_fdb_info info = {
.vid = vid,
};
/* When the port becomes standalone it has already left the bridge.
* Don't notify the bridge in that case.
*/
if (!brport_dev)
return;
call_switchdev_notifiers(SWITCHDEV_FDB_FLUSH_TO_BRIDGE,
brport_dev, &info.info, NULL);
}
static void dsa_port_fast_age(const struct dsa_port *dp)
{
struct dsa_switch *ds = dp->ds;
if (!ds->ops->port_fast_age)
return;
ds->ops->port_fast_age(ds, dp->index);
/* flush all VLANs */
dsa_port_notify_bridge_fdb_flush(dp, 0);
}
static int dsa_port_vlan_fast_age(const struct dsa_port *dp, u16 vid)
{
struct dsa_switch *ds = dp->ds;
int err;
if (!ds->ops->port_vlan_fast_age)
return -EOPNOTSUPP;
err = ds->ops->port_vlan_fast_age(ds, dp->index, vid);
if (!err)
dsa_port_notify_bridge_fdb_flush(dp, vid);
return err;
}
static int dsa_port_msti_fast_age(const struct dsa_port *dp, u16 msti)
{
DECLARE_BITMAP(vids, VLAN_N_VID) = { 0 };
int err, vid;
err = br_mst_get_info(dsa_port_bridge_dev_get(dp), msti, vids);
if (err)
return err;
for_each_set_bit(vid, vids, VLAN_N_VID) {
err = dsa_port_vlan_fast_age(dp, vid);
if (err)
return err;
}
return 0;
}
static bool dsa_port_can_configure_learning(struct dsa_port *dp)
{
struct switchdev_brport_flags flags = {
.mask = BR_LEARNING,
};
struct dsa_switch *ds = dp->ds;
int err;
if (!ds->ops->port_bridge_flags || !ds->ops->port_pre_bridge_flags)
return false;
err = ds->ops->port_pre_bridge_flags(ds, dp->index, flags, NULL);
return !err;
}
bool dsa_port_supports_hwtstamp(struct dsa_port *dp)
{
struct dsa_switch *ds = dp->ds;
struct ifreq ifr = {};
int err;
if (!ds->ops->port_hwtstamp_get || !ds->ops->port_hwtstamp_set)
return false;
/* "See through" shim implementations of the "get" method.
* Since we can't cook up a complete ioctl request structure, this will
* fail in copy_to_user() with -EFAULT, which hopefully is enough to
* detect a valid implementation.
*/
err = ds->ops->port_hwtstamp_get(ds, dp->index, &ifr);
return err != -EOPNOTSUPP;
}
int dsa_port_set_state(struct dsa_port *dp, u8 state, bool do_fast_age)
{
struct dsa_switch *ds = dp->ds;
int port = dp->index;
if (!ds->ops->port_stp_state_set)
return -EOPNOTSUPP;
ds->ops->port_stp_state_set(ds, port, state);
if (!dsa_port_can_configure_learning(dp) ||
(do_fast_age && dp->learning)) {
/* Fast age FDB entries or flush appropriate forwarding database
* for the given port, if we are moving it from Learning or
* Forwarding state, to Disabled or Blocking or Listening state.
* Ports that were standalone before the STP state change don't
* need to fast age the FDB, since address learning is off in
* standalone mode.
*/
if ((dp->stp_state == BR_STATE_LEARNING ||
dp->stp_state == BR_STATE_FORWARDING) &&
(state == BR_STATE_DISABLED ||
state == BR_STATE_BLOCKING ||
state == BR_STATE_LISTENING))
dsa_port_fast_age(dp);
}
dp->stp_state = state;
return 0;
}
static void dsa_port_set_state_now(struct dsa_port *dp, u8 state,
bool do_fast_age)
{
struct dsa_switch *ds = dp->ds;
int err;
err = dsa_port_set_state(dp, state, do_fast_age);
if (err && err != -EOPNOTSUPP) {
dev_err(ds->dev, "port %d failed to set STP state %u: %pe\n",
dp->index, state, ERR_PTR(err));
}
}
int dsa_port_set_mst_state(struct dsa_port *dp,
const struct switchdev_mst_state *state,
struct netlink_ext_ack *extack)
{
struct dsa_switch *ds = dp->ds;
u8 prev_state;
int err;
if (!ds->ops->port_mst_state_set)
return -EOPNOTSUPP;
err = br_mst_get_state(dsa_port_to_bridge_port(dp), state->msti,
&prev_state);
if (err)
return err;
err = ds->ops->port_mst_state_set(ds, dp->index, state);
if (err)
return err;
if (!(dp->learning &&
(prev_state == BR_STATE_LEARNING ||
prev_state == BR_STATE_FORWARDING) &&
(state->state == BR_STATE_DISABLED ||
state->state == BR_STATE_BLOCKING ||
state->state == BR_STATE_LISTENING)))
return 0;
err = dsa_port_msti_fast_age(dp, state->msti);
if (err)
NL_SET_ERR_MSG_MOD(extack,
"Unable to flush associated VLANs");
return 0;
}
int dsa_port_enable_rt(struct dsa_port *dp, struct phy_device *phy)
{
struct dsa_switch *ds = dp->ds;
int port = dp->index;
int err;
if (ds->ops->port_enable) {
err = ds->ops->port_enable(ds, port, phy);
if (err)
return err;
}
if (!dp->bridge)
dsa_port_set_state_now(dp, BR_STATE_FORWARDING, false);
if (dp->pl)
phylink_start(dp->pl);
return 0;
}
int dsa_port_enable(struct dsa_port *dp, struct phy_device *phy)
{
int err;
rtnl_lock();
err = dsa_port_enable_rt(dp, phy);
rtnl_unlock();
return err;
}
void dsa_port_disable_rt(struct dsa_port *dp)
{
struct dsa_switch *ds = dp->ds;
int port = dp->index;
if (dp->pl)
phylink_stop(dp->pl);
if (!dp->bridge)
dsa_port_set_state_now(dp, BR_STATE_DISABLED, false);
if (ds->ops->port_disable)
ds->ops->port_disable(ds, port);
}
void dsa_port_disable(struct dsa_port *dp)
{
rtnl_lock();
dsa_port_disable_rt(dp);
rtnl_unlock();
}
static void dsa_port_reset_vlan_filtering(struct dsa_port *dp,
struct dsa_bridge bridge)
{
struct netlink_ext_ack extack = {0};
bool change_vlan_filtering = false;
struct dsa_switch *ds = dp->ds;
struct dsa_port *other_dp;
bool vlan_filtering;
int err;
if (ds->needs_standalone_vlan_filtering &&
!br_vlan_enabled(bridge.dev)) {
change_vlan_filtering = true;
vlan_filtering = true;
} else if (!ds->needs_standalone_vlan_filtering &&
br_vlan_enabled(bridge.dev)) {
change_vlan_filtering = true;
vlan_filtering = false;
}
/* If the bridge was vlan_filtering, the bridge core doesn't trigger an
* event for changing vlan_filtering setting upon user ports leaving
* it. That is a good thing, because that lets us handle it and also
* handle the case where the switch's vlan_filtering setting is global
* (not per port). When that happens, the correct moment to trigger the
* vlan_filtering callback is only when the last port leaves the last
* VLAN-aware bridge.
*/
if (change_vlan_filtering && ds->vlan_filtering_is_global) {
dsa_switch_for_each_port(other_dp, ds) {
struct net_device *br = dsa_port_bridge_dev_get(other_dp);
if (br && br_vlan_enabled(br)) {
change_vlan_filtering = false;
break;
}
}
}
if (!change_vlan_filtering)
return;
err = dsa_port_vlan_filtering(dp, vlan_filtering, &extack);
if (extack._msg) {
dev_err(ds->dev, "port %d: %s\n", dp->index,
extack._msg);
}
if (err && err != -EOPNOTSUPP) {
dev_err(ds->dev,
"port %d failed to reset VLAN filtering to %d: %pe\n",
dp->index, vlan_filtering, ERR_PTR(err));
}
}
static int dsa_port_inherit_brport_flags(struct dsa_port *dp,
struct netlink_ext_ack *extack)
{
const unsigned long mask = BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
BR_BCAST_FLOOD | BR_PORT_LOCKED;
struct net_device *brport_dev = dsa_port_to_bridge_port(dp);
int flag, err;
for_each_set_bit(flag, &mask, 32) {
struct switchdev_brport_flags flags = {0};
flags.mask = BIT(flag);
if (br_port_flag_is_set(brport_dev, BIT(flag)))
flags.val = BIT(flag);
err = dsa_port_bridge_flags(dp, flags, extack);
if (err && err != -EOPNOTSUPP)
return err;
}
return 0;
}
static void dsa_port_clear_brport_flags(struct dsa_port *dp)
{
const unsigned long val = BR_FLOOD | BR_MCAST_FLOOD | BR_BCAST_FLOOD;
const unsigned long mask = BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
BR_BCAST_FLOOD | BR_PORT_LOCKED;
int flag, err;
for_each_set_bit(flag, &mask, 32) {
struct switchdev_brport_flags flags = {0};
flags.mask = BIT(flag);
flags.val = val & BIT(flag);
err = dsa_port_bridge_flags(dp, flags, NULL);
if (err && err != -EOPNOTSUPP)
dev_err(dp->ds->dev,
"failed to clear bridge port flag %lu: %pe\n",
flags.val, ERR_PTR(err));
}
}
static int dsa_port_switchdev_sync_attrs(struct dsa_port *dp,
struct netlink_ext_ack *extack)
{
struct net_device *brport_dev = dsa_port_to_bridge_port(dp);
struct net_device *br = dsa_port_bridge_dev_get(dp);
int err;
err = dsa_port_inherit_brport_flags(dp, extack);
if (err)
return err;
err = dsa_port_set_state(dp, br_port_get_stp_state(brport_dev), false);
if (err && err != -EOPNOTSUPP)
return err;
err = dsa_port_vlan_filtering(dp, br_vlan_enabled(br), extack);
if (err && err != -EOPNOTSUPP)
return err;
err = dsa_port_ageing_time(dp, br_get_ageing_time(br));
if (err && err != -EOPNOTSUPP)
return err;
return 0;
}
static void dsa_port_switchdev_unsync_attrs(struct dsa_port *dp,
struct dsa_bridge bridge)
{
/* Configure the port for standalone mode (no address learning,
* flood everything).
* The bridge only emits SWITCHDEV_ATTR_ID_PORT_BRIDGE_FLAGS events
* when the user requests it through netlink or sysfs, but not
* automatically at port join or leave, so we need to handle resetting
* the brport flags ourselves. But we even prefer it that way, because
* otherwise, some setups might never get the notification they need,
* for example, when a port leaves a LAG that offloads the bridge,
* it becomes standalone, but as far as the bridge is concerned, no
* port ever left.
*/
dsa_port_clear_brport_flags(dp);
/* Port left the bridge, put in BR_STATE_DISABLED by the bridge layer,
* so allow it to be in BR_STATE_FORWARDING to be kept functional
*/
dsa_port_set_state_now(dp, BR_STATE_FORWARDING, true);
dsa_port_reset_vlan_filtering(dp, bridge);
/* Ageing time may be global to the switch chip, so don't change it
* here because we have no good reason (or value) to change it to.
*/
}
static int dsa_port_bridge_create(struct dsa_port *dp,
struct net_device *br,
struct netlink_ext_ack *extack)
{
struct dsa_switch *ds = dp->ds;
struct dsa_bridge *bridge;
bridge = dsa_tree_bridge_find(ds->dst, br);
if (bridge) {
refcount_inc(&bridge->refcount);
dp->bridge = bridge;
return 0;
}
bridge = kzalloc(sizeof(*bridge), GFP_KERNEL);
if (!bridge)
return -ENOMEM;
refcount_set(&bridge->refcount, 1);
bridge->dev = br;
bridge->num = dsa_bridge_num_get(br, ds->max_num_bridges);
if (ds->max_num_bridges && !bridge->num) {
NL_SET_ERR_MSG_MOD(extack,
"Range of offloadable bridges exceeded");
kfree(bridge);
return -EOPNOTSUPP;
}
dp->bridge = bridge;
return 0;
}
static void dsa_port_bridge_destroy(struct dsa_port *dp,
const struct net_device *br)
{
struct dsa_bridge *bridge = dp->bridge;
dp->bridge = NULL;
if (!refcount_dec_and_test(&bridge->refcount))
return;
if (bridge->num)
dsa_bridge_num_put(br, bridge->num);
kfree(bridge);
}
static bool dsa_port_supports_mst(struct dsa_port *dp)
{
struct dsa_switch *ds = dp->ds;
return ds->ops->vlan_msti_set &&
ds->ops->port_mst_state_set &&
ds->ops->port_vlan_fast_age &&
dsa_port_can_configure_learning(dp);
}
int dsa_port_bridge_join(struct dsa_port *dp, struct net_device *br,
struct netlink_ext_ack *extack)
{
struct dsa_notifier_bridge_info info = {
.dp = dp,
.extack = extack,
};
struct net_device *dev = dp->user;
struct net_device *brport_dev;
int err;
if (br_mst_enabled(br) && !dsa_port_supports_mst(dp))
return -EOPNOTSUPP;
/* Here the interface is already bridged. Reflect the current
* configuration so that drivers can program their chips accordingly.
*/
err = dsa_port_bridge_create(dp, br, extack);
if (err)
return err;
brport_dev = dsa_port_to_bridge_port(dp);
info.bridge = *dp->bridge;
err = dsa_broadcast(DSA_NOTIFIER_BRIDGE_JOIN, &info);
if (err)
goto out_rollback;
/* Drivers which support bridge TX forwarding should set this */
dp->bridge->tx_fwd_offload = info.tx_fwd_offload;
err = switchdev_bridge_port_offload(brport_dev, dev, dp,
&dsa_user_switchdev_notifier,
&dsa_user_switchdev_blocking_notifier,
dp->bridge->tx_fwd_offload, extack);
if (err)
goto out_rollback_unbridge;
err = dsa_port_switchdev_sync_attrs(dp, extack);
if (err)
goto out_rollback_unoffload;
return 0;
out_rollback_unoffload:
switchdev_bridge_port_unoffload(brport_dev, dp,
&dsa_user_switchdev_notifier,
&dsa_user_switchdev_blocking_notifier);
dsa_flush_workqueue();
out_rollback_unbridge:
dsa_broadcast(DSA_NOTIFIER_BRIDGE_LEAVE, &info);
out_rollback:
dsa_port_bridge_destroy(dp, br);
return err;
}
void dsa_port_pre_bridge_leave(struct dsa_port *dp, struct net_device *br)
{
struct net_device *brport_dev = dsa_port_to_bridge_port(dp);
/* Don't try to unoffload something that is not offloaded */
if (!brport_dev)
return;
switchdev_bridge_port_unoffload(brport_dev, dp,
&dsa_user_switchdev_notifier,
&dsa_user_switchdev_blocking_notifier);
dsa_flush_workqueue();
}
void dsa_port_bridge_leave(struct dsa_port *dp, struct net_device *br)
{
struct dsa_notifier_bridge_info info = {
.dp = dp,
};
int err;
/* If the port could not be offloaded to begin with, then
* there is nothing to do.
*/
if (!dp->bridge)
return;
info.bridge = *dp->bridge;
/* Here the port is already unbridged. Reflect the current configuration
* so that drivers can program their chips accordingly.
*/
dsa_port_bridge_destroy(dp, br);
err = dsa_broadcast(DSA_NOTIFIER_BRIDGE_LEAVE, &info);
if (err)
dev_err(dp->ds->dev,
"port %d failed to notify DSA_NOTIFIER_BRIDGE_LEAVE: %pe\n",
dp->index, ERR_PTR(err));
dsa_port_switchdev_unsync_attrs(dp, info.bridge);
}
int dsa_port_lag_change(struct dsa_port *dp,
struct netdev_lag_lower_state_info *linfo)
{
struct dsa_notifier_lag_info info = {
.dp = dp,
};
bool tx_enabled;
if (!dp->lag)
return 0;
/* On statically configured aggregates (e.g. loadbalance
* without LACP) ports will always be tx_enabled, even if the
* link is down. Thus we require both link_up and tx_enabled
* in order to include it in the tx set.
*/
tx_enabled = linfo->link_up && linfo->tx_enabled;
if (tx_enabled == dp->lag_tx_enabled)
return 0;
dp->lag_tx_enabled = tx_enabled;
return dsa_port_notify(dp, DSA_NOTIFIER_LAG_CHANGE, &info);
}
static int dsa_port_lag_create(struct dsa_port *dp,
struct net_device *lag_dev)
{
struct dsa_switch *ds = dp->ds;
struct dsa_lag *lag;
lag = dsa_tree_lag_find(ds->dst, lag_dev);
if (lag) {
refcount_inc(&lag->refcount);
dp->lag = lag;
return 0;
}
lag = kzalloc(sizeof(*lag), GFP_KERNEL);
if (!lag)
return -ENOMEM;
refcount_set(&lag->refcount, 1);
mutex_init(&lag->fdb_lock);
INIT_LIST_HEAD(&lag->fdbs);
lag->dev = lag_dev;
dsa_lag_map(ds->dst, lag);
dp->lag = lag;
return 0;
}
static void dsa_port_lag_destroy(struct dsa_port *dp)
{
struct dsa_lag *lag = dp->lag;
dp->lag = NULL;
dp->lag_tx_enabled = false;
if (!refcount_dec_and_test(&lag->refcount))
return;
WARN_ON(!list_empty(&lag->fdbs));
dsa_lag_unmap(dp->ds->dst, lag);
kfree(lag);
}
int dsa_port_lag_join(struct dsa_port *dp, struct net_device *lag_dev,
struct netdev_lag_upper_info *uinfo,
struct netlink_ext_ack *extack)
{
struct dsa_notifier_lag_info info = {
.dp = dp,
.info = uinfo,
.extack = extack,
};
struct net_device *bridge_dev;
int err;
err = dsa_port_lag_create(dp, lag_dev);
if (err)
goto err_lag_create;
info.lag = *dp->lag;
err = dsa_port_notify(dp, DSA_NOTIFIER_LAG_JOIN, &info);
if (err)
goto err_lag_join;
bridge_dev = netdev_master_upper_dev_get(lag_dev);
if (!bridge_dev || !netif_is_bridge_master(bridge_dev))
return 0;
err = dsa_port_bridge_join(dp, bridge_dev, extack);
if (err)
goto err_bridge_join;
return 0;
err_bridge_join:
dsa_port_notify(dp, DSA_NOTIFIER_LAG_LEAVE, &info);
err_lag_join:
dsa_port_lag_destroy(dp);
err_lag_create:
return err;
}
void dsa_port_pre_lag_leave(struct dsa_port *dp, struct net_device *lag_dev)
{
struct net_device *br = dsa_port_bridge_dev_get(dp);
if (br)
dsa_port_pre_bridge_leave(dp, br);
}
void dsa_port_lag_leave(struct dsa_port *dp, struct net_device *lag_dev)
{
struct net_device *br = dsa_port_bridge_dev_get(dp);
struct dsa_notifier_lag_info info = {
.dp = dp,
};
int err;
if (!dp->lag)
return;
/* Port might have been part of a LAG that in turn was
* attached to a bridge.
*/
if (br)
dsa_port_bridge_leave(dp, br);
info.lag = *dp->lag;
dsa_port_lag_destroy(dp);
err = dsa_port_notify(dp, DSA_NOTIFIER_LAG_LEAVE, &info);
if (err)
dev_err(dp->ds->dev,
"port %d failed to notify DSA_NOTIFIER_LAG_LEAVE: %pe\n",
dp->index, ERR_PTR(err));
}
/* Must be called under rcu_read_lock() */
static bool dsa_port_can_apply_vlan_filtering(struct dsa_port *dp,
bool vlan_filtering,
struct netlink_ext_ack *extack)
{
struct dsa_switch *ds = dp->ds;
struct dsa_port *other_dp;
int err;
/* VLAN awareness was off, so the question is "can we turn it on".
* We may have had 8021q uppers, those need to go. Make sure we don't
* enter an inconsistent state: deny changing the VLAN awareness state
* as long as we have 8021q uppers.
*/
if (vlan_filtering && dsa_port_is_user(dp)) {
struct net_device *br = dsa_port_bridge_dev_get(dp);
struct net_device *upper_dev, *user = dp->user;
struct list_head *iter;
netdev_for_each_upper_dev_rcu(user, upper_dev, iter) {
struct bridge_vlan_info br_info;
u16 vid;
if (!is_vlan_dev(upper_dev))
continue;
vid = vlan_dev_vlan_id(upper_dev);
/* br_vlan_get_info() returns -EINVAL or -ENOENT if the
* device, respectively the VID is not found, returning
* 0 means success, which is a failure for us here.
*/
err = br_vlan_get_info(br, vid, &br_info);
if (err == 0) {
NL_SET_ERR_MSG_MOD(extack,
"Must first remove VLAN uppers having VIDs also present in bridge");
return false;
}
}
}
if (!ds->vlan_filtering_is_global)
return true;
/* For cases where enabling/disabling VLAN awareness is global to the
* switch, we need to handle the case where multiple bridges span
* different ports of the same switch device and one of them has a
* different setting than what is being requested.
*/
dsa_switch_for_each_port(other_dp, ds) {
struct net_device *other_br = dsa_port_bridge_dev_get(other_dp);
/* If it's the same bridge, it also has same
* vlan_filtering setting => no need to check
*/
if (!other_br || other_br == dsa_port_bridge_dev_get(dp))
continue;
if (br_vlan_enabled(other_br) != vlan_filtering) {
NL_SET_ERR_MSG_MOD(extack,
"VLAN filtering is a global setting");
return false;
}
}
return true;
}
int dsa_port_vlan_filtering(struct dsa_port *dp, bool vlan_filtering,
struct netlink_ext_ack *extack)
{
bool old_vlan_filtering = dsa_port_is_vlan_filtering(dp);
struct dsa_switch *ds = dp->ds;
bool apply;
int err;
if (!ds->ops->port_vlan_filtering)
return -EOPNOTSUPP;
/* We are called from dsa_user_switchdev_blocking_event(),
* which is not under rcu_read_lock(), unlike
* dsa_user_switchdev_event().
*/
rcu_read_lock();
apply = dsa_port_can_apply_vlan_filtering(dp, vlan_filtering, extack);
rcu_read_unlock();
if (!apply)
return -EINVAL;
if (dsa_port_is_vlan_filtering(dp) == vlan_filtering)
return 0;
err = ds->ops->port_vlan_filtering(ds, dp->index, vlan_filtering,
extack);
if (err)
return err;
if (ds->vlan_filtering_is_global) {
struct dsa_port *other_dp;
ds->vlan_filtering = vlan_filtering;
dsa_switch_for_each_user_port(other_dp, ds) {
struct net_device *user = other_dp->user;
/* We might be called in the unbind path, so not
* all user devices might still be registered.
*/
if (!user)
continue;
err = dsa_user_manage_vlan_filtering(user,
vlan_filtering);
if (err)
goto restore;
}
} else {
dp->vlan_filtering = vlan_filtering;
err = dsa_user_manage_vlan_filtering(dp->user,
vlan_filtering);
if (err)
goto restore;
}
return 0;
restore:
ds->ops->port_vlan_filtering(ds, dp->index, old_vlan_filtering, NULL);
if (ds->vlan_filtering_is_global)
ds->vlan_filtering = old_vlan_filtering;
else
dp->vlan_filtering = old_vlan_filtering;
return err;
}
/* This enforces legacy behavior for switch drivers which assume they can't
* receive VLAN configuration when joining a bridge with vlan_filtering=0
*/
bool dsa_port_skip_vlan_configuration(struct dsa_port *dp)
{
struct net_device *br = dsa_port_bridge_dev_get(dp);
struct dsa_switch *ds = dp->ds;
if (!br)
return false;
return !ds->configure_vlan_while_not_filtering && !br_vlan_enabled(br);
}
int dsa_port_ageing_time(struct dsa_port *dp, clock_t ageing_clock)
{
unsigned long ageing_jiffies = clock_t_to_jiffies(ageing_clock);
unsigned int ageing_time = jiffies_to_msecs(ageing_jiffies);
struct dsa_notifier_ageing_time_info info;
int err;
info.ageing_time = ageing_time;
err = dsa_port_notify(dp, DSA_NOTIFIER_AGEING_TIME, &info);
if (err)
return err;
dp->ageing_time = ageing_time;
return 0;
}
int dsa_port_mst_enable(struct dsa_port *dp, bool on,
struct netlink_ext_ack *extack)
{
if (on && !dsa_port_supports_mst(dp)) {
NL_SET_ERR_MSG_MOD(extack, "Hardware does not support MST");
return -EINVAL;
}
return 0;
}
int dsa_port_pre_bridge_flags(const struct dsa_port *dp,
struct switchdev_brport_flags flags,
struct netlink_ext_ack *extack)
{
struct dsa_switch *ds = dp->ds;
if (!ds->ops->port_pre_bridge_flags)
return -EINVAL;
return ds->ops->port_pre_bridge_flags(ds, dp->index, flags, extack);
}
int dsa_port_bridge_flags(struct dsa_port *dp,
struct switchdev_brport_flags flags,
struct netlink_ext_ack *extack)
{
struct dsa_switch *ds = dp->ds;
int err;
if (!ds->ops->port_bridge_flags)
return -EOPNOTSUPP;
err = ds->ops->port_bridge_flags(ds, dp->index, flags, extack);
if (err)
return err;
if (flags.mask & BR_LEARNING) {
bool learning = flags.val & BR_LEARNING;
if (learning == dp->learning)
return 0;
if ((dp->learning && !learning) &&
(dp->stp_state == BR_STATE_LEARNING ||
dp->stp_state == BR_STATE_FORWARDING))
dsa_port_fast_age(dp);
dp->learning = learning;
}
return 0;
}
void dsa_port_set_host_flood(struct dsa_port *dp, bool uc, bool mc)
{
struct dsa_switch *ds = dp->ds;
if (ds->ops->port_set_host_flood)
ds->ops->port_set_host_flood(ds, dp->index, uc, mc);
}
int dsa_port_vlan_msti(struct dsa_port *dp,
const struct switchdev_vlan_msti *msti)
{
struct dsa_switch *ds = dp->ds;
if (!ds->ops->vlan_msti_set)
return -EOPNOTSUPP;
return ds->ops->vlan_msti_set(ds, *dp->bridge, msti);
}
int dsa_port_mtu_change(struct dsa_port *dp, int new_mtu)
{
struct dsa_notifier_mtu_info info = {
.dp = dp,
.mtu = new_mtu,
};
return dsa_port_notify(dp, DSA_NOTIFIER_MTU, &info);
}
int dsa_port_fdb_add(struct dsa_port *dp, const unsigned char *addr,
u16 vid)
{
struct dsa_notifier_fdb_info info = {
.dp = dp,
.addr = addr,
.vid = vid,
.db = {
.type = DSA_DB_BRIDGE,
.bridge = *dp->bridge,
},
};
/* Refcounting takes bridge.num as a key, and should be global for all
* bridges in the absence of FDB isolation, and per bridge otherwise.
* Force the bridge.num to zero here in the absence of FDB isolation.
*/
if (!dp->ds->fdb_isolation)
info.db.bridge.num = 0;
return dsa_port_notify(dp, DSA_NOTIFIER_FDB_ADD, &info);
}
int dsa_port_fdb_del(struct dsa_port *dp, const unsigned char *addr,
u16 vid)
{
struct dsa_notifier_fdb_info info = {
.dp = dp,
.addr = addr,
.vid = vid,
.db = {
.type = DSA_DB_BRIDGE,
.bridge = *dp->bridge,
},
};
if (!dp->ds->fdb_isolation)
info.db.bridge.num = 0;
return dsa_port_notify(dp, DSA_NOTIFIER_FDB_DEL, &info);
}
static int dsa_port_host_fdb_add(struct dsa_port *dp,
const unsigned char *addr, u16 vid,
struct dsa_db db)
{
struct dsa_notifier_fdb_info info = {
.dp = dp,
.addr = addr,
.vid = vid,
.db = db,
};
return dsa_port_notify(dp, DSA_NOTIFIER_HOST_FDB_ADD, &info);
}
int dsa_port_standalone_host_fdb_add(struct dsa_port *dp,
const unsigned char *addr, u16 vid)
{
struct dsa_db db = {
.type = DSA_DB_PORT,
.dp = dp,
};
return dsa_port_host_fdb_add(dp, addr, vid, db);
}
int dsa_port_bridge_host_fdb_add(struct dsa_port *dp,
const unsigned char *addr, u16 vid)
{
struct net_device *conduit = dsa_port_to_conduit(dp);
struct dsa_db db = {
.type = DSA_DB_BRIDGE,
.bridge = *dp->bridge,
};
int err;
if (!dp->ds->fdb_isolation)
db.bridge.num = 0;
/* Avoid a call to __dev_set_promiscuity() on the conduit, which
* requires rtnl_lock(), since we can't guarantee that is held here,
* and we can't take it either.
*/
if (conduit->priv_flags & IFF_UNICAST_FLT) {
err = dev_uc_add(conduit, addr);
if (err)
return err;
}
return dsa_port_host_fdb_add(dp, addr, vid, db);
}
static int dsa_port_host_fdb_del(struct dsa_port *dp,
const unsigned char *addr, u16 vid,
struct dsa_db db)
{
struct dsa_notifier_fdb_info info = {
.dp = dp,
.addr = addr,
.vid = vid,
.db = db,
};
return dsa_port_notify(dp, DSA_NOTIFIER_HOST_FDB_DEL, &info);
}
int dsa_port_standalone_host_fdb_del(struct dsa_port *dp,
const unsigned char *addr, u16 vid)
{
struct dsa_db db = {
.type = DSA_DB_PORT,
.dp = dp,
};
return dsa_port_host_fdb_del(dp, addr, vid, db);
}
int dsa_port_bridge_host_fdb_del(struct dsa_port *dp,
const unsigned char *addr, u16 vid)
{
struct net_device *conduit = dsa_port_to_conduit(dp);
struct dsa_db db = {
.type = DSA_DB_BRIDGE,
.bridge = *dp->bridge,
};
int err;
if (!dp->ds->fdb_isolation)
db.bridge.num = 0;
if (conduit->priv_flags & IFF_UNICAST_FLT) {
err = dev_uc_del(conduit, addr);
if (err)
return err;
}
return dsa_port_host_fdb_del(dp, addr, vid, db);
}
int dsa_port_lag_fdb_add(struct dsa_port *dp, const unsigned char *addr,
u16 vid)
{
struct dsa_notifier_lag_fdb_info info = {
.lag = dp->lag,
.addr = addr,
.vid = vid,
.db = {
.type = DSA_DB_BRIDGE,
.bridge = *dp->bridge,
},
};
if (!dp->ds->fdb_isolation)
info.db.bridge.num = 0;
return dsa_port_notify(dp, DSA_NOTIFIER_LAG_FDB_ADD, &info);
}
int dsa_port_lag_fdb_del(struct dsa_port *dp, const unsigned char *addr,
u16 vid)
{
struct dsa_notifier_lag_fdb_info info = {
.lag = dp->lag,
.addr = addr,
.vid = vid,
.db = {
.type = DSA_DB_BRIDGE,
.bridge = *dp->bridge,
},
};
if (!dp->ds->fdb_isolation)
info.db.bridge.num = 0;
return dsa_port_notify(dp, DSA_NOTIFIER_LAG_FDB_DEL, &info);
}
int dsa_port_fdb_dump(struct dsa_port *dp, dsa_fdb_dump_cb_t *cb, void *data)
{
struct dsa_switch *ds = dp->ds;
int port = dp->index;
if (!ds->ops->port_fdb_dump)
return -EOPNOTSUPP;
return ds->ops->port_fdb_dump(ds, port, cb, data);
}
int dsa_port_mdb_add(const struct dsa_port *dp,
const struct switchdev_obj_port_mdb *mdb)
{
struct dsa_notifier_mdb_info info = {
.dp = dp,
.mdb = mdb,
.db = {
.type = DSA_DB_BRIDGE,
.bridge = *dp->bridge,
},
};
if (!dp->ds->fdb_isolation)
info.db.bridge.num = 0;
return dsa_port_notify(dp, DSA_NOTIFIER_MDB_ADD, &info);
}
int dsa_port_mdb_del(const struct dsa_port *dp,
const struct switchdev_obj_port_mdb *mdb)
{
struct dsa_notifier_mdb_info info = {
.dp = dp,
.mdb = mdb,
.db = {
.type = DSA_DB_BRIDGE,
.bridge = *dp->bridge,
},
};
if (!dp->ds->fdb_isolation)
info.db.bridge.num = 0;
return dsa_port_notify(dp, DSA_NOTIFIER_MDB_DEL, &info);
}
static int dsa_port_host_mdb_add(const struct dsa_port *dp,
const struct switchdev_obj_port_mdb *mdb,
struct dsa_db db)
{
struct dsa_notifier_mdb_info info = {
.dp = dp,
.mdb = mdb,
.db = db,
};
return dsa_port_notify(dp, DSA_NOTIFIER_HOST_MDB_ADD, &info);
}
int dsa_port_standalone_host_mdb_add(const struct dsa_port *dp,
const struct switchdev_obj_port_mdb *mdb)
{
struct dsa_db db = {
.type = DSA_DB_PORT,
.dp = dp,
};
return dsa_port_host_mdb_add(dp, mdb, db);
}
int dsa_port_bridge_host_mdb_add(const struct dsa_port *dp,
const struct switchdev_obj_port_mdb *mdb)
{
struct net_device *conduit = dsa_port_to_conduit(dp);
struct dsa_db db = {
.type = DSA_DB_BRIDGE,
.bridge = *dp->bridge,
};
int err;
if (!dp->ds->fdb_isolation)
db.bridge.num = 0;
err = dev_mc_add(conduit, mdb->addr);
if (err)
return err;
return dsa_port_host_mdb_add(dp, mdb, db);
}
static int dsa_port_host_mdb_del(const struct dsa_port *dp,
const struct switchdev_obj_port_mdb *mdb,
struct dsa_db db)
{
struct dsa_notifier_mdb_info info = {
.dp = dp,
.mdb = mdb,
.db = db,
};
return dsa_port_notify(dp, DSA_NOTIFIER_HOST_MDB_DEL, &info);
}
int dsa_port_standalone_host_mdb_del(const struct dsa_port *dp,
const struct switchdev_obj_port_mdb *mdb)
{
struct dsa_db db = {
.type = DSA_DB_PORT,
.dp = dp,
};
return dsa_port_host_mdb_del(dp, mdb, db);
}
int dsa_port_bridge_host_mdb_del(const struct dsa_port *dp,
const struct switchdev_obj_port_mdb *mdb)
{
struct net_device *conduit = dsa_port_to_conduit(dp);
struct dsa_db db = {
.type = DSA_DB_BRIDGE,
.bridge = *dp->bridge,
};
int err;
if (!dp->ds->fdb_isolation)
db.bridge.num = 0;
err = dev_mc_del(conduit, mdb->addr);
if (err)
return err;
return dsa_port_host_mdb_del(dp, mdb, db);
}
int dsa_port_vlan_add(struct dsa_port *dp,
const struct switchdev_obj_port_vlan *vlan,
struct netlink_ext_ack *extack)
{
struct dsa_notifier_vlan_info info = {
.dp = dp,
.vlan = vlan,
.extack = extack,
};
return dsa_port_notify(dp, DSA_NOTIFIER_VLAN_ADD, &info);
}
int dsa_port_vlan_del(struct dsa_port *dp,
const struct switchdev_obj_port_vlan *vlan)
{
struct dsa_notifier_vlan_info info = {
.dp = dp,
.vlan = vlan,
};
return dsa_port_notify(dp, DSA_NOTIFIER_VLAN_DEL, &info);
}
int dsa_port_host_vlan_add(struct dsa_port *dp,
const struct switchdev_obj_port_vlan *vlan,
struct netlink_ext_ack *extack)
{
struct net_device *conduit = dsa_port_to_conduit(dp);
struct dsa_notifier_vlan_info info = {
.dp = dp,
.vlan = vlan,
.extack = extack,
};
int err;
err = dsa_port_notify(dp, DSA_NOTIFIER_HOST_VLAN_ADD, &info);
if (err && err != -EOPNOTSUPP)
return err;
vlan_vid_add(conduit, htons(ETH_P_8021Q), vlan->vid);
return err;
}
int dsa_port_host_vlan_del(struct dsa_port *dp,
const struct switchdev_obj_port_vlan *vlan)
{
struct net_device *conduit = dsa_port_to_conduit(dp);
struct dsa_notifier_vlan_info info = {
.dp = dp,
.vlan = vlan,
};
int err;
err = dsa_port_notify(dp, DSA_NOTIFIER_HOST_VLAN_DEL, &info);
if (err && err != -EOPNOTSUPP)
return err;
vlan_vid_del(conduit, htons(ETH_P_8021Q), vlan->vid);
return err;
}
int dsa_port_mrp_add(const struct dsa_port *dp,
const struct switchdev_obj_mrp *mrp)
{
struct dsa_switch *ds = dp->ds;
if (!ds->ops->port_mrp_add)
return -EOPNOTSUPP;
return ds->ops->port_mrp_add(ds, dp->index, mrp);
}
int dsa_port_mrp_del(const struct dsa_port *dp,
const struct switchdev_obj_mrp *mrp)
{
struct dsa_switch *ds = dp->ds;
if (!ds->ops->port_mrp_del)
return -EOPNOTSUPP;
return ds->ops->port_mrp_del(ds, dp->index, mrp);
}
int dsa_port_mrp_add_ring_role(const struct dsa_port *dp,
const struct switchdev_obj_ring_role_mrp *mrp)
{
struct dsa_switch *ds = dp->ds;
if (!ds->ops->port_mrp_add_ring_role)
return -EOPNOTSUPP;
return ds->ops->port_mrp_add_ring_role(ds, dp->index, mrp);
}
int dsa_port_mrp_del_ring_role(const struct dsa_port *dp,
const struct switchdev_obj_ring_role_mrp *mrp)
{
struct dsa_switch *ds = dp->ds;
if (!ds->ops->port_mrp_del_ring_role)
return -EOPNOTSUPP;
return ds->ops->port_mrp_del_ring_role(ds, dp->index, mrp);
}
static int dsa_port_assign_conduit(struct dsa_port *dp,
struct net_device *conduit,
struct netlink_ext_ack *extack,
bool fail_on_err)
{
struct dsa_switch *ds = dp->ds;
int port = dp->index, err;
err = ds->ops->port_change_conduit(ds, port, conduit, extack);
if (err && !fail_on_err)
dev_err(ds->dev, "port %d failed to assign conduit %s: %pe\n",
port, conduit->name, ERR_PTR(err));
if (err && fail_on_err)
return err;
dp->cpu_dp = conduit->dsa_ptr;
dp->cpu_port_in_lag = netif_is_lag_master(conduit);
return 0;
}
/* Change the dp->cpu_dp affinity for a user port. Note that both cross-chip
* notifiers and drivers have implicit assumptions about user-to-CPU-port
* mappings, so we unfortunately cannot delay the deletion of the objects
* (switchdev, standalone addresses, standalone VLANs) on the old CPU port
* until the new CPU port has been set up. So we need to completely tear down
* the old CPU port before changing it, and restore it on errors during the
* bringup of the new one.
*/
int dsa_port_change_conduit(struct dsa_port *dp, struct net_device *conduit,
struct netlink_ext_ack *extack)
{
struct net_device *bridge_dev = dsa_port_bridge_dev_get(dp);
struct net_device *old_conduit = dsa_port_to_conduit(dp);
struct net_device *dev = dp->user;
struct dsa_switch *ds = dp->ds;
bool vlan_filtering;
int err, tmp;
/* Bridges may hold host FDB, MDB and VLAN objects. These need to be
* migrated, so dynamically unoffload and later reoffload the bridge
* port.
*/
if (bridge_dev) {
dsa_port_pre_bridge_leave(dp, bridge_dev);
dsa_port_bridge_leave(dp, bridge_dev);
}
/* The port might still be VLAN filtering even if it's no longer
* under a bridge, either due to ds->vlan_filtering_is_global or
* ds->needs_standalone_vlan_filtering. In turn this means VLANs
* on the CPU port.
*/
vlan_filtering = dsa_port_is_vlan_filtering(dp);
if (vlan_filtering) {
err = dsa_user_manage_vlan_filtering(dev, false);
if (err) {
NL_SET_ERR_MSG_MOD(extack,
"Failed to remove standalone VLANs");
goto rewind_old_bridge;
}
}
/* Standalone addresses, and addresses of upper interfaces like
* VLAN, LAG, HSR need to be migrated.
*/
dsa_user_unsync_ha(dev);
err = dsa_port_assign_conduit(dp, conduit, extack, true);
if (err)
goto rewind_old_addrs;
dsa_user_sync_ha(dev);
if (vlan_filtering) {
err = dsa_user_manage_vlan_filtering(dev, true);
if (err) {
NL_SET_ERR_MSG_MOD(extack,
"Failed to restore standalone VLANs");
goto rewind_new_addrs;
}
}
if (bridge_dev) {
err = dsa_port_bridge_join(dp, bridge_dev, extack);
if (err && err == -EOPNOTSUPP) {
NL_SET_ERR_MSG_MOD(extack,
"Failed to reoffload bridge");
goto rewind_new_vlan;
}
}
return 0;
rewind_new_vlan:
if (vlan_filtering)
dsa_user_manage_vlan_filtering(dev, false);
rewind_new_addrs:
dsa_user_unsync_ha(dev);
dsa_port_assign_conduit(dp, old_conduit, NULL, false);
/* Restore the objects on the old CPU port */
rewind_old_addrs:
dsa_user_sync_ha(dev);
if (vlan_filtering) {
tmp = dsa_user_manage_vlan_filtering(dev, true);
if (tmp) {
dev_err(ds->dev,
"port %d failed to restore standalone VLANs: %pe\n",
dp->index, ERR_PTR(tmp));
}
}
rewind_old_bridge:
if (bridge_dev) {
tmp = dsa_port_bridge_join(dp, bridge_dev, extack);
if (tmp) {
dev_err(ds->dev,
"port %d failed to rejoin bridge %s: %pe\n",
dp->index, bridge_dev->name, ERR_PTR(tmp));
}
}
return err;
}
void dsa_port_set_tag_protocol(struct dsa_port *cpu_dp,
const struct dsa_device_ops *tag_ops)
{
cpu_dp->rcv = tag_ops->rcv;
cpu_dp->tag_ops = tag_ops;
}
static struct phy_device *dsa_port_get_phy_device(struct dsa_port *dp)
{
struct device_node *phy_dn;
struct phy_device *phydev;
phy_dn = of_parse_phandle(dp->dn, "phy-handle", 0);
if (!phy_dn)
return NULL;
phydev = of_phy_find_device(phy_dn);
if (!phydev) {
of_node_put(phy_dn);
return ERR_PTR(-EPROBE_DEFER);
}
of_node_put(phy_dn);
return phydev;
}
static struct phylink_pcs *
dsa_port_phylink_mac_select_pcs(struct phylink_config *config,
phy_interface_t interface)
{
struct dsa_port *dp = container_of(config, struct dsa_port, pl_config);
struct phylink_pcs *pcs = ERR_PTR(-EOPNOTSUPP);
struct dsa_switch *ds = dp->ds;
if (ds->ops->phylink_mac_select_pcs)
pcs = ds->ops->phylink_mac_select_pcs(ds, dp->index, interface);
return pcs;
}
static int dsa_port_phylink_mac_prepare(struct phylink_config *config,
unsigned int mode,
phy_interface_t interface)
{
struct dsa_port *dp = container_of(config, struct dsa_port, pl_config);
struct dsa_switch *ds = dp->ds;
int err = 0;
if (ds->ops->phylink_mac_prepare)
err = ds->ops->phylink_mac_prepare(ds, dp->index, mode,
interface);
return err;
}
static void dsa_port_phylink_mac_config(struct phylink_config *config,
unsigned int mode,
const struct phylink_link_state *state)
{
struct dsa_port *dp = container_of(config, struct dsa_port, pl_config);
struct dsa_switch *ds = dp->ds;
if (!ds->ops->phylink_mac_config)
return;
ds->ops->phylink_mac_config(ds, dp->index, mode, state);
}
static int dsa_port_phylink_mac_finish(struct phylink_config *config,
unsigned int mode,
phy_interface_t interface)
{
struct dsa_port *dp = container_of(config, struct dsa_port, pl_config);
struct dsa_switch *ds = dp->ds;
int err = 0;
if (ds->ops->phylink_mac_finish)
err = ds->ops->phylink_mac_finish(ds, dp->index, mode,
interface);
return err;
}
static void dsa_port_phylink_mac_link_down(struct phylink_config *config,
unsigned int mode,
phy_interface_t interface)
{
struct dsa_port *dp = container_of(config, struct dsa_port, pl_config);
struct phy_device *phydev = NULL;
struct dsa_switch *ds = dp->ds;
if (dsa_port_is_user(dp))
phydev = dp->user->phydev;
if (!ds->ops->phylink_mac_link_down) {
if (ds->ops->adjust_link && phydev)
ds->ops->adjust_link(ds, dp->index, phydev);
return;
}
ds->ops->phylink_mac_link_down(ds, dp->index, mode, interface);
}
static void dsa_port_phylink_mac_link_up(struct phylink_config *config,
struct phy_device *phydev,
unsigned int mode,
phy_interface_t interface,
int speed, int duplex,
bool tx_pause, bool rx_pause)
{
struct dsa_port *dp = container_of(config, struct dsa_port, pl_config);
struct dsa_switch *ds = dp->ds;
if (!ds->ops->phylink_mac_link_up) {
if (ds->ops->adjust_link && phydev)
ds->ops->adjust_link(ds, dp->index, phydev);
return;
}
ds->ops->phylink_mac_link_up(ds, dp->index, mode, interface, phydev,
speed, duplex, tx_pause, rx_pause);
}
static const struct phylink_mac_ops dsa_port_phylink_mac_ops = {
.mac_select_pcs = dsa_port_phylink_mac_select_pcs,
.mac_prepare = dsa_port_phylink_mac_prepare,
.mac_config = dsa_port_phylink_mac_config,
.mac_finish = dsa_port_phylink_mac_finish,
.mac_link_down = dsa_port_phylink_mac_link_down,
.mac_link_up = dsa_port_phylink_mac_link_up,
};
int dsa_port_phylink_create(struct dsa_port *dp)
{
struct dsa_switch *ds = dp->ds;
phy_interface_t mode;
struct phylink *pl;
int err;
err = of_get_phy_mode(dp->dn, &mode);
if (err)
mode = PHY_INTERFACE_MODE_NA;
if (ds->ops->phylink_get_caps) {
ds->ops->phylink_get_caps(ds, dp->index, &dp->pl_config);
} else {
/* For legacy drivers */
if (mode != PHY_INTERFACE_MODE_NA) {
__set_bit(mode, dp->pl_config.supported_interfaces);
} else {
__set_bit(PHY_INTERFACE_MODE_INTERNAL,
dp->pl_config.supported_interfaces);
__set_bit(PHY_INTERFACE_MODE_GMII,
dp->pl_config.supported_interfaces);
}
}
pl = phylink_create(&dp->pl_config, of_fwnode_handle(dp->dn),
mode, &dsa_port_phylink_mac_ops);
if (IS_ERR(pl)) {
pr_err("error creating PHYLINK: %ld\n", PTR_ERR(pl));
return PTR_ERR(pl);
}
dp->pl = pl;
return 0;
}
void dsa_port_phylink_destroy(struct dsa_port *dp)
{
phylink_destroy(dp->pl);
dp->pl = NULL;
}
static int dsa_shared_port_setup_phy_of(struct dsa_port *dp, bool enable)
{
struct dsa_switch *ds = dp->ds;
struct phy_device *phydev;
int port = dp->index;
int err = 0;
phydev = dsa_port_get_phy_device(dp);
if (!phydev)
return 0;
if (IS_ERR(phydev))
return PTR_ERR(phydev);
if (enable) {
err = genphy_resume(phydev);
if (err < 0)
goto err_put_dev;
err = genphy_read_status(phydev);
if (err < 0)
goto err_put_dev;
} else {
err = genphy_suspend(phydev);
if (err < 0)
goto err_put_dev;
}
if (ds->ops->adjust_link)
ds->ops->adjust_link(ds, port, phydev);
dev_dbg(ds->dev, "enabled port's phy: %s", phydev_name(phydev));
err_put_dev:
put_device(&phydev->mdio.dev);
return err;
}
static int dsa_shared_port_fixed_link_register_of(struct dsa_port *dp)
{
struct device_node *dn = dp->dn;
struct dsa_switch *ds = dp->ds;
struct phy_device *phydev;
int port = dp->index;
phy_interface_t mode;
int err;
err = of_phy_register_fixed_link(dn);
if (err) {
dev_err(ds->dev,
"failed to register the fixed PHY of port %d\n",
port);
return err;
}
phydev = of_phy_find_device(dn);
err = of_get_phy_mode(dn, &mode);
if (err)
mode = PHY_INTERFACE_MODE_NA;
phydev->interface = mode;
genphy_read_status(phydev);
if (ds->ops->adjust_link)
ds->ops->adjust_link(ds, port, phydev);
put_device(&phydev->mdio.dev);
return 0;
}
static int dsa_shared_port_phylink_register(struct dsa_port *dp)
{
struct dsa_switch *ds = dp->ds;
struct device_node *port_dn = dp->dn;
int err;
dp->pl_config.dev = ds->dev;
dp->pl_config.type = PHYLINK_DEV;
err = dsa_port_phylink_create(dp);
if (err)
return err;
err = phylink_of_phy_connect(dp->pl, port_dn, 0);
if (err && err != -ENODEV) {
pr_err("could not attach to PHY: %d\n", err);
goto err_phy_connect;
}
return 0;
err_phy_connect:
dsa_port_phylink_destroy(dp);
return err;
}
/* During the initial DSA driver migration to OF, port nodes were sometimes
* added to device trees with no indication of how they should operate from a
* link management perspective (phy-handle, fixed-link, etc). Additionally, the
* phy-mode may be absent. The interpretation of these port OF nodes depends on
* their type.
*
* User ports with no phy-handle or fixed-link are expected to connect to an
* internal PHY located on the ds->user_mii_bus at an MDIO address equal to
* the port number. This description is still actively supported.
*
* Shared (CPU and DSA) ports with no phy-handle or fixed-link are expected to
* operate at the maximum speed that their phy-mode is capable of. If the
* phy-mode is absent, they are expected to operate using the phy-mode
* supported by the port that gives the highest link speed. It is unspecified
* if the port should use flow control or not, half duplex or full duplex, or
* if the phy-mode is a SERDES link, whether in-band autoneg is expected to be
* enabled or not.
*
* In the latter case of shared ports, omitting the link management description
* from the firmware node is deprecated and strongly discouraged. DSA uses
* phylink, which rejects the firmware nodes of these ports for lacking
* required properties.
*
* For switches in this table, DSA will skip enforcing validation and will
* later omit registering a phylink instance for the shared ports, if they lack
* a fixed-link, a phy-handle, or a managed = "in-band-status" property.
* It becomes the responsibility of the driver to ensure that these ports
* operate at the maximum speed (whatever this means) and will interoperate
* with the DSA conduit or other cascade port, since phylink methods will not be
* invoked for them.
*
* If you are considering expanding this table for newly introduced switches,
* think again. It is OK to remove switches from this table if there aren't DT
* blobs in circulation which rely on defaulting the shared ports.
*/
static const char * const dsa_switches_apply_workarounds[] = {
#if IS_ENABLED(CONFIG_NET_DSA_XRS700X)
"arrow,xrs7003e",
"arrow,xrs7003f",
"arrow,xrs7004e",
"arrow,xrs7004f",
#endif
#if IS_ENABLED(CONFIG_B53)
"brcm,bcm5325",
"brcm,bcm53115",
"brcm,bcm53125",
"brcm,bcm53128",
"brcm,bcm5365",
"brcm,bcm5389",
"brcm,bcm5395",
"brcm,bcm5397",
"brcm,bcm5398",
"brcm,bcm53010-srab",
"brcm,bcm53011-srab",
"brcm,bcm53012-srab",
"brcm,bcm53018-srab",
"brcm,bcm53019-srab",
"brcm,bcm5301x-srab",
"brcm,bcm11360-srab",
"brcm,bcm58522-srab",
"brcm,bcm58525-srab",
"brcm,bcm58535-srab",
"brcm,bcm58622-srab",
"brcm,bcm58623-srab",
"brcm,bcm58625-srab",
"brcm,bcm88312-srab",
"brcm,cygnus-srab",
"brcm,nsp-srab",
"brcm,omega-srab",
"brcm,bcm3384-switch",
"brcm,bcm6328-switch",
"brcm,bcm6368-switch",
"brcm,bcm63xx-switch",
#endif
#if IS_ENABLED(CONFIG_NET_DSA_BCM_SF2)
"brcm,bcm7445-switch-v4.0",
"brcm,bcm7278-switch-v4.0",
"brcm,bcm7278-switch-v4.8",
#endif
#if IS_ENABLED(CONFIG_NET_DSA_LANTIQ_GSWIP)
"lantiq,xrx200-gswip",
"lantiq,xrx300-gswip",
"lantiq,xrx330-gswip",
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6060)
"marvell,mv88e6060",
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6XXX)
"marvell,mv88e6085",
"marvell,mv88e6190",
"marvell,mv88e6250",
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MICROCHIP_KSZ_COMMON)
"microchip,ksz8765",
"microchip,ksz8794",
"microchip,ksz8795",
"microchip,ksz8863",
"microchip,ksz8873",
"microchip,ksz9477",
"microchip,ksz9897",
"microchip,ksz9893",
"microchip,ksz9563",
"microchip,ksz8563",
"microchip,ksz9567",
#endif
#if IS_ENABLED(CONFIG_NET_DSA_SMSC_LAN9303_MDIO)
"smsc,lan9303-mdio",
#endif
#if IS_ENABLED(CONFIG_NET_DSA_SMSC_LAN9303_I2C)
"smsc,lan9303-i2c",
#endif
NULL,
};
static void dsa_shared_port_validate_of(struct dsa_port *dp,
bool *missing_phy_mode,
bool *missing_link_description)
{
struct device_node *dn = dp->dn, *phy_np;
struct dsa_switch *ds = dp->ds;
phy_interface_t mode;
*missing_phy_mode = false;
*missing_link_description = false;
if (of_get_phy_mode(dn, &mode)) {
*missing_phy_mode = true;
dev_err(ds->dev,
"OF node %pOF of %s port %d lacks the required \"phy-mode\" property\n",
dn, dsa_port_is_cpu(dp) ? "CPU" : "DSA", dp->index);
}
/* Note: of_phy_is_fixed_link() also returns true for
* managed = "in-band-status"
*/
if (of_phy_is_fixed_link(dn))
return;
phy_np = of_parse_phandle(dn, "phy-handle", 0);
if (phy_np) {
of_node_put(phy_np);
return;
}
*missing_link_description = true;
dev_err(ds->dev,
"OF node %pOF of %s port %d lacks the required \"phy-handle\", \"fixed-link\" or \"managed\" properties\n",
dn, dsa_port_is_cpu(dp) ? "CPU" : "DSA", dp->index);
}
int dsa_shared_port_link_register_of(struct dsa_port *dp)
{
struct dsa_switch *ds = dp->ds;
bool missing_link_description;
bool missing_phy_mode;
int port = dp->index;
dsa_shared_port_validate_of(dp, &missing_phy_mode,
&missing_link_description);
if ((missing_phy_mode || missing_link_description) &&
!of_device_compatible_match(ds->dev->of_node,
dsa_switches_apply_workarounds))
return -EINVAL;
if (!ds->ops->adjust_link) {
if (missing_link_description) {
dev_warn(ds->dev,
"Skipping phylink registration for %s port %d\n",
dsa_port_is_cpu(dp) ? "CPU" : "DSA", dp->index);
} else {
if (ds->ops->phylink_mac_link_down)
ds->ops->phylink_mac_link_down(ds, port,
MLO_AN_FIXED, PHY_INTERFACE_MODE_NA);
return dsa_shared_port_phylink_register(dp);
}
return 0;
}
dev_warn(ds->dev,
"Using legacy PHYLIB callbacks. Please migrate to PHYLINK!\n");
if (of_phy_is_fixed_link(dp->dn))
return dsa_shared_port_fixed_link_register_of(dp);
else
return dsa_shared_port_setup_phy_of(dp, true);
}
void dsa_shared_port_link_unregister_of(struct dsa_port *dp)
{
struct dsa_switch *ds = dp->ds;
if (!ds->ops->adjust_link && dp->pl) {
rtnl_lock();
phylink_disconnect_phy(dp->pl);
rtnl_unlock();
dsa_port_phylink_destroy(dp);
return;
}
if (of_phy_is_fixed_link(dp->dn))
of_phy_deregister_fixed_link(dp->dn);
else
dsa_shared_port_setup_phy_of(dp, false);
}
int dsa_port_hsr_join(struct dsa_port *dp, struct net_device *hsr,
struct netlink_ext_ack *extack)
{
struct dsa_switch *ds = dp->ds;
int err;
if (!ds->ops->port_hsr_join)
return -EOPNOTSUPP;
dp->hsr_dev = hsr;
err = ds->ops->port_hsr_join(ds, dp->index, hsr, extack);
if (err)
dp->hsr_dev = NULL;
return err;
}
void dsa_port_hsr_leave(struct dsa_port *dp, struct net_device *hsr)
{
struct dsa_switch *ds = dp->ds;
int err;
dp->hsr_dev = NULL;
if (ds->ops->port_hsr_leave) {
err = ds->ops->port_hsr_leave(ds, dp->index, hsr);
if (err)
dev_err(dp->ds->dev,
"port %d failed to leave HSR %s: %pe\n",
dp->index, hsr->name, ERR_PTR(err));
}
}
int dsa_port_tag_8021q_vlan_add(struct dsa_port *dp, u16 vid, bool broadcast)
{
struct dsa_notifier_tag_8021q_vlan_info info = {
.dp = dp,
.vid = vid,
};
if (broadcast)
return dsa_broadcast(DSA_NOTIFIER_TAG_8021Q_VLAN_ADD, &info);
return dsa_port_notify(dp, DSA_NOTIFIER_TAG_8021Q_VLAN_ADD, &info);
}
void dsa_port_tag_8021q_vlan_del(struct dsa_port *dp, u16 vid, bool broadcast)
{
struct dsa_notifier_tag_8021q_vlan_info info = {
.dp = dp,
.vid = vid,
};
int err;
if (broadcast)
err = dsa_broadcast(DSA_NOTIFIER_TAG_8021Q_VLAN_DEL, &info);
else
err = dsa_port_notify(dp, DSA_NOTIFIER_TAG_8021Q_VLAN_DEL, &info);
if (err)
dev_err(dp->ds->dev,
"port %d failed to notify tag_8021q VLAN %d deletion: %pe\n",
dp->index, vid, ERR_PTR(err));
}