mirror_ubuntu-kernels/drivers/tee/optee/smc_abi.c

1826 lines
46 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015-2021, 2023 Linaro Limited
* Copyright (c) 2016, EPAM Systems
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/arm-smccc.h>
#include <linux/cpuhotplug.h>
#include <linux/errno.h>
#include <linux/firmware.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irqdomain.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/tee_drv.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#include "optee_private.h"
#include "optee_smc.h"
#include "optee_rpc_cmd.h"
#include <linux/kmemleak.h>
#define CREATE_TRACE_POINTS
#include "optee_trace.h"
/*
* This file implement the SMC ABI used when communicating with secure world
* OP-TEE OS via raw SMCs.
* This file is divided into the following sections:
* 1. Convert between struct tee_param and struct optee_msg_param
* 2. Low level support functions to register shared memory in secure world
* 3. Dynamic shared memory pool based on alloc_pages()
* 4. Do a normal scheduled call into secure world
* 5. Asynchronous notification
* 6. Driver initialization.
*/
/*
* A typical OP-TEE private shm allocation is 224 bytes (argument struct
* with 6 parameters, needed for open session). So with an alignment of 512
* we'll waste a bit more than 50%. However, it's only expected that we'll
* have a handful of these structs allocated at a time. Most memory will
* be allocated aligned to the page size, So all in all this should scale
* up and down quite well.
*/
#define OPTEE_MIN_STATIC_POOL_ALIGN 9 /* 512 bytes aligned */
/* SMC ABI considers at most a single TEE firmware */
static unsigned int pcpu_irq_num;
static int optee_cpuhp_enable_pcpu_irq(unsigned int cpu)
{
enable_percpu_irq(pcpu_irq_num, IRQ_TYPE_NONE);
return 0;
}
static int optee_cpuhp_disable_pcpu_irq(unsigned int cpu)
{
disable_percpu_irq(pcpu_irq_num);
return 0;
}
/*
* 1. Convert between struct tee_param and struct optee_msg_param
*
* optee_from_msg_param() and optee_to_msg_param() are the main
* functions.
*/
static int from_msg_param_tmp_mem(struct tee_param *p, u32 attr,
const struct optee_msg_param *mp)
{
struct tee_shm *shm;
phys_addr_t pa;
int rc;
p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT +
attr - OPTEE_MSG_ATTR_TYPE_TMEM_INPUT;
p->u.memref.size = mp->u.tmem.size;
shm = (struct tee_shm *)(unsigned long)mp->u.tmem.shm_ref;
if (!shm) {
p->u.memref.shm_offs = 0;
p->u.memref.shm = NULL;
return 0;
}
rc = tee_shm_get_pa(shm, 0, &pa);
if (rc)
return rc;
p->u.memref.shm_offs = mp->u.tmem.buf_ptr - pa;
p->u.memref.shm = shm;
return 0;
}
static void from_msg_param_reg_mem(struct tee_param *p, u32 attr,
const struct optee_msg_param *mp)
{
struct tee_shm *shm;
p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT +
attr - OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
p->u.memref.size = mp->u.rmem.size;
shm = (struct tee_shm *)(unsigned long)mp->u.rmem.shm_ref;
if (shm) {
p->u.memref.shm_offs = mp->u.rmem.offs;
p->u.memref.shm = shm;
} else {
p->u.memref.shm_offs = 0;
p->u.memref.shm = NULL;
}
}
/**
* optee_from_msg_param() - convert from OPTEE_MSG parameters to
* struct tee_param
* @optee: main service struct
* @params: subsystem internal parameter representation
* @num_params: number of elements in the parameter arrays
* @msg_params: OPTEE_MSG parameters
* Returns 0 on success or <0 on failure
*/
static int optee_from_msg_param(struct optee *optee, struct tee_param *params,
size_t num_params,
const struct optee_msg_param *msg_params)
{
int rc;
size_t n;
for (n = 0; n < num_params; n++) {
struct tee_param *p = params + n;
const struct optee_msg_param *mp = msg_params + n;
u32 attr = mp->attr & OPTEE_MSG_ATTR_TYPE_MASK;
switch (attr) {
case OPTEE_MSG_ATTR_TYPE_NONE:
p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE;
memset(&p->u, 0, sizeof(p->u));
break;
case OPTEE_MSG_ATTR_TYPE_VALUE_INPUT:
case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT:
case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT:
optee_from_msg_param_value(p, attr, mp);
break;
case OPTEE_MSG_ATTR_TYPE_TMEM_INPUT:
case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT:
case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT:
rc = from_msg_param_tmp_mem(p, attr, mp);
if (rc)
return rc;
break;
case OPTEE_MSG_ATTR_TYPE_RMEM_INPUT:
case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT:
case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT:
from_msg_param_reg_mem(p, attr, mp);
break;
default:
return -EINVAL;
}
}
return 0;
}
static int to_msg_param_tmp_mem(struct optee_msg_param *mp,
const struct tee_param *p)
{
int rc;
phys_addr_t pa;
mp->attr = OPTEE_MSG_ATTR_TYPE_TMEM_INPUT + p->attr -
TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT;
mp->u.tmem.shm_ref = (unsigned long)p->u.memref.shm;
mp->u.tmem.size = p->u.memref.size;
if (!p->u.memref.shm) {
mp->u.tmem.buf_ptr = 0;
return 0;
}
rc = tee_shm_get_pa(p->u.memref.shm, p->u.memref.shm_offs, &pa);
if (rc)
return rc;
mp->u.tmem.buf_ptr = pa;
mp->attr |= OPTEE_MSG_ATTR_CACHE_PREDEFINED <<
OPTEE_MSG_ATTR_CACHE_SHIFT;
return 0;
}
static int to_msg_param_reg_mem(struct optee_msg_param *mp,
const struct tee_param *p)
{
mp->attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT + p->attr -
TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT;
mp->u.rmem.shm_ref = (unsigned long)p->u.memref.shm;
mp->u.rmem.size = p->u.memref.size;
mp->u.rmem.offs = p->u.memref.shm_offs;
return 0;
}
/**
* optee_to_msg_param() - convert from struct tee_params to OPTEE_MSG parameters
* @optee: main service struct
* @msg_params: OPTEE_MSG parameters
* @num_params: number of elements in the parameter arrays
* @params: subsystem itnernal parameter representation
* Returns 0 on success or <0 on failure
*/
static int optee_to_msg_param(struct optee *optee,
struct optee_msg_param *msg_params,
size_t num_params, const struct tee_param *params)
{
int rc;
size_t n;
for (n = 0; n < num_params; n++) {
const struct tee_param *p = params + n;
struct optee_msg_param *mp = msg_params + n;
switch (p->attr) {
case TEE_IOCTL_PARAM_ATTR_TYPE_NONE:
mp->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE;
memset(&mp->u, 0, sizeof(mp->u));
break;
case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INPUT:
case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_OUTPUT:
case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INOUT:
optee_to_msg_param_value(mp, p);
break;
case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT:
case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_OUTPUT:
case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INOUT:
if (tee_shm_is_dynamic(p->u.memref.shm))
rc = to_msg_param_reg_mem(mp, p);
else
rc = to_msg_param_tmp_mem(mp, p);
if (rc)
return rc;
break;
default:
return -EINVAL;
}
}
return 0;
}
/*
* 2. Low level support functions to register shared memory in secure world
*
* Functions to enable/disable shared memory caching in secure world, that
* is, lazy freeing of previously allocated shared memory. Freeing is
* performed when a request has been compled.
*
* Functions to register and unregister shared memory both for normal
* clients and for tee-supplicant.
*/
/**
* optee_enable_shm_cache() - Enables caching of some shared memory allocation
* in OP-TEE
* @optee: main service struct
*/
static void optee_enable_shm_cache(struct optee *optee)
{
struct optee_call_waiter w;
/* We need to retry until secure world isn't busy. */
optee_cq_wait_init(&optee->call_queue, &w, false);
while (true) {
struct arm_smccc_res res;
optee->smc.invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE,
0, 0, 0, 0, 0, 0, 0, &res);
if (res.a0 == OPTEE_SMC_RETURN_OK)
break;
optee_cq_wait_for_completion(&optee->call_queue, &w);
}
optee_cq_wait_final(&optee->call_queue, &w);
}
/**
* __optee_disable_shm_cache() - Disables caching of some shared memory
* allocation in OP-TEE
* @optee: main service struct
* @is_mapped: true if the cached shared memory addresses were mapped by this
* kernel, are safe to dereference, and should be freed
*/
static void __optee_disable_shm_cache(struct optee *optee, bool is_mapped)
{
struct optee_call_waiter w;
/* We need to retry until secure world isn't busy. */
optee_cq_wait_init(&optee->call_queue, &w, false);
while (true) {
union {
struct arm_smccc_res smccc;
struct optee_smc_disable_shm_cache_result result;
} res;
optee->smc.invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE,
0, 0, 0, 0, 0, 0, 0, &res.smccc);
if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
break; /* All shm's freed */
if (res.result.status == OPTEE_SMC_RETURN_OK) {
struct tee_shm *shm;
/*
* Shared memory references that were not mapped by
* this kernel must be ignored to prevent a crash.
*/
if (!is_mapped)
continue;
shm = reg_pair_to_ptr(res.result.shm_upper32,
res.result.shm_lower32);
tee_shm_free(shm);
} else {
optee_cq_wait_for_completion(&optee->call_queue, &w);
}
}
optee_cq_wait_final(&optee->call_queue, &w);
}
/**
* optee_disable_shm_cache() - Disables caching of mapped shared memory
* allocations in OP-TEE
* @optee: main service struct
*/
static void optee_disable_shm_cache(struct optee *optee)
{
return __optee_disable_shm_cache(optee, true);
}
/**
* optee_disable_unmapped_shm_cache() - Disables caching of shared memory
* allocations in OP-TEE which are not
* currently mapped
* @optee: main service struct
*/
static void optee_disable_unmapped_shm_cache(struct optee *optee)
{
return __optee_disable_shm_cache(optee, false);
}
#define PAGELIST_ENTRIES_PER_PAGE \
((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
/*
* The final entry in each pagelist page is a pointer to the next
* pagelist page.
*/
static size_t get_pages_list_size(size_t num_entries)
{
int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
}
static u64 *optee_allocate_pages_list(size_t num_entries)
{
return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
}
static void optee_free_pages_list(void *list, size_t num_entries)
{
free_pages_exact(list, get_pages_list_size(num_entries));
}
/**
* optee_fill_pages_list() - write list of user pages to given shared
* buffer.
*
* @dst: page-aligned buffer where list of pages will be stored
* @pages: array of pages that represents shared buffer
* @num_pages: number of entries in @pages
* @page_offset: offset of user buffer from page start
*
* @dst should be big enough to hold list of user page addresses and
* links to the next pages of buffer
*/
static void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
size_t page_offset)
{
int n = 0;
phys_addr_t optee_page;
/*
* Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
* for details.
*/
struct {
u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
u64 next_page_data;
} *pages_data;
/*
* Currently OP-TEE uses 4k page size and it does not looks
* like this will change in the future. On other hand, there are
* no know ARM architectures with page size < 4k.
* Thus the next built assert looks redundant. But the following
* code heavily relies on this assumption, so it is better be
* safe than sorry.
*/
BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
pages_data = (void *)dst;
/*
* If linux page is bigger than 4k, and user buffer offset is
* larger than 4k/8k/12k/etc this will skip first 4k pages,
* because they bear no value data for OP-TEE.
*/
optee_page = page_to_phys(*pages) +
round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
while (true) {
pages_data->pages_list[n++] = optee_page;
if (n == PAGELIST_ENTRIES_PER_PAGE) {
pages_data->next_page_data =
virt_to_phys(pages_data + 1);
pages_data++;
n = 0;
}
optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
if (!(optee_page & ~PAGE_MASK)) {
if (!--num_pages)
break;
pages++;
optee_page = page_to_phys(*pages);
}
}
}
static int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
struct page **pages, size_t num_pages,
unsigned long start)
{
struct optee *optee = tee_get_drvdata(ctx->teedev);
struct optee_msg_arg *msg_arg;
struct tee_shm *shm_arg;
u64 *pages_list;
size_t sz;
int rc;
if (!num_pages)
return -EINVAL;
rc = optee_check_mem_type(start, num_pages);
if (rc)
return rc;
pages_list = optee_allocate_pages_list(num_pages);
if (!pages_list)
return -ENOMEM;
/*
* We're about to register shared memory we can't register shared
* memory for this request or there's a catch-22.
*
* So in this we'll have to do the good old temporary private
* allocation instead of using optee_get_msg_arg().
*/
sz = optee_msg_arg_size(optee->rpc_param_count);
shm_arg = tee_shm_alloc_priv_buf(ctx, sz);
if (IS_ERR(shm_arg)) {
rc = PTR_ERR(shm_arg);
goto out;
}
msg_arg = tee_shm_get_va(shm_arg, 0);
if (IS_ERR(msg_arg)) {
rc = PTR_ERR(msg_arg);
goto out;
}
optee_fill_pages_list(pages_list, pages, num_pages,
tee_shm_get_page_offset(shm));
memset(msg_arg, 0, OPTEE_MSG_GET_ARG_SIZE(1));
msg_arg->num_params = 1;
msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
OPTEE_MSG_ATTR_NONCONTIG;
msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
/*
* In the least bits of msg_arg->params->u.tmem.buf_ptr we
* store buffer offset from 4k page, as described in OP-TEE ABI.
*/
msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
(tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
if (optee->ops->do_call_with_arg(ctx, shm_arg, 0, false) ||
msg_arg->ret != TEEC_SUCCESS)
rc = -EINVAL;
tee_shm_free(shm_arg);
out:
optee_free_pages_list(pages_list, num_pages);
return rc;
}
static int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
{
struct optee *optee = tee_get_drvdata(ctx->teedev);
struct optee_msg_arg *msg_arg;
struct tee_shm *shm_arg;
int rc = 0;
size_t sz;
/*
* We're about to unregister shared memory and we may not be able
* register shared memory for this request in case we're called
* from optee_shm_arg_cache_uninit().
*
* So in order to keep things simple in this function just as in
* optee_shm_register() we'll use temporary private allocation
* instead of using optee_get_msg_arg().
*/
sz = optee_msg_arg_size(optee->rpc_param_count);
shm_arg = tee_shm_alloc_priv_buf(ctx, sz);
if (IS_ERR(shm_arg))
return PTR_ERR(shm_arg);
msg_arg = tee_shm_get_va(shm_arg, 0);
if (IS_ERR(msg_arg)) {
rc = PTR_ERR(msg_arg);
goto out;
}
memset(msg_arg, 0, sz);
msg_arg->num_params = 1;
msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
if (optee->ops->do_call_with_arg(ctx, shm_arg, 0, false) ||
msg_arg->ret != TEEC_SUCCESS)
rc = -EINVAL;
out:
tee_shm_free(shm_arg);
return rc;
}
static int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
struct page **pages, size_t num_pages,
unsigned long start)
{
/*
* We don't want to register supplicant memory in OP-TEE.
* Instead information about it will be passed in RPC code.
*/
return optee_check_mem_type(start, num_pages);
}
static int optee_shm_unregister_supp(struct tee_context *ctx,
struct tee_shm *shm)
{
return 0;
}
/*
* 3. Dynamic shared memory pool based on alloc_pages()
*
* Implements an OP-TEE specific shared memory pool which is used
* when dynamic shared memory is supported by secure world.
*
* The main function is optee_shm_pool_alloc_pages().
*/
static int pool_op_alloc(struct tee_shm_pool *pool,
struct tee_shm *shm, size_t size, size_t align)
{
/*
* Shared memory private to the OP-TEE driver doesn't need
* to be registered with OP-TEE.
*/
if (shm->flags & TEE_SHM_PRIV)
return optee_pool_op_alloc_helper(pool, shm, size, align, NULL);
return optee_pool_op_alloc_helper(pool, shm, size, align,
optee_shm_register);
}
static void pool_op_free(struct tee_shm_pool *pool,
struct tee_shm *shm)
{
if (!(shm->flags & TEE_SHM_PRIV))
optee_pool_op_free_helper(pool, shm, optee_shm_unregister);
else
optee_pool_op_free_helper(pool, shm, NULL);
}
static void pool_op_destroy_pool(struct tee_shm_pool *pool)
{
kfree(pool);
}
static const struct tee_shm_pool_ops pool_ops = {
.alloc = pool_op_alloc,
.free = pool_op_free,
.destroy_pool = pool_op_destroy_pool,
};
/**
* optee_shm_pool_alloc_pages() - create page-based allocator pool
*
* This pool is used when OP-TEE supports dymanic SHM. In this case
* command buffers and such are allocated from kernel's own memory.
*/
static struct tee_shm_pool *optee_shm_pool_alloc_pages(void)
{
struct tee_shm_pool *pool = kzalloc(sizeof(*pool), GFP_KERNEL);
if (!pool)
return ERR_PTR(-ENOMEM);
pool->ops = &pool_ops;
return pool;
}
/*
* 4. Do a normal scheduled call into secure world
*
* The function optee_smc_do_call_with_arg() performs a normal scheduled
* call into secure world. During this call may normal world request help
* from normal world using RPCs, Remote Procedure Calls. This includes
* delivery of non-secure interrupts to for instance allow rescheduling of
* the current task.
*/
static void handle_rpc_func_cmd_shm_free(struct tee_context *ctx,
struct optee_msg_arg *arg)
{
struct tee_shm *shm;
arg->ret_origin = TEEC_ORIGIN_COMMS;
if (arg->num_params != 1 ||
arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) {
arg->ret = TEEC_ERROR_BAD_PARAMETERS;
return;
}
shm = (struct tee_shm *)(unsigned long)arg->params[0].u.value.b;
switch (arg->params[0].u.value.a) {
case OPTEE_RPC_SHM_TYPE_APPL:
optee_rpc_cmd_free_suppl(ctx, shm);
break;
case OPTEE_RPC_SHM_TYPE_KERNEL:
tee_shm_free(shm);
break;
default:
arg->ret = TEEC_ERROR_BAD_PARAMETERS;
}
arg->ret = TEEC_SUCCESS;
}
static void handle_rpc_func_cmd_shm_alloc(struct tee_context *ctx,
struct optee *optee,
struct optee_msg_arg *arg,
struct optee_call_ctx *call_ctx)
{
struct tee_shm *shm;
size_t sz;
size_t n;
struct page **pages;
size_t page_count;
arg->ret_origin = TEEC_ORIGIN_COMMS;
if (!arg->num_params ||
arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) {
arg->ret = TEEC_ERROR_BAD_PARAMETERS;
return;
}
for (n = 1; n < arg->num_params; n++) {
if (arg->params[n].attr != OPTEE_MSG_ATTR_TYPE_NONE) {
arg->ret = TEEC_ERROR_BAD_PARAMETERS;
return;
}
}
sz = arg->params[0].u.value.b;
switch (arg->params[0].u.value.a) {
case OPTEE_RPC_SHM_TYPE_APPL:
shm = optee_rpc_cmd_alloc_suppl(ctx, sz);
break;
case OPTEE_RPC_SHM_TYPE_KERNEL:
shm = tee_shm_alloc_priv_buf(optee->ctx, sz);
break;
default:
arg->ret = TEEC_ERROR_BAD_PARAMETERS;
return;
}
if (IS_ERR(shm)) {
arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
return;
}
/*
* If there are pages it's dynamically allocated shared memory (not
* from the reserved shared memory pool) and needs to be
* registered.
*/
pages = tee_shm_get_pages(shm, &page_count);
if (pages) {
u64 *pages_list;
pages_list = optee_allocate_pages_list(page_count);
if (!pages_list) {
arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
goto bad;
}
call_ctx->pages_list = pages_list;
call_ctx->num_entries = page_count;
arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
OPTEE_MSG_ATTR_NONCONTIG;
/*
* In the least bits of u.tmem.buf_ptr we store buffer offset
* from 4k page, as described in OP-TEE ABI.
*/
arg->params[0].u.tmem.buf_ptr = virt_to_phys(pages_list) |
(tee_shm_get_page_offset(shm) &
(OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
optee_fill_pages_list(pages_list, pages, page_count,
tee_shm_get_page_offset(shm));
} else {
phys_addr_t pa;
if (tee_shm_get_pa(shm, 0, &pa)) {
arg->ret = TEEC_ERROR_BAD_PARAMETERS;
goto bad;
}
arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT;
arg->params[0].u.tmem.buf_ptr = pa;
}
arg->params[0].u.tmem.size = tee_shm_get_size(shm);
arg->params[0].u.tmem.shm_ref = (unsigned long)shm;
arg->ret = TEEC_SUCCESS;
return;
bad:
tee_shm_free(shm);
}
static void free_pages_list(struct optee_call_ctx *call_ctx)
{
if (call_ctx->pages_list) {
optee_free_pages_list(call_ctx->pages_list,
call_ctx->num_entries);
call_ctx->pages_list = NULL;
call_ctx->num_entries = 0;
}
}
static void optee_rpc_finalize_call(struct optee_call_ctx *call_ctx)
{
free_pages_list(call_ctx);
}
static void handle_rpc_func_cmd(struct tee_context *ctx, struct optee *optee,
struct optee_msg_arg *arg,
struct optee_call_ctx *call_ctx)
{
switch (arg->cmd) {
case OPTEE_RPC_CMD_SHM_ALLOC:
free_pages_list(call_ctx);
handle_rpc_func_cmd_shm_alloc(ctx, optee, arg, call_ctx);
break;
case OPTEE_RPC_CMD_SHM_FREE:
handle_rpc_func_cmd_shm_free(ctx, arg);
break;
default:
optee_rpc_cmd(ctx, optee, arg);
}
}
/**
* optee_handle_rpc() - handle RPC from secure world
* @ctx: context doing the RPC
* @rpc_arg: pointer to RPC arguments if any, or NULL if none
* @param: value of registers for the RPC
* @call_ctx: call context. Preserved during one OP-TEE invocation
*
* Result of RPC is written back into @param.
*/
static void optee_handle_rpc(struct tee_context *ctx,
struct optee_msg_arg *rpc_arg,
struct optee_rpc_param *param,
struct optee_call_ctx *call_ctx)
{
struct tee_device *teedev = ctx->teedev;
struct optee *optee = tee_get_drvdata(teedev);
struct optee_msg_arg *arg;
struct tee_shm *shm;
phys_addr_t pa;
switch (OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0)) {
case OPTEE_SMC_RPC_FUNC_ALLOC:
shm = tee_shm_alloc_priv_buf(optee->ctx, param->a1);
if (!IS_ERR(shm) && !tee_shm_get_pa(shm, 0, &pa)) {
reg_pair_from_64(&param->a1, &param->a2, pa);
reg_pair_from_64(&param->a4, &param->a5,
(unsigned long)shm);
} else {
param->a1 = 0;
param->a2 = 0;
param->a4 = 0;
param->a5 = 0;
}
kmemleak_not_leak(shm);
break;
case OPTEE_SMC_RPC_FUNC_FREE:
shm = reg_pair_to_ptr(param->a1, param->a2);
tee_shm_free(shm);
break;
case OPTEE_SMC_RPC_FUNC_FOREIGN_INTR:
/*
* A foreign interrupt was raised while secure world was
* executing, since they are handled in Linux a dummy RPC is
* performed to let Linux take the interrupt through the normal
* vector.
*/
break;
case OPTEE_SMC_RPC_FUNC_CMD:
if (rpc_arg) {
arg = rpc_arg;
} else {
shm = reg_pair_to_ptr(param->a1, param->a2);
arg = tee_shm_get_va(shm, 0);
if (IS_ERR(arg)) {
pr_err("%s: tee_shm_get_va %p failed\n",
__func__, shm);
break;
}
}
handle_rpc_func_cmd(ctx, optee, arg, call_ctx);
break;
default:
pr_warn("Unknown RPC func 0x%x\n",
(u32)OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0));
break;
}
param->a0 = OPTEE_SMC_CALL_RETURN_FROM_RPC;
}
/**
* optee_smc_do_call_with_arg() - Do an SMC to OP-TEE in secure world
* @ctx: calling context
* @shm: shared memory holding the message to pass to secure world
* @offs: offset of the message in @shm
* @system_thread: true if caller requests TEE system thread support
*
* Does and SMC to OP-TEE in secure world and handles eventual resulting
* Remote Procedure Calls (RPC) from OP-TEE.
*
* Returns return code from secure world, 0 is OK
*/
static int optee_smc_do_call_with_arg(struct tee_context *ctx,
struct tee_shm *shm, u_int offs,
bool system_thread)
{
struct optee *optee = tee_get_drvdata(ctx->teedev);
struct optee_call_waiter w;
struct optee_rpc_param param = { };
struct optee_call_ctx call_ctx = { };
struct optee_msg_arg *rpc_arg = NULL;
int rc;
if (optee->rpc_param_count) {
struct optee_msg_arg *arg;
unsigned int rpc_arg_offs;
arg = tee_shm_get_va(shm, offs);
if (IS_ERR(arg))
return PTR_ERR(arg);
rpc_arg_offs = OPTEE_MSG_GET_ARG_SIZE(arg->num_params);
rpc_arg = tee_shm_get_va(shm, offs + rpc_arg_offs);
if (IS_ERR(rpc_arg))
return PTR_ERR(rpc_arg);
}
if (rpc_arg && tee_shm_is_dynamic(shm)) {
param.a0 = OPTEE_SMC_CALL_WITH_REGD_ARG;
reg_pair_from_64(&param.a1, &param.a2, (u_long)shm);
param.a3 = offs;
} else {
phys_addr_t parg;
rc = tee_shm_get_pa(shm, offs, &parg);
if (rc)
return rc;
if (rpc_arg)
param.a0 = OPTEE_SMC_CALL_WITH_RPC_ARG;
else
param.a0 = OPTEE_SMC_CALL_WITH_ARG;
reg_pair_from_64(&param.a1, &param.a2, parg);
}
/* Initialize waiter */
optee_cq_wait_init(&optee->call_queue, &w, system_thread);
while (true) {
struct arm_smccc_res res;
trace_optee_invoke_fn_begin(&param);
optee->smc.invoke_fn(param.a0, param.a1, param.a2, param.a3,
param.a4, param.a5, param.a6, param.a7,
&res);
trace_optee_invoke_fn_end(&param, &res);
if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
/*
* Out of threads in secure world, wait for a thread
* become available.
*/
optee_cq_wait_for_completion(&optee->call_queue, &w);
} else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
cond_resched();
param.a0 = res.a0;
param.a1 = res.a1;
param.a2 = res.a2;
param.a3 = res.a3;
optee_handle_rpc(ctx, rpc_arg, &param, &call_ctx);
} else {
rc = res.a0;
break;
}
}
optee_rpc_finalize_call(&call_ctx);
/*
* We're done with our thread in secure world, if there's any
* thread waiters wake up one.
*/
optee_cq_wait_final(&optee->call_queue, &w);
return rc;
}
/*
* 5. Asynchronous notification
*/
static u32 get_async_notif_value(optee_invoke_fn *invoke_fn, bool *value_valid,
bool *value_pending)
{
struct arm_smccc_res res;
invoke_fn(OPTEE_SMC_GET_ASYNC_NOTIF_VALUE, 0, 0, 0, 0, 0, 0, 0, &res);
if (res.a0) {
*value_valid = false;
return 0;
}
*value_valid = (res.a2 & OPTEE_SMC_ASYNC_NOTIF_VALUE_VALID);
*value_pending = (res.a2 & OPTEE_SMC_ASYNC_NOTIF_VALUE_PENDING);
return res.a1;
}
static irqreturn_t irq_handler(struct optee *optee)
{
bool do_bottom_half = false;
bool value_valid;
bool value_pending;
u32 value;
do {
value = get_async_notif_value(optee->smc.invoke_fn,
&value_valid, &value_pending);
if (!value_valid)
break;
if (value == OPTEE_SMC_ASYNC_NOTIF_VALUE_DO_BOTTOM_HALF)
do_bottom_half = true;
else
optee_notif_send(optee, value);
} while (value_pending);
if (do_bottom_half)
return IRQ_WAKE_THREAD;
return IRQ_HANDLED;
}
static irqreturn_t notif_irq_handler(int irq, void *dev_id)
{
struct optee *optee = dev_id;
return irq_handler(optee);
}
static irqreturn_t notif_irq_thread_fn(int irq, void *dev_id)
{
struct optee *optee = dev_id;
optee_do_bottom_half(optee->ctx);
return IRQ_HANDLED;
}
static int init_irq(struct optee *optee, u_int irq)
{
int rc;
rc = request_threaded_irq(irq, notif_irq_handler,
notif_irq_thread_fn,
0, "optee_notification", optee);
if (rc)
return rc;
optee->smc.notif_irq = irq;
return 0;
}
static irqreturn_t notif_pcpu_irq_handler(int irq, void *dev_id)
{
struct optee_pcpu *pcpu = dev_id;
struct optee *optee = pcpu->optee;
if (irq_handler(optee) == IRQ_WAKE_THREAD)
queue_work(optee->smc.notif_pcpu_wq,
&optee->smc.notif_pcpu_work);
return IRQ_HANDLED;
}
static void notif_pcpu_irq_work_fn(struct work_struct *work)
{
struct optee_smc *optee_smc = container_of(work, struct optee_smc,
notif_pcpu_work);
struct optee *optee = container_of(optee_smc, struct optee, smc);
optee_do_bottom_half(optee->ctx);
}
static int init_pcpu_irq(struct optee *optee, u_int irq)
{
struct optee_pcpu __percpu *optee_pcpu;
int cpu, rc;
optee_pcpu = alloc_percpu(struct optee_pcpu);
if (!optee_pcpu)
return -ENOMEM;
for_each_present_cpu(cpu)
per_cpu_ptr(optee_pcpu, cpu)->optee = optee;
rc = request_percpu_irq(irq, notif_pcpu_irq_handler,
"optee_pcpu_notification", optee_pcpu);
if (rc)
goto err_free_pcpu;
INIT_WORK(&optee->smc.notif_pcpu_work, notif_pcpu_irq_work_fn);
optee->smc.notif_pcpu_wq = create_workqueue("optee_pcpu_notification");
if (!optee->smc.notif_pcpu_wq) {
rc = -EINVAL;
goto err_free_pcpu_irq;
}
optee->smc.optee_pcpu = optee_pcpu;
optee->smc.notif_irq = irq;
pcpu_irq_num = irq;
rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "optee/pcpu-notif:starting",
optee_cpuhp_enable_pcpu_irq,
optee_cpuhp_disable_pcpu_irq);
if (!rc)
rc = -EINVAL;
if (rc < 0)
goto err_free_pcpu_irq;
optee->smc.notif_cpuhp_state = rc;
return 0;
err_free_pcpu_irq:
free_percpu_irq(irq, optee_pcpu);
err_free_pcpu:
free_percpu(optee_pcpu);
return rc;
}
static int optee_smc_notif_init_irq(struct optee *optee, u_int irq)
{
if (irq_is_percpu_devid(irq))
return init_pcpu_irq(optee, irq);
else
return init_irq(optee, irq);
}
static void uninit_pcpu_irq(struct optee *optee)
{
cpuhp_remove_state(optee->smc.notif_cpuhp_state);
destroy_workqueue(optee->smc.notif_pcpu_wq);
free_percpu_irq(optee->smc.notif_irq, optee->smc.optee_pcpu);
free_percpu(optee->smc.optee_pcpu);
}
static void optee_smc_notif_uninit_irq(struct optee *optee)
{
if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) {
optee_stop_async_notif(optee->ctx);
if (optee->smc.notif_irq) {
if (irq_is_percpu_devid(optee->smc.notif_irq))
uninit_pcpu_irq(optee);
else
free_irq(optee->smc.notif_irq, optee);
irq_dispose_mapping(optee->smc.notif_irq);
}
}
}
/*
* 6. Driver initialization
*
* During driver initialization is secure world probed to find out which
* features it supports so the driver can be initialized with a matching
* configuration. This involves for instance support for dynamic shared
* memory instead of a static memory carvout.
*/
static void optee_get_version(struct tee_device *teedev,
struct tee_ioctl_version_data *vers)
{
struct tee_ioctl_version_data v = {
.impl_id = TEE_IMPL_ID_OPTEE,
.impl_caps = TEE_OPTEE_CAP_TZ,
.gen_caps = TEE_GEN_CAP_GP,
};
struct optee *optee = tee_get_drvdata(teedev);
if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM)
v.gen_caps |= TEE_GEN_CAP_REG_MEM;
if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL)
v.gen_caps |= TEE_GEN_CAP_MEMREF_NULL;
*vers = v;
}
static int optee_smc_open(struct tee_context *ctx)
{
struct optee *optee = tee_get_drvdata(ctx->teedev);
u32 sec_caps = optee->smc.sec_caps;
return optee_open(ctx, sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL);
}
static const struct tee_driver_ops optee_clnt_ops = {
.get_version = optee_get_version,
.open = optee_smc_open,
.release = optee_release,
.open_session = optee_open_session,
.close_session = optee_close_session,
.system_session = optee_system_session,
.invoke_func = optee_invoke_func,
.cancel_req = optee_cancel_req,
.shm_register = optee_shm_register,
.shm_unregister = optee_shm_unregister,
};
static const struct tee_desc optee_clnt_desc = {
.name = DRIVER_NAME "-clnt",
.ops = &optee_clnt_ops,
.owner = THIS_MODULE,
};
static const struct tee_driver_ops optee_supp_ops = {
.get_version = optee_get_version,
.open = optee_smc_open,
.release = optee_release_supp,
.supp_recv = optee_supp_recv,
.supp_send = optee_supp_send,
.shm_register = optee_shm_register_supp,
.shm_unregister = optee_shm_unregister_supp,
};
static const struct tee_desc optee_supp_desc = {
.name = DRIVER_NAME "-supp",
.ops = &optee_supp_ops,
.owner = THIS_MODULE,
.flags = TEE_DESC_PRIVILEGED,
};
static const struct optee_ops optee_ops = {
.do_call_with_arg = optee_smc_do_call_with_arg,
.to_msg_param = optee_to_msg_param,
.from_msg_param = optee_from_msg_param,
};
static int enable_async_notif(optee_invoke_fn *invoke_fn)
{
struct arm_smccc_res res;
invoke_fn(OPTEE_SMC_ENABLE_ASYNC_NOTIF, 0, 0, 0, 0, 0, 0, 0, &res);
if (res.a0)
return -EINVAL;
return 0;
}
static bool optee_msg_api_uid_is_optee_api(optee_invoke_fn *invoke_fn)
{
struct arm_smccc_res res;
invoke_fn(OPTEE_SMC_CALLS_UID, 0, 0, 0, 0, 0, 0, 0, &res);
if (res.a0 == OPTEE_MSG_UID_0 && res.a1 == OPTEE_MSG_UID_1 &&
res.a2 == OPTEE_MSG_UID_2 && res.a3 == OPTEE_MSG_UID_3)
return true;
return false;
}
#ifdef CONFIG_OPTEE_INSECURE_LOAD_IMAGE
static bool optee_msg_api_uid_is_optee_image_load(optee_invoke_fn *invoke_fn)
{
struct arm_smccc_res res;
invoke_fn(OPTEE_SMC_CALLS_UID, 0, 0, 0, 0, 0, 0, 0, &res);
if (res.a0 == OPTEE_MSG_IMAGE_LOAD_UID_0 &&
res.a1 == OPTEE_MSG_IMAGE_LOAD_UID_1 &&
res.a2 == OPTEE_MSG_IMAGE_LOAD_UID_2 &&
res.a3 == OPTEE_MSG_IMAGE_LOAD_UID_3)
return true;
return false;
}
#endif
static void optee_msg_get_os_revision(optee_invoke_fn *invoke_fn)
{
union {
struct arm_smccc_res smccc;
struct optee_smc_call_get_os_revision_result result;
} res = {
.result = {
.build_id = 0
}
};
invoke_fn(OPTEE_SMC_CALL_GET_OS_REVISION, 0, 0, 0, 0, 0, 0, 0,
&res.smccc);
if (res.result.build_id)
pr_info("revision %lu.%lu (%08lx)", res.result.major,
res.result.minor, res.result.build_id);
else
pr_info("revision %lu.%lu", res.result.major, res.result.minor);
}
static bool optee_msg_api_revision_is_compatible(optee_invoke_fn *invoke_fn)
{
union {
struct arm_smccc_res smccc;
struct optee_smc_calls_revision_result result;
} res;
invoke_fn(OPTEE_SMC_CALLS_REVISION, 0, 0, 0, 0, 0, 0, 0, &res.smccc);
if (res.result.major == OPTEE_MSG_REVISION_MAJOR &&
(int)res.result.minor >= OPTEE_MSG_REVISION_MINOR)
return true;
return false;
}
static bool optee_msg_exchange_capabilities(optee_invoke_fn *invoke_fn,
u32 *sec_caps, u32 *max_notif_value,
unsigned int *rpc_param_count)
{
union {
struct arm_smccc_res smccc;
struct optee_smc_exchange_capabilities_result result;
} res;
u32 a1 = 0;
/*
* TODO This isn't enough to tell if it's UP system (from kernel
* point of view) or not, is_smp() returns the information
* needed, but can't be called directly from here.
*/
if (!IS_ENABLED(CONFIG_SMP) || nr_cpu_ids == 1)
a1 |= OPTEE_SMC_NSEC_CAP_UNIPROCESSOR;
invoke_fn(OPTEE_SMC_EXCHANGE_CAPABILITIES, a1, 0, 0, 0, 0, 0, 0,
&res.smccc);
if (res.result.status != OPTEE_SMC_RETURN_OK)
return false;
*sec_caps = res.result.capabilities;
if (*sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF)
*max_notif_value = res.result.max_notif_value;
else
*max_notif_value = OPTEE_DEFAULT_MAX_NOTIF_VALUE;
if (*sec_caps & OPTEE_SMC_SEC_CAP_RPC_ARG)
*rpc_param_count = (u8)res.result.data;
else
*rpc_param_count = 0;
return true;
}
static unsigned int optee_msg_get_thread_count(optee_invoke_fn *invoke_fn)
{
struct arm_smccc_res res;
invoke_fn(OPTEE_SMC_GET_THREAD_COUNT, 0, 0, 0, 0, 0, 0, 0, &res);
if (res.a0)
return 0;
return res.a1;
}
static struct tee_shm_pool *
optee_config_shm_memremap(optee_invoke_fn *invoke_fn, void **memremaped_shm)
{
union {
struct arm_smccc_res smccc;
struct optee_smc_get_shm_config_result result;
} res;
unsigned long vaddr;
phys_addr_t paddr;
size_t size;
phys_addr_t begin;
phys_addr_t end;
void *va;
void *rc;
invoke_fn(OPTEE_SMC_GET_SHM_CONFIG, 0, 0, 0, 0, 0, 0, 0, &res.smccc);
if (res.result.status != OPTEE_SMC_RETURN_OK) {
pr_err("static shm service not available\n");
return ERR_PTR(-ENOENT);
}
if (res.result.settings != OPTEE_SMC_SHM_CACHED) {
pr_err("only normal cached shared memory supported\n");
return ERR_PTR(-EINVAL);
}
begin = roundup(res.result.start, PAGE_SIZE);
end = rounddown(res.result.start + res.result.size, PAGE_SIZE);
paddr = begin;
size = end - begin;
va = memremap(paddr, size, MEMREMAP_WB);
if (!va) {
pr_err("shared memory ioremap failed\n");
return ERR_PTR(-EINVAL);
}
vaddr = (unsigned long)va;
rc = tee_shm_pool_alloc_res_mem(vaddr, paddr, size,
OPTEE_MIN_STATIC_POOL_ALIGN);
if (IS_ERR(rc))
memunmap(va);
else
*memremaped_shm = va;
return rc;
}
/* Simple wrapper functions to be able to use a function pointer */
static void optee_smccc_smc(unsigned long a0, unsigned long a1,
unsigned long a2, unsigned long a3,
unsigned long a4, unsigned long a5,
unsigned long a6, unsigned long a7,
struct arm_smccc_res *res)
{
arm_smccc_smc(a0, a1, a2, a3, a4, a5, a6, a7, res);
}
static void optee_smccc_hvc(unsigned long a0, unsigned long a1,
unsigned long a2, unsigned long a3,
unsigned long a4, unsigned long a5,
unsigned long a6, unsigned long a7,
struct arm_smccc_res *res)
{
arm_smccc_hvc(a0, a1, a2, a3, a4, a5, a6, a7, res);
}
static optee_invoke_fn *get_invoke_func(struct device *dev)
{
const char *method;
pr_info("probing for conduit method.\n");
if (device_property_read_string(dev, "method", &method)) {
pr_warn("missing \"method\" property\n");
return ERR_PTR(-ENXIO);
}
if (!strcmp("hvc", method))
return optee_smccc_hvc;
else if (!strcmp("smc", method))
return optee_smccc_smc;
pr_warn("invalid \"method\" property: %s\n", method);
return ERR_PTR(-EINVAL);
}
/* optee_remove - Device Removal Routine
* @pdev: platform device information struct
*
* optee_remove is called by platform subsystem to alert the driver
* that it should release the device
*/
static int optee_smc_remove(struct platform_device *pdev)
{
struct optee *optee = platform_get_drvdata(pdev);
/*
* Ask OP-TEE to free all cached shared memory objects to decrease
* reference counters and also avoid wild pointers in secure world
* into the old shared memory range.
*/
if (!optee->rpc_param_count)
optee_disable_shm_cache(optee);
optee_smc_notif_uninit_irq(optee);
optee_remove_common(optee);
if (optee->smc.memremaped_shm)
memunmap(optee->smc.memremaped_shm);
kfree(optee);
return 0;
}
/* optee_shutdown - Device Removal Routine
* @pdev: platform device information struct
*
* platform_shutdown is called by the platform subsystem to alert
* the driver that a shutdown, reboot, or kexec is happening and
* device must be disabled.
*/
static void optee_shutdown(struct platform_device *pdev)
{
struct optee *optee = platform_get_drvdata(pdev);
if (!optee->rpc_param_count)
optee_disable_shm_cache(optee);
}
#ifdef CONFIG_OPTEE_INSECURE_LOAD_IMAGE
#define OPTEE_FW_IMAGE "optee/tee.bin"
static optee_invoke_fn *cpuhp_invoke_fn;
static int optee_cpuhp_probe(unsigned int cpu)
{
/*
* Invoking a call on a CPU will cause OP-TEE to perform the required
* setup for that CPU. Just invoke the call to get the UID since that
* has no side effects.
*/
if (optee_msg_api_uid_is_optee_api(cpuhp_invoke_fn))
return 0;
else
return -EINVAL;
}
static int optee_load_fw(struct platform_device *pdev,
optee_invoke_fn *invoke_fn)
{
const struct firmware *fw = NULL;
struct arm_smccc_res res;
phys_addr_t data_pa;
u8 *data_buf = NULL;
u64 data_size;
u32 data_pa_high, data_pa_low;
u32 data_size_high, data_size_low;
int rc;
int hp_state;
if (!optee_msg_api_uid_is_optee_image_load(invoke_fn))
return 0;
rc = request_firmware(&fw, OPTEE_FW_IMAGE, &pdev->dev);
if (rc) {
/*
* The firmware in the rootfs will not be accessible until we
* are in the SYSTEM_RUNNING state, so return EPROBE_DEFER until
* that point.
*/
if (system_state < SYSTEM_RUNNING)
return -EPROBE_DEFER;
goto fw_err;
}
data_size = fw->size;
/*
* This uses the GFP_DMA flag to ensure we are allocated memory in the
* 32-bit space since TF-A cannot map memory beyond the 32-bit boundary.
*/
data_buf = kmemdup(fw->data, fw->size, GFP_KERNEL | GFP_DMA);
if (!data_buf) {
rc = -ENOMEM;
goto fw_err;
}
data_pa = virt_to_phys(data_buf);
reg_pair_from_64(&data_pa_high, &data_pa_low, data_pa);
reg_pair_from_64(&data_size_high, &data_size_low, data_size);
goto fw_load;
fw_err:
pr_warn("image loading failed\n");
data_pa_high = 0;
data_pa_low = 0;
data_size_high = 0;
data_size_low = 0;
fw_load:
/*
* Always invoke the SMC, even if loading the image fails, to indicate
* to EL3 that we have passed the point where it should allow invoking
* this SMC.
*/
pr_warn("OP-TEE image loaded from kernel, this can be insecure");
invoke_fn(OPTEE_SMC_CALL_LOAD_IMAGE, data_size_high, data_size_low,
data_pa_high, data_pa_low, 0, 0, 0, &res);
if (!rc)
rc = res.a0;
if (fw)
release_firmware(fw);
kfree(data_buf);
if (!rc) {
/*
* We need to initialize OP-TEE on all other running cores as
* well. Any cores that aren't running yet will get initialized
* when they are brought up by the power management functions in
* TF-A which are registered by the OP-TEE SPD. Due to that we
* can un-register the callback right after registering it.
*/
cpuhp_invoke_fn = invoke_fn;
hp_state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "optee:probe",
optee_cpuhp_probe, NULL);
if (hp_state < 0) {
pr_warn("Failed with CPU hotplug setup for OP-TEE");
return -EINVAL;
}
cpuhp_remove_state(hp_state);
cpuhp_invoke_fn = NULL;
}
return rc;
}
#else
static inline int optee_load_fw(struct platform_device *pdev,
optee_invoke_fn *invoke_fn)
{
return 0;
}
#endif
static int optee_probe(struct platform_device *pdev)
{
optee_invoke_fn *invoke_fn;
struct tee_shm_pool *pool = ERR_PTR(-EINVAL);
struct optee *optee = NULL;
void *memremaped_shm = NULL;
unsigned int rpc_param_count;
unsigned int thread_count;
struct tee_device *teedev;
struct tee_context *ctx;
u32 max_notif_value;
u32 arg_cache_flags;
u32 sec_caps;
int rc;
invoke_fn = get_invoke_func(&pdev->dev);
if (IS_ERR(invoke_fn))
return PTR_ERR(invoke_fn);
rc = optee_load_fw(pdev, invoke_fn);
if (rc)
return rc;
if (!optee_msg_api_uid_is_optee_api(invoke_fn)) {
pr_warn("api uid mismatch\n");
return -EINVAL;
}
optee_msg_get_os_revision(invoke_fn);
if (!optee_msg_api_revision_is_compatible(invoke_fn)) {
pr_warn("api revision mismatch\n");
return -EINVAL;
}
thread_count = optee_msg_get_thread_count(invoke_fn);
if (!optee_msg_exchange_capabilities(invoke_fn, &sec_caps,
&max_notif_value,
&rpc_param_count)) {
pr_warn("capabilities mismatch\n");
return -EINVAL;
}
/*
* Try to use dynamic shared memory if possible
*/
if (sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM) {
/*
* If we have OPTEE_SMC_SEC_CAP_RPC_ARG we can ask
* optee_get_msg_arg() to pre-register (by having
* OPTEE_SHM_ARG_ALLOC_PRIV cleared) the page used to pass
* an argument struct.
*
* With the page is pre-registered we can use a non-zero
* offset for argument struct, this is indicated with
* OPTEE_SHM_ARG_SHARED.
*
* This means that optee_smc_do_call_with_arg() will use
* OPTEE_SMC_CALL_WITH_REGD_ARG for pre-registered pages.
*/
if (sec_caps & OPTEE_SMC_SEC_CAP_RPC_ARG)
arg_cache_flags = OPTEE_SHM_ARG_SHARED;
else
arg_cache_flags = OPTEE_SHM_ARG_ALLOC_PRIV;
pool = optee_shm_pool_alloc_pages();
}
/*
* If dynamic shared memory is not available or failed - try static one
*/
if (IS_ERR(pool) && (sec_caps & OPTEE_SMC_SEC_CAP_HAVE_RESERVED_SHM)) {
/*
* The static memory pool can use non-zero page offsets so
* let optee_get_msg_arg() know that with OPTEE_SHM_ARG_SHARED.
*
* optee_get_msg_arg() should not pre-register the
* allocated page used to pass an argument struct, this is
* indicated with OPTEE_SHM_ARG_ALLOC_PRIV.
*
* This means that optee_smc_do_call_with_arg() will use
* OPTEE_SMC_CALL_WITH_ARG if rpc_param_count is 0, else
* OPTEE_SMC_CALL_WITH_RPC_ARG.
*/
arg_cache_flags = OPTEE_SHM_ARG_SHARED |
OPTEE_SHM_ARG_ALLOC_PRIV;
pool = optee_config_shm_memremap(invoke_fn, &memremaped_shm);
}
if (IS_ERR(pool))
return PTR_ERR(pool);
optee = kzalloc(sizeof(*optee), GFP_KERNEL);
if (!optee) {
rc = -ENOMEM;
goto err_free_pool;
}
optee->ops = &optee_ops;
optee->smc.invoke_fn = invoke_fn;
optee->smc.sec_caps = sec_caps;
optee->rpc_param_count = rpc_param_count;
teedev = tee_device_alloc(&optee_clnt_desc, NULL, pool, optee);
if (IS_ERR(teedev)) {
rc = PTR_ERR(teedev);
goto err_free_optee;
}
optee->teedev = teedev;
teedev = tee_device_alloc(&optee_supp_desc, NULL, pool, optee);
if (IS_ERR(teedev)) {
rc = PTR_ERR(teedev);
goto err_unreg_teedev;
}
optee->supp_teedev = teedev;
rc = tee_device_register(optee->teedev);
if (rc)
goto err_unreg_supp_teedev;
rc = tee_device_register(optee->supp_teedev);
if (rc)
goto err_unreg_supp_teedev;
optee_cq_init(&optee->call_queue, thread_count);
optee_supp_init(&optee->supp);
optee->smc.memremaped_shm = memremaped_shm;
optee->pool = pool;
optee_shm_arg_cache_init(optee, arg_cache_flags);
platform_set_drvdata(pdev, optee);
ctx = teedev_open(optee->teedev);
if (IS_ERR(ctx)) {
rc = PTR_ERR(ctx);
goto err_supp_uninit;
}
optee->ctx = ctx;
rc = optee_notif_init(optee, max_notif_value);
if (rc)
goto err_close_ctx;
if (sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) {
unsigned int irq;
rc = platform_get_irq(pdev, 0);
if (rc < 0) {
pr_err("platform_get_irq: ret %d\n", rc);
goto err_notif_uninit;
}
irq = rc;
rc = optee_smc_notif_init_irq(optee, irq);
if (rc) {
irq_dispose_mapping(irq);
goto err_notif_uninit;
}
enable_async_notif(optee->smc.invoke_fn);
pr_info("Asynchronous notifications enabled\n");
}
/*
* Ensure that there are no pre-existing shm objects before enabling
* the shm cache so that there's no chance of receiving an invalid
* address during shutdown. This could occur, for example, if we're
* kexec booting from an older kernel that did not properly cleanup the
* shm cache.
*/
optee_disable_unmapped_shm_cache(optee);
/*
* Only enable the shm cache in case we're not able to pass the RPC
* arg struct right after the normal arg struct.
*/
if (!optee->rpc_param_count)
optee_enable_shm_cache(optee);
if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM)
pr_info("dynamic shared memory is enabled\n");
rc = optee_enumerate_devices(PTA_CMD_GET_DEVICES);
if (rc)
goto err_disable_shm_cache;
pr_info("initialized driver\n");
return 0;
err_disable_shm_cache:
if (!optee->rpc_param_count)
optee_disable_shm_cache(optee);
optee_smc_notif_uninit_irq(optee);
optee_unregister_devices();
err_notif_uninit:
optee_notif_uninit(optee);
err_close_ctx:
teedev_close_context(ctx);
err_supp_uninit:
optee_shm_arg_cache_uninit(optee);
optee_supp_uninit(&optee->supp);
mutex_destroy(&optee->call_queue.mutex);
err_unreg_supp_teedev:
tee_device_unregister(optee->supp_teedev);
err_unreg_teedev:
tee_device_unregister(optee->teedev);
err_free_optee:
kfree(optee);
err_free_pool:
tee_shm_pool_free(pool);
if (memremaped_shm)
memunmap(memremaped_shm);
return rc;
}
static const struct of_device_id optee_dt_match[] = {
{ .compatible = "linaro,optee-tz" },
{},
};
MODULE_DEVICE_TABLE(of, optee_dt_match);
static struct platform_driver optee_driver = {
.probe = optee_probe,
.remove = optee_smc_remove,
.shutdown = optee_shutdown,
.driver = {
.name = "optee",
.of_match_table = optee_dt_match,
},
};
int optee_smc_abi_register(void)
{
return platform_driver_register(&optee_driver);
}
void optee_smc_abi_unregister(void)
{
platform_driver_unregister(&optee_driver);
}