mirror_ubuntu-kernels/drivers/media/usb/gspca/m5602/m5602_ov9650.c

785 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for the ov9650 sensor
*
* Copyright (C) 2008 Erik Andrén
* Copyright (C) 2007 Ilyes Gouta. Based on the m5603x Linux Driver Project.
* Copyright (C) 2005 m5603x Linux Driver Project <m5602@x3ng.com.br>
*
* Portions of code to USB interface and ALi driver software,
* Copyright (c) 2006 Willem Duinker
* v4l2 interface modeled after the V4L2 driver
* for SN9C10x PC Camera Controllers
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include "m5602_ov9650.h"
static int ov9650_s_ctrl(struct v4l2_ctrl *ctrl);
static void ov9650_dump_registers(struct sd *sd);
static const unsigned char preinit_ov9650[][3] = {
/* [INITCAM] */
{BRIDGE, M5602_XB_MCU_CLK_DIV, 0x02},
{BRIDGE, M5602_XB_MCU_CLK_CTRL, 0xb0},
{BRIDGE, M5602_XB_SEN_CLK_DIV, 0x00},
{BRIDGE, M5602_XB_SEN_CLK_CTRL, 0xb0},
{BRIDGE, M5602_XB_ADC_CTRL, 0xc0},
{BRIDGE, M5602_XB_SENSOR_CTRL, 0x00},
{BRIDGE, M5602_XB_SENSOR_TYPE, 0x08},
{BRIDGE, M5602_XB_GPIO_DIR, 0x05},
{BRIDGE, M5602_XB_GPIO_DAT, 0x04},
{BRIDGE, M5602_XB_GPIO_EN_H, 0x06},
{BRIDGE, M5602_XB_GPIO_DIR_H, 0x06},
{BRIDGE, M5602_XB_GPIO_DAT_H, 0x00},
{BRIDGE, M5602_XB_GPIO_DAT, 0x00},
{BRIDGE, M5602_XB_I2C_CLK_DIV, 0x0a},
/* Reset chip */
{SENSOR, OV9650_COM7, OV9650_REGISTER_RESET},
/* Enable double clock */
{SENSOR, OV9650_CLKRC, 0x80},
/* Do something out of spec with the power */
{SENSOR, OV9650_OFON, 0x40}
};
static const unsigned char init_ov9650[][3] = {
/* [INITCAM] */
{BRIDGE, M5602_XB_MCU_CLK_DIV, 0x02},
{BRIDGE, M5602_XB_MCU_CLK_CTRL, 0xb0},
{BRIDGE, M5602_XB_SEN_CLK_DIV, 0x00},
{BRIDGE, M5602_XB_SEN_CLK_CTRL, 0xb0},
{BRIDGE, M5602_XB_ADC_CTRL, 0xc0},
{BRIDGE, M5602_XB_SENSOR_CTRL, 0x00},
{BRIDGE, M5602_XB_SENSOR_TYPE, 0x08},
{BRIDGE, M5602_XB_GPIO_DIR, 0x05},
{BRIDGE, M5602_XB_GPIO_DAT, 0x04},
{BRIDGE, M5602_XB_GPIO_EN_H, 0x06},
{BRIDGE, M5602_XB_GPIO_DIR_H, 0x06},
{BRIDGE, M5602_XB_GPIO_DAT_H, 0x00},
{BRIDGE, M5602_XB_GPIO_DAT, 0x00},
{BRIDGE, M5602_XB_I2C_CLK_DIV, 0x0a},
/* Reset chip */
{SENSOR, OV9650_COM7, OV9650_REGISTER_RESET},
/* One extra reset is needed in order to make the sensor behave
properly when resuming from ram, could be a timing issue */
{SENSOR, OV9650_COM7, OV9650_REGISTER_RESET},
/* Enable double clock */
{SENSOR, OV9650_CLKRC, 0x80},
/* Do something out of spec with the power */
{SENSOR, OV9650_OFON, 0x40},
/* Set fast AGC/AEC algorithm with unlimited step size */
{SENSOR, OV9650_COM8, OV9650_FAST_AGC_AEC |
OV9650_AEC_UNLIM_STEP_SIZE},
{SENSOR, OV9650_CHLF, 0x10},
{SENSOR, OV9650_ARBLM, 0xbf},
{SENSOR, OV9650_ACOM38, 0x81},
/* Turn off color matrix coefficient double option */
{SENSOR, OV9650_COM16, 0x00},
/* Enable color matrix for RGB/YUV, Delay Y channel,
set output Y/UV delay to 1 */
{SENSOR, OV9650_COM13, 0x19},
/* Enable digital BLC, Set output mode to U Y V Y */
{SENSOR, OV9650_TSLB, 0x0c},
/* Limit the AGC/AEC stable upper region */
{SENSOR, OV9650_COM24, 0x00},
/* Enable HREF and some out of spec things */
{SENSOR, OV9650_COM12, 0x73},
/* Set all DBLC offset signs to positive and
do some out of spec stuff */
{SENSOR, OV9650_DBLC1, 0xdf},
{SENSOR, OV9650_COM21, 0x06},
{SENSOR, OV9650_RSVD35, 0x91},
/* Necessary, no camera stream without it */
{SENSOR, OV9650_RSVD16, 0x06},
{SENSOR, OV9650_RSVD94, 0x99},
{SENSOR, OV9650_RSVD95, 0x99},
{SENSOR, OV9650_RSVD96, 0x04},
/* Enable full range output */
{SENSOR, OV9650_COM15, 0x0},
/* Enable HREF at optical black, enable ADBLC bias,
enable ADBLC, reset timings at format change */
{SENSOR, OV9650_COM6, 0x4b},
/* Subtract 32 from the B channel bias */
{SENSOR, OV9650_BBIAS, 0xa0},
/* Subtract 32 from the Gb channel bias */
{SENSOR, OV9650_GbBIAS, 0xa0},
/* Do not bypass the analog BLC and to some out of spec stuff */
{SENSOR, OV9650_Gr_COM, 0x00},
/* Subtract 32 from the R channel bias */
{SENSOR, OV9650_RBIAS, 0xa0},
/* Subtract 32 from the R channel bias */
{SENSOR, OV9650_RBIAS, 0x0},
{SENSOR, OV9650_COM26, 0x80},
{SENSOR, OV9650_ACOMA9, 0x98},
/* Set the AGC/AEC stable region upper limit */
{SENSOR, OV9650_AEW, 0x68},
/* Set the AGC/AEC stable region lower limit */
{SENSOR, OV9650_AEB, 0x5c},
/* Set the high and low limit nibbles to 3 */
{SENSOR, OV9650_VPT, 0xc3},
/* Set the Automatic Gain Ceiling (AGC) to 128x,
drop VSYNC at frame drop,
limit exposure timing,
drop frame when the AEC step is larger than the exposure gap */
{SENSOR, OV9650_COM9, 0x6e},
/* Set VSYNC negative, Set RESET to SLHS (slave mode horizontal sync)
and set PWDN to SLVS (slave mode vertical sync) */
{SENSOR, OV9650_COM10, 0x42},
/* Set horizontal column start high to default value */
{SENSOR, OV9650_HSTART, 0x1a}, /* 210 */
/* Set horizontal column end */
{SENSOR, OV9650_HSTOP, 0xbf}, /* 1534 */
/* Complementing register to the two writes above */
{SENSOR, OV9650_HREF, 0xb2},
/* Set vertical row start high bits */
{SENSOR, OV9650_VSTRT, 0x02},
/* Set vertical row end low bits */
{SENSOR, OV9650_VSTOP, 0x7e},
/* Set complementing vertical frame control */
{SENSOR, OV9650_VREF, 0x10},
{SENSOR, OV9650_ADC, 0x04},
{SENSOR, OV9650_HV, 0x40},
/* Enable denoise, and white-pixel erase */
{SENSOR, OV9650_COM22, OV9650_DENOISE_ENABLE |
OV9650_WHITE_PIXEL_ENABLE |
OV9650_WHITE_PIXEL_OPTION},
/* Enable VARIOPIXEL */
{SENSOR, OV9650_COM3, OV9650_VARIOPIXEL},
{SENSOR, OV9650_COM4, OV9650_QVGA_VARIOPIXEL},
/* Put the sensor in soft sleep mode */
{SENSOR, OV9650_COM2, OV9650_SOFT_SLEEP | OV9650_OUTPUT_DRIVE_2X},
};
static const unsigned char res_init_ov9650[][3] = {
{SENSOR, OV9650_COM2, OV9650_OUTPUT_DRIVE_2X},
{BRIDGE, M5602_XB_LINE_OF_FRAME_H, 0x82},
{BRIDGE, M5602_XB_LINE_OF_FRAME_L, 0x00},
{BRIDGE, M5602_XB_PIX_OF_LINE_H, 0x82},
{BRIDGE, M5602_XB_PIX_OF_LINE_L, 0x00},
{BRIDGE, M5602_XB_SIG_INI, 0x01}
};
/* Vertically and horizontally flips the image if matched, needed for machines
where the sensor is mounted upside down */
static
const
struct dmi_system_id ov9650_flip_dmi_table[] = {
{
.ident = "ASUS A6Ja",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "A6J")
}
},
{
.ident = "ASUS A6JC",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "A6JC")
}
},
{
.ident = "ASUS A6K",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "A6K")
}
},
{
.ident = "ASUS A6Kt",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "A6Kt")
}
},
{
.ident = "ASUS A6VA",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "A6VA")
}
},
{
.ident = "ASUS A6VC",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "A6VC")
}
},
{
.ident = "ASUS A6VM",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "A6VM")
}
},
{
.ident = "ASUS A7V",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "A7V")
}
},
{
.ident = "Alienware Aurora m9700",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "alienware"),
DMI_MATCH(DMI_PRODUCT_NAME, "Aurora m9700")
}
},
{}
};
static struct v4l2_pix_format ov9650_modes[] = {
{
176,
144,
V4L2_PIX_FMT_SBGGR8,
V4L2_FIELD_NONE,
.sizeimage =
176 * 144,
.bytesperline = 176,
.colorspace = V4L2_COLORSPACE_SRGB,
.priv = 9
}, {
320,
240,
V4L2_PIX_FMT_SBGGR8,
V4L2_FIELD_NONE,
.sizeimage =
320 * 240,
.bytesperline = 320,
.colorspace = V4L2_COLORSPACE_SRGB,
.priv = 8
}, {
352,
288,
V4L2_PIX_FMT_SBGGR8,
V4L2_FIELD_NONE,
.sizeimage =
352 * 288,
.bytesperline = 352,
.colorspace = V4L2_COLORSPACE_SRGB,
.priv = 9
}, {
640,
480,
V4L2_PIX_FMT_SBGGR8,
V4L2_FIELD_NONE,
.sizeimage =
640 * 480,
.bytesperline = 640,
.colorspace = V4L2_COLORSPACE_SRGB,
.priv = 9
}
};
static const struct v4l2_ctrl_ops ov9650_ctrl_ops = {
.s_ctrl = ov9650_s_ctrl,
};
int ov9650_probe(struct sd *sd)
{
int err = 0;
u8 prod_id = 0, ver_id = 0, i;
struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
if (force_sensor) {
if (force_sensor == OV9650_SENSOR) {
pr_info("Forcing an %s sensor\n", ov9650.name);
goto sensor_found;
}
/* If we want to force another sensor,
don't try to probe this one */
return -ENODEV;
}
gspca_dbg(gspca_dev, D_PROBE, "Probing for an ov9650 sensor\n");
/* Run the pre-init before probing the sensor */
for (i = 0; i < ARRAY_SIZE(preinit_ov9650) && !err; i++) {
u8 data = preinit_ov9650[i][2];
if (preinit_ov9650[i][0] == SENSOR)
err = m5602_write_sensor(sd,
preinit_ov9650[i][1], &data, 1);
else
err = m5602_write_bridge(sd,
preinit_ov9650[i][1], data);
}
if (err < 0)
return err;
if (m5602_read_sensor(sd, OV9650_PID, &prod_id, 1))
return -ENODEV;
if (m5602_read_sensor(sd, OV9650_VER, &ver_id, 1))
return -ENODEV;
if ((prod_id == 0x96) && (ver_id == 0x52)) {
pr_info("Detected an ov9650 sensor\n");
goto sensor_found;
}
return -ENODEV;
sensor_found:
sd->gspca_dev.cam.cam_mode = ov9650_modes;
sd->gspca_dev.cam.nmodes = ARRAY_SIZE(ov9650_modes);
return 0;
}
int ov9650_init(struct sd *sd)
{
int i, err = 0;
u8 data;
if (dump_sensor)
ov9650_dump_registers(sd);
for (i = 0; i < ARRAY_SIZE(init_ov9650) && !err; i++) {
data = init_ov9650[i][2];
if (init_ov9650[i][0] == SENSOR)
err = m5602_write_sensor(sd, init_ov9650[i][1],
&data, 1);
else
err = m5602_write_bridge(sd, init_ov9650[i][1], data);
}
return 0;
}
int ov9650_init_controls(struct sd *sd)
{
struct v4l2_ctrl_handler *hdl = &sd->gspca_dev.ctrl_handler;
sd->gspca_dev.vdev.ctrl_handler = hdl;
v4l2_ctrl_handler_init(hdl, 9);
sd->auto_white_bal = v4l2_ctrl_new_std(hdl, &ov9650_ctrl_ops,
V4L2_CID_AUTO_WHITE_BALANCE,
0, 1, 1, 1);
sd->red_bal = v4l2_ctrl_new_std(hdl, &ov9650_ctrl_ops,
V4L2_CID_RED_BALANCE, 0, 255, 1,
RED_GAIN_DEFAULT);
sd->blue_bal = v4l2_ctrl_new_std(hdl, &ov9650_ctrl_ops,
V4L2_CID_BLUE_BALANCE, 0, 255, 1,
BLUE_GAIN_DEFAULT);
sd->autoexpo = v4l2_ctrl_new_std_menu(hdl, &ov9650_ctrl_ops,
V4L2_CID_EXPOSURE_AUTO, 1, 0, V4L2_EXPOSURE_AUTO);
sd->expo = v4l2_ctrl_new_std(hdl, &ov9650_ctrl_ops, V4L2_CID_EXPOSURE,
0, 0x1ff, 4, EXPOSURE_DEFAULT);
sd->autogain = v4l2_ctrl_new_std(hdl, &ov9650_ctrl_ops,
V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
sd->gain = v4l2_ctrl_new_std(hdl, &ov9650_ctrl_ops, V4L2_CID_GAIN, 0,
0x3ff, 1, GAIN_DEFAULT);
sd->hflip = v4l2_ctrl_new_std(hdl, &ov9650_ctrl_ops, V4L2_CID_HFLIP,
0, 1, 1, 0);
sd->vflip = v4l2_ctrl_new_std(hdl, &ov9650_ctrl_ops, V4L2_CID_VFLIP,
0, 1, 1, 0);
if (hdl->error) {
pr_err("Could not initialize controls\n");
return hdl->error;
}
v4l2_ctrl_auto_cluster(3, &sd->auto_white_bal, 0, false);
v4l2_ctrl_auto_cluster(2, &sd->autoexpo, 0, false);
v4l2_ctrl_auto_cluster(2, &sd->autogain, 0, false);
v4l2_ctrl_cluster(2, &sd->hflip);
return 0;
}
int ov9650_start(struct sd *sd)
{
u8 data;
int i, err = 0;
struct cam *cam = &sd->gspca_dev.cam;
int width = cam->cam_mode[sd->gspca_dev.curr_mode].width;
int height = cam->cam_mode[sd->gspca_dev.curr_mode].height;
int ver_offs = cam->cam_mode[sd->gspca_dev.curr_mode].priv;
int hor_offs = OV9650_LEFT_OFFSET;
struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
if ((!dmi_check_system(ov9650_flip_dmi_table) &&
sd->vflip->val) ||
(dmi_check_system(ov9650_flip_dmi_table) &&
!sd->vflip->val))
ver_offs--;
if (width <= 320)
hor_offs /= 2;
/* Synthesize the vsync/hsync setup */
for (i = 0; i < ARRAY_SIZE(res_init_ov9650) && !err; i++) {
if (res_init_ov9650[i][0] == BRIDGE)
err = m5602_write_bridge(sd, res_init_ov9650[i][1],
res_init_ov9650[i][2]);
else if (res_init_ov9650[i][0] == SENSOR) {
data = res_init_ov9650[i][2];
err = m5602_write_sensor(sd,
res_init_ov9650[i][1], &data, 1);
}
}
if (err < 0)
return err;
err = m5602_write_bridge(sd, M5602_XB_VSYNC_PARA,
((ver_offs >> 8) & 0xff));
if (err < 0)
return err;
err = m5602_write_bridge(sd, M5602_XB_VSYNC_PARA, (ver_offs & 0xff));
if (err < 0)
return err;
err = m5602_write_bridge(sd, M5602_XB_VSYNC_PARA, 0);
if (err < 0)
return err;
err = m5602_write_bridge(sd, M5602_XB_VSYNC_PARA, (height >> 8) & 0xff);
if (err < 0)
return err;
err = m5602_write_bridge(sd, M5602_XB_VSYNC_PARA, (height & 0xff));
if (err < 0)
return err;
for (i = 0; i < 2 && !err; i++)
err = m5602_write_bridge(sd, M5602_XB_VSYNC_PARA, 0);
if (err < 0)
return err;
err = m5602_write_bridge(sd, M5602_XB_SIG_INI, 0);
if (err < 0)
return err;
err = m5602_write_bridge(sd, M5602_XB_SIG_INI, 2);
if (err < 0)
return err;
err = m5602_write_bridge(sd, M5602_XB_HSYNC_PARA,
(hor_offs >> 8) & 0xff);
if (err < 0)
return err;
err = m5602_write_bridge(sd, M5602_XB_HSYNC_PARA, hor_offs & 0xff);
if (err < 0)
return err;
err = m5602_write_bridge(sd, M5602_XB_HSYNC_PARA,
((width + hor_offs) >> 8) & 0xff);
if (err < 0)
return err;
err = m5602_write_bridge(sd, M5602_XB_HSYNC_PARA,
((width + hor_offs) & 0xff));
if (err < 0)
return err;
err = m5602_write_bridge(sd, M5602_XB_SIG_INI, 0);
if (err < 0)
return err;
switch (width) {
case 640:
gspca_dbg(gspca_dev, D_CONF, "Configuring camera for VGA mode\n");
data = OV9650_VGA_SELECT | OV9650_RGB_SELECT |
OV9650_RAW_RGB_SELECT;
err = m5602_write_sensor(sd, OV9650_COM7, &data, 1);
break;
case 352:
gspca_dbg(gspca_dev, D_CONF, "Configuring camera for CIF mode\n");
data = OV9650_CIF_SELECT | OV9650_RGB_SELECT |
OV9650_RAW_RGB_SELECT;
err = m5602_write_sensor(sd, OV9650_COM7, &data, 1);
break;
case 320:
gspca_dbg(gspca_dev, D_CONF, "Configuring camera for QVGA mode\n");
data = OV9650_QVGA_SELECT | OV9650_RGB_SELECT |
OV9650_RAW_RGB_SELECT;
err = m5602_write_sensor(sd, OV9650_COM7, &data, 1);
break;
case 176:
gspca_dbg(gspca_dev, D_CONF, "Configuring camera for QCIF mode\n");
data = OV9650_QCIF_SELECT | OV9650_RGB_SELECT |
OV9650_RAW_RGB_SELECT;
err = m5602_write_sensor(sd, OV9650_COM7, &data, 1);
break;
}
return err;
}
int ov9650_stop(struct sd *sd)
{
u8 data = OV9650_SOFT_SLEEP | OV9650_OUTPUT_DRIVE_2X;
return m5602_write_sensor(sd, OV9650_COM2, &data, 1);
}
void ov9650_disconnect(struct sd *sd)
{
ov9650_stop(sd);
sd->sensor = NULL;
}
static int ov9650_set_exposure(struct gspca_dev *gspca_dev, __s32 val)
{
struct sd *sd = (struct sd *) gspca_dev;
u8 i2c_data;
int err;
gspca_dbg(gspca_dev, D_CONF, "Set exposure to %d\n", val);
/* The 6 MSBs */
i2c_data = (val >> 10) & 0x3f;
err = m5602_write_sensor(sd, OV9650_AECHM,
&i2c_data, 1);
if (err < 0)
return err;
/* The 8 middle bits */
i2c_data = (val >> 2) & 0xff;
err = m5602_write_sensor(sd, OV9650_AECH,
&i2c_data, 1);
if (err < 0)
return err;
/* The 2 LSBs */
i2c_data = val & 0x03;
err = m5602_write_sensor(sd, OV9650_COM1, &i2c_data, 1);
return err;
}
static int ov9650_set_gain(struct gspca_dev *gspca_dev, __s32 val)
{
int err;
u8 i2c_data;
struct sd *sd = (struct sd *) gspca_dev;
gspca_dbg(gspca_dev, D_CONF, "Setting gain to %d\n", val);
/* The 2 MSB */
/* Read the OV9650_VREF register first to avoid
corrupting the VREF high and low bits */
err = m5602_read_sensor(sd, OV9650_VREF, &i2c_data, 1);
if (err < 0)
return err;
/* Mask away all uninteresting bits */
i2c_data = ((val & 0x0300) >> 2) |
(i2c_data & 0x3f);
err = m5602_write_sensor(sd, OV9650_VREF, &i2c_data, 1);
if (err < 0)
return err;
/* The 8 LSBs */
i2c_data = val & 0xff;
err = m5602_write_sensor(sd, OV9650_GAIN, &i2c_data, 1);
return err;
}
static int ov9650_set_red_balance(struct gspca_dev *gspca_dev, __s32 val)
{
int err;
u8 i2c_data;
struct sd *sd = (struct sd *) gspca_dev;
gspca_dbg(gspca_dev, D_CONF, "Set red gain to %d\n", val);
i2c_data = val & 0xff;
err = m5602_write_sensor(sd, OV9650_RED, &i2c_data, 1);
return err;
}
static int ov9650_set_blue_balance(struct gspca_dev *gspca_dev, __s32 val)
{
int err;
u8 i2c_data;
struct sd *sd = (struct sd *) gspca_dev;
gspca_dbg(gspca_dev, D_CONF, "Set blue gain to %d\n", val);
i2c_data = val & 0xff;
err = m5602_write_sensor(sd, OV9650_BLUE, &i2c_data, 1);
return err;
}
static int ov9650_set_hvflip(struct gspca_dev *gspca_dev)
{
int err;
u8 i2c_data;
struct sd *sd = (struct sd *) gspca_dev;
int hflip = sd->hflip->val;
int vflip = sd->vflip->val;
gspca_dbg(gspca_dev, D_CONF, "Set hvflip to %d %d\n", hflip, vflip);
if (dmi_check_system(ov9650_flip_dmi_table))
vflip = !vflip;
i2c_data = (hflip << 5) | (vflip << 4);
err = m5602_write_sensor(sd, OV9650_MVFP, &i2c_data, 1);
if (err < 0)
return err;
/* When vflip is toggled we need to readjust the bridge hsync/vsync */
if (gspca_dev->streaming)
err = ov9650_start(sd);
return err;
}
static int ov9650_set_auto_exposure(struct gspca_dev *gspca_dev,
__s32 val)
{
int err;
u8 i2c_data;
struct sd *sd = (struct sd *) gspca_dev;
gspca_dbg(gspca_dev, D_CONF, "Set auto exposure control to %d\n", val);
err = m5602_read_sensor(sd, OV9650_COM8, &i2c_data, 1);
if (err < 0)
return err;
val = (val == V4L2_EXPOSURE_AUTO);
i2c_data = ((i2c_data & 0xfe) | ((val & 0x01) << 0));
return m5602_write_sensor(sd, OV9650_COM8, &i2c_data, 1);
}
static int ov9650_set_auto_white_balance(struct gspca_dev *gspca_dev,
__s32 val)
{
int err;
u8 i2c_data;
struct sd *sd = (struct sd *) gspca_dev;
gspca_dbg(gspca_dev, D_CONF, "Set auto white balance to %d\n", val);
err = m5602_read_sensor(sd, OV9650_COM8, &i2c_data, 1);
if (err < 0)
return err;
i2c_data = ((i2c_data & 0xfd) | ((val & 0x01) << 1));
err = m5602_write_sensor(sd, OV9650_COM8, &i2c_data, 1);
return err;
}
static int ov9650_set_auto_gain(struct gspca_dev *gspca_dev, __s32 val)
{
int err;
u8 i2c_data;
struct sd *sd = (struct sd *) gspca_dev;
gspca_dbg(gspca_dev, D_CONF, "Set auto gain control to %d\n", val);
err = m5602_read_sensor(sd, OV9650_COM8, &i2c_data, 1);
if (err < 0)
return err;
i2c_data = ((i2c_data & 0xfb) | ((val & 0x01) << 2));
return m5602_write_sensor(sd, OV9650_COM8, &i2c_data, 1);
}
static int ov9650_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct gspca_dev *gspca_dev =
container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
struct sd *sd = (struct sd *) gspca_dev;
int err;
if (!gspca_dev->streaming)
return 0;
switch (ctrl->id) {
case V4L2_CID_AUTO_WHITE_BALANCE:
err = ov9650_set_auto_white_balance(gspca_dev, ctrl->val);
if (err || ctrl->val)
return err;
err = ov9650_set_red_balance(gspca_dev, sd->red_bal->val);
if (err)
return err;
err = ov9650_set_blue_balance(gspca_dev, sd->blue_bal->val);
break;
case V4L2_CID_EXPOSURE_AUTO:
err = ov9650_set_auto_exposure(gspca_dev, ctrl->val);
if (err || ctrl->val == V4L2_EXPOSURE_AUTO)
return err;
err = ov9650_set_exposure(gspca_dev, sd->expo->val);
break;
case V4L2_CID_AUTOGAIN:
err = ov9650_set_auto_gain(gspca_dev, ctrl->val);
if (err || ctrl->val)
return err;
err = ov9650_set_gain(gspca_dev, sd->gain->val);
break;
case V4L2_CID_HFLIP:
err = ov9650_set_hvflip(gspca_dev);
break;
default:
return -EINVAL;
}
return err;
}
static void ov9650_dump_registers(struct sd *sd)
{
int address;
pr_info("Dumping the ov9650 register state\n");
for (address = 0; address < 0xa9; address++) {
u8 value;
m5602_read_sensor(sd, address, &value, 1);
pr_info("register 0x%x contains 0x%x\n", address, value);
}
pr_info("ov9650 register state dump complete\n");
pr_info("Probing for which registers that are read/write\n");
for (address = 0; address < 0xff; address++) {
u8 old_value, ctrl_value;
u8 test_value[2] = {0xff, 0xff};
m5602_read_sensor(sd, address, &old_value, 1);
m5602_write_sensor(sd, address, test_value, 1);
m5602_read_sensor(sd, address, &ctrl_value, 1);
if (ctrl_value == test_value[0])
pr_info("register 0x%x is writeable\n", address);
else
pr_info("register 0x%x is read only\n", address);
/* Restore original value */
m5602_write_sensor(sd, address, &old_value, 1);
}
}