mirror_ubuntu-kernels/drivers/media/dvb-frontends/dib7000p.c

2861 lines
74 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Linux-DVB Driver for DiBcom's second generation DiB7000P (PC).
*
* Copyright (C) 2005-7 DiBcom (http://www.dibcom.fr/)
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/mutex.h>
#include <asm/div64.h>
#include <linux/int_log.h>
#include <media/dvb_frontend.h>
#include "dib7000p.h"
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
static int buggy_sfn_workaround;
module_param(buggy_sfn_workaround, int, 0644);
MODULE_PARM_DESC(buggy_sfn_workaround, "Enable work-around for buggy SFNs (default: 0)");
#define dprintk(fmt, arg...) do { \
if (debug) \
printk(KERN_DEBUG pr_fmt("%s: " fmt), \
__func__, ##arg); \
} while (0)
struct i2c_device {
struct i2c_adapter *i2c_adap;
u8 i2c_addr;
};
struct dib7000p_state {
struct dvb_frontend demod;
struct dib7000p_config cfg;
u8 i2c_addr;
struct i2c_adapter *i2c_adap;
struct dibx000_i2c_master i2c_master;
u16 wbd_ref;
u8 current_band;
u32 current_bandwidth;
struct dibx000_agc_config *current_agc;
u32 timf;
u8 div_force_off:1;
u8 div_state:1;
u16 div_sync_wait;
u8 agc_state;
u16 gpio_dir;
u16 gpio_val;
u8 sfn_workaround_active:1;
#define SOC7090 0x7090
u16 version;
u16 tuner_enable;
struct i2c_adapter dib7090_tuner_adap;
/* for the I2C transfer */
struct i2c_msg msg[2];
u8 i2c_write_buffer[4];
u8 i2c_read_buffer[2];
struct mutex i2c_buffer_lock;
u8 input_mode_mpeg;
/* for DVBv5 stats */
s64 old_ucb;
unsigned long per_jiffies_stats;
unsigned long ber_jiffies_stats;
unsigned long get_stats_time;
};
enum dib7000p_power_mode {
DIB7000P_POWER_ALL = 0,
DIB7000P_POWER_ANALOG_ADC,
DIB7000P_POWER_INTERFACE_ONLY,
};
/* dib7090 specific functions */
static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode);
static int dib7090_set_diversity_in(struct dvb_frontend *fe, int onoff);
static void dib7090_setDibTxMux(struct dib7000p_state *state, int mode);
static void dib7090_setHostBusMux(struct dib7000p_state *state, int mode);
static u16 dib7000p_read_word(struct dib7000p_state *state, u16 reg)
{
u16 ret;
if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
dprintk("could not acquire lock\n");
return 0;
}
state->i2c_write_buffer[0] = reg >> 8;
state->i2c_write_buffer[1] = reg & 0xff;
memset(state->msg, 0, 2 * sizeof(struct i2c_msg));
state->msg[0].addr = state->i2c_addr >> 1;
state->msg[0].flags = 0;
state->msg[0].buf = state->i2c_write_buffer;
state->msg[0].len = 2;
state->msg[1].addr = state->i2c_addr >> 1;
state->msg[1].flags = I2C_M_RD;
state->msg[1].buf = state->i2c_read_buffer;
state->msg[1].len = 2;
if (i2c_transfer(state->i2c_adap, state->msg, 2) != 2)
dprintk("i2c read error on %d\n", reg);
ret = (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1];
mutex_unlock(&state->i2c_buffer_lock);
return ret;
}
static int dib7000p_write_word(struct dib7000p_state *state, u16 reg, u16 val)
{
int ret;
if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
dprintk("could not acquire lock\n");
return -EINVAL;
}
state->i2c_write_buffer[0] = (reg >> 8) & 0xff;
state->i2c_write_buffer[1] = reg & 0xff;
state->i2c_write_buffer[2] = (val >> 8) & 0xff;
state->i2c_write_buffer[3] = val & 0xff;
memset(&state->msg[0], 0, sizeof(struct i2c_msg));
state->msg[0].addr = state->i2c_addr >> 1;
state->msg[0].flags = 0;
state->msg[0].buf = state->i2c_write_buffer;
state->msg[0].len = 4;
ret = (i2c_transfer(state->i2c_adap, state->msg, 1) != 1 ?
-EREMOTEIO : 0);
mutex_unlock(&state->i2c_buffer_lock);
return ret;
}
static void dib7000p_write_tab(struct dib7000p_state *state, u16 * buf)
{
u16 l = 0, r, *n;
n = buf;
l = *n++;
while (l) {
r = *n++;
do {
dib7000p_write_word(state, r, *n++);
r++;
} while (--l);
l = *n++;
}
}
static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode)
{
int ret = 0;
u16 outreg, fifo_threshold, smo_mode;
outreg = 0;
fifo_threshold = 1792;
smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1);
dprintk("setting output mode for demod %p to %d\n", &state->demod, mode);
switch (mode) {
case OUTMODE_MPEG2_PAR_GATED_CLK:
outreg = (1 << 10); /* 0x0400 */
break;
case OUTMODE_MPEG2_PAR_CONT_CLK:
outreg = (1 << 10) | (1 << 6); /* 0x0440 */
break;
case OUTMODE_MPEG2_SERIAL:
outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0480 */
break;
case OUTMODE_DIVERSITY:
if (state->cfg.hostbus_diversity)
outreg = (1 << 10) | (4 << 6); /* 0x0500 */
else
outreg = (1 << 11);
break;
case OUTMODE_MPEG2_FIFO:
smo_mode |= (3 << 1);
fifo_threshold = 512;
outreg = (1 << 10) | (5 << 6);
break;
case OUTMODE_ANALOG_ADC:
outreg = (1 << 10) | (3 << 6);
break;
case OUTMODE_HIGH_Z:
outreg = 0;
break;
default:
dprintk("Unhandled output_mode passed to be set for demod %p\n", &state->demod);
break;
}
if (state->cfg.output_mpeg2_in_188_bytes)
smo_mode |= (1 << 5);
ret |= dib7000p_write_word(state, 235, smo_mode);
ret |= dib7000p_write_word(state, 236, fifo_threshold); /* synchronous fread */
if (state->version != SOC7090)
ret |= dib7000p_write_word(state, 1286, outreg); /* P_Div_active */
return ret;
}
static int dib7000p_set_diversity_in(struct dvb_frontend *demod, int onoff)
{
struct dib7000p_state *state = demod->demodulator_priv;
if (state->div_force_off) {
dprintk("diversity combination deactivated - forced by COFDM parameters\n");
onoff = 0;
dib7000p_write_word(state, 207, 0);
} else
dib7000p_write_word(state, 207, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0));
state->div_state = (u8) onoff;
if (onoff) {
dib7000p_write_word(state, 204, 6);
dib7000p_write_word(state, 205, 16);
/* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */
} else {
dib7000p_write_word(state, 204, 1);
dib7000p_write_word(state, 205, 0);
}
return 0;
}
static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_power_mode mode)
{
/* by default everything is powered off */
u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0x0007, reg_899 = 0x0003, reg_1280 = (0xfe00) | (dib7000p_read_word(state, 1280) & 0x01ff);
/* now, depending on the requested mode, we power on */
switch (mode) {
/* power up everything in the demod */
case DIB7000P_POWER_ALL:
reg_774 = 0x0000;
reg_775 = 0x0000;
reg_776 = 0x0;
reg_899 = 0x0;
if (state->version == SOC7090)
reg_1280 &= 0x001f;
else
reg_1280 &= 0x01ff;
break;
case DIB7000P_POWER_ANALOG_ADC:
/* dem, cfg, iqc, sad, agc */
reg_774 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10) | (1 << 9));
/* nud */
reg_776 &= ~((1 << 0));
/* Dout */
if (state->version != SOC7090)
reg_1280 &= ~((1 << 11));
reg_1280 &= ~(1 << 6);
fallthrough;
case DIB7000P_POWER_INTERFACE_ONLY:
/* just leave power on the control-interfaces: GPIO and (I2C or SDIO) */
/* TODO power up either SDIO or I2C */
if (state->version == SOC7090)
reg_1280 &= ~((1 << 7) | (1 << 5));
else
reg_1280 &= ~((1 << 14) | (1 << 13) | (1 << 12) | (1 << 10));
break;
/* TODO following stuff is just converted from the dib7000-driver - check when is used what */
}
dib7000p_write_word(state, 774, reg_774);
dib7000p_write_word(state, 775, reg_775);
dib7000p_write_word(state, 776, reg_776);
dib7000p_write_word(state, 1280, reg_1280);
if (state->version != SOC7090)
dib7000p_write_word(state, 899, reg_899);
return 0;
}
static void dib7000p_set_adc_state(struct dib7000p_state *state, enum dibx000_adc_states no)
{
u16 reg_908 = 0, reg_909 = 0;
u16 reg;
if (state->version != SOC7090) {
reg_908 = dib7000p_read_word(state, 908);
reg_909 = dib7000p_read_word(state, 909);
}
switch (no) {
case DIBX000_SLOW_ADC_ON:
if (state->version == SOC7090) {
reg = dib7000p_read_word(state, 1925);
dib7000p_write_word(state, 1925, reg | (1 << 4) | (1 << 2)); /* en_slowAdc = 1 & reset_sladc = 1 */
reg = dib7000p_read_word(state, 1925); /* read access to make it works... strange ... */
msleep(200);
dib7000p_write_word(state, 1925, reg & ~(1 << 4)); /* en_slowAdc = 1 & reset_sladc = 0 */
reg = dib7000p_read_word(state, 72) & ~((0x3 << 14) | (0x3 << 12));
dib7000p_write_word(state, 72, reg | (1 << 14) | (3 << 12) | 524); /* ref = Vin1 => Vbg ; sel = Vin0 or Vin3 ; (Vin2 = Vcm) */
} else {
reg_909 |= (1 << 1) | (1 << 0);
dib7000p_write_word(state, 909, reg_909);
reg_909 &= ~(1 << 1);
}
break;
case DIBX000_SLOW_ADC_OFF:
if (state->version == SOC7090) {
reg = dib7000p_read_word(state, 1925);
dib7000p_write_word(state, 1925, (reg & ~(1 << 2)) | (1 << 4)); /* reset_sladc = 1 en_slowAdc = 0 */
} else
reg_909 |= (1 << 1) | (1 << 0);
break;
case DIBX000_ADC_ON:
reg_908 &= 0x0fff;
reg_909 &= 0x0003;
break;
case DIBX000_ADC_OFF:
reg_908 |= (1 << 14) | (1 << 13) | (1 << 12);
reg_909 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2);
break;
case DIBX000_VBG_ENABLE:
reg_908 &= ~(1 << 15);
break;
case DIBX000_VBG_DISABLE:
reg_908 |= (1 << 15);
break;
default:
break;
}
// dprintk( "908: %x, 909: %x\n", reg_908, reg_909);
reg_909 |= (state->cfg.disable_sample_and_hold & 1) << 4;
reg_908 |= (state->cfg.enable_current_mirror & 1) << 7;
if (state->version != SOC7090) {
dib7000p_write_word(state, 908, reg_908);
dib7000p_write_word(state, 909, reg_909);
}
}
static int dib7000p_set_bandwidth(struct dib7000p_state *state, u32 bw)
{
u32 timf;
// store the current bandwidth for later use
state->current_bandwidth = bw;
if (state->timf == 0) {
dprintk("using default timf\n");
timf = state->cfg.bw->timf;
} else {
dprintk("using updated timf\n");
timf = state->timf;
}
timf = timf * (bw / 50) / 160;
dib7000p_write_word(state, 23, (u16) ((timf >> 16) & 0xffff));
dib7000p_write_word(state, 24, (u16) ((timf) & 0xffff));
return 0;
}
static int dib7000p_sad_calib(struct dib7000p_state *state)
{
/* internal */
dib7000p_write_word(state, 73, (0 << 1) | (0 << 0));
if (state->version == SOC7090)
dib7000p_write_word(state, 74, 2048);
else
dib7000p_write_word(state, 74, 776);
/* do the calibration */
dib7000p_write_word(state, 73, (1 << 0));
dib7000p_write_word(state, 73, (0 << 0));
msleep(1);
return 0;
}
static int dib7000p_set_wbd_ref(struct dvb_frontend *demod, u16 value)
{
struct dib7000p_state *state = demod->demodulator_priv;
if (value > 4095)
value = 4095;
state->wbd_ref = value;
return dib7000p_write_word(state, 105, (dib7000p_read_word(state, 105) & 0xf000) | value);
}
static int dib7000p_get_agc_values(struct dvb_frontend *fe,
u16 *agc_global, u16 *agc1, u16 *agc2, u16 *wbd)
{
struct dib7000p_state *state = fe->demodulator_priv;
if (agc_global != NULL)
*agc_global = dib7000p_read_word(state, 394);
if (agc1 != NULL)
*agc1 = dib7000p_read_word(state, 392);
if (agc2 != NULL)
*agc2 = dib7000p_read_word(state, 393);
if (wbd != NULL)
*wbd = dib7000p_read_word(state, 397);
return 0;
}
static int dib7000p_set_agc1_min(struct dvb_frontend *fe, u16 v)
{
struct dib7000p_state *state = fe->demodulator_priv;
return dib7000p_write_word(state, 108, v);
}
static void dib7000p_reset_pll(struct dib7000p_state *state)
{
struct dibx000_bandwidth_config *bw = &state->cfg.bw[0];
u16 clk_cfg0;
if (state->version == SOC7090) {
dib7000p_write_word(state, 1856, (!bw->pll_reset << 13) | (bw->pll_range << 12) | (bw->pll_ratio << 6) | (bw->pll_prediv));
while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1)
;
dib7000p_write_word(state, 1857, dib7000p_read_word(state, 1857) | (!bw->pll_bypass << 15));
} else {
/* force PLL bypass */
clk_cfg0 = (1 << 15) | ((bw->pll_ratio & 0x3f) << 9) |
(bw->modulo << 7) | (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) | (bw->bypclk_div << 2) | (bw->enable_refdiv << 1) | (0 << 0);
dib7000p_write_word(state, 900, clk_cfg0);
/* P_pll_cfg */
dib7000p_write_word(state, 903, (bw->pll_prediv << 5) | (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset);
clk_cfg0 = (bw->pll_bypass << 15) | (clk_cfg0 & 0x7fff);
dib7000p_write_word(state, 900, clk_cfg0);
}
dib7000p_write_word(state, 18, (u16) (((bw->internal * 1000) >> 16) & 0xffff));
dib7000p_write_word(state, 19, (u16) ((bw->internal * 1000) & 0xffff));
dib7000p_write_word(state, 21, (u16) ((bw->ifreq >> 16) & 0xffff));
dib7000p_write_word(state, 22, (u16) ((bw->ifreq) & 0xffff));
dib7000p_write_word(state, 72, bw->sad_cfg);
}
static u32 dib7000p_get_internal_freq(struct dib7000p_state *state)
{
u32 internal = (u32) dib7000p_read_word(state, 18) << 16;
internal |= (u32) dib7000p_read_word(state, 19);
internal /= 1000;
return internal;
}
static int dib7000p_update_pll(struct dvb_frontend *fe, struct dibx000_bandwidth_config *bw)
{
struct dib7000p_state *state = fe->demodulator_priv;
u16 reg_1857, reg_1856 = dib7000p_read_word(state, 1856);
u8 loopdiv, prediv;
u32 internal, xtal;
/* get back old values */
prediv = reg_1856 & 0x3f;
loopdiv = (reg_1856 >> 6) & 0x3f;
if (loopdiv && bw && (bw->pll_prediv != prediv || bw->pll_ratio != loopdiv)) {
dprintk("Updating pll (prediv: old = %d new = %d ; loopdiv : old = %d new = %d)\n", prediv, bw->pll_prediv, loopdiv, bw->pll_ratio);
reg_1856 &= 0xf000;
reg_1857 = dib7000p_read_word(state, 1857);
dib7000p_write_word(state, 1857, reg_1857 & ~(1 << 15));
dib7000p_write_word(state, 1856, reg_1856 | ((bw->pll_ratio & 0x3f) << 6) | (bw->pll_prediv & 0x3f));
/* write new system clk into P_sec_len */
internal = dib7000p_get_internal_freq(state);
xtal = (internal / loopdiv) * prediv;
internal = 1000 * (xtal / bw->pll_prediv) * bw->pll_ratio; /* new internal */
dib7000p_write_word(state, 18, (u16) ((internal >> 16) & 0xffff));
dib7000p_write_word(state, 19, (u16) (internal & 0xffff));
dib7000p_write_word(state, 1857, reg_1857 | (1 << 15));
while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1)
dprintk("Waiting for PLL to lock\n");
return 0;
}
return -EIO;
}
static int dib7000p_reset_gpio(struct dib7000p_state *st)
{
/* reset the GPIOs */
dprintk("gpio dir: %x: val: %x, pwm_pos: %x\n", st->gpio_dir, st->gpio_val, st->cfg.gpio_pwm_pos);
dib7000p_write_word(st, 1029, st->gpio_dir);
dib7000p_write_word(st, 1030, st->gpio_val);
/* TODO 1031 is P_gpio_od */
dib7000p_write_word(st, 1032, st->cfg.gpio_pwm_pos);
dib7000p_write_word(st, 1037, st->cfg.pwm_freq_div);
return 0;
}
static int dib7000p_cfg_gpio(struct dib7000p_state *st, u8 num, u8 dir, u8 val)
{
st->gpio_dir = dib7000p_read_word(st, 1029);
st->gpio_dir &= ~(1 << num); /* reset the direction bit */
st->gpio_dir |= (dir & 0x1) << num; /* set the new direction */
dib7000p_write_word(st, 1029, st->gpio_dir);
st->gpio_val = dib7000p_read_word(st, 1030);
st->gpio_val &= ~(1 << num); /* reset the direction bit */
st->gpio_val |= (val & 0x01) << num; /* set the new value */
dib7000p_write_word(st, 1030, st->gpio_val);
return 0;
}
static int dib7000p_set_gpio(struct dvb_frontend *demod, u8 num, u8 dir, u8 val)
{
struct dib7000p_state *state = demod->demodulator_priv;
return dib7000p_cfg_gpio(state, num, dir, val);
}
static u16 dib7000p_defaults[] = {
// auto search configuration
3, 2,
0x0004,
(1<<3)|(1<<11)|(1<<12)|(1<<13),
0x0814, /* Equal Lock */
12, 6,
0x001b,
0x7740,
0x005b,
0x8d80,
0x01c9,
0xc380,
0x0000,
0x0080,
0x0000,
0x0090,
0x0001,
0xd4c0,
1, 26,
0x6680,
/* set ADC level to -16 */
11, 79,
(1 << 13) - 825 - 117,
(1 << 13) - 837 - 117,
(1 << 13) - 811 - 117,
(1 << 13) - 766 - 117,
(1 << 13) - 737 - 117,
(1 << 13) - 693 - 117,
(1 << 13) - 648 - 117,
(1 << 13) - 619 - 117,
(1 << 13) - 575 - 117,
(1 << 13) - 531 - 117,
(1 << 13) - 501 - 117,
1, 142,
0x0410,
/* disable power smoothing */
8, 145,
0,
0,
0,
0,
0,
0,
0,
0,
1, 154,
1 << 13,
1, 168,
0x0ccd,
1, 183,
0x200f,
1, 212,
0x169,
5, 187,
0x023d,
0x00a4,
0x00a4,
0x7ff0,
0x3ccc,
1, 198,
0x800,
1, 222,
0x0010,
1, 235,
0x0062,
0,
};
static void dib7000p_reset_stats(struct dvb_frontend *fe);
static int dib7000p_demod_reset(struct dib7000p_state *state)
{
dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
if (state->version == SOC7090)
dibx000_reset_i2c_master(&state->i2c_master);
dib7000p_set_adc_state(state, DIBX000_VBG_ENABLE);
/* restart all parts */
dib7000p_write_word(state, 770, 0xffff);
dib7000p_write_word(state, 771, 0xffff);
dib7000p_write_word(state, 772, 0x001f);
dib7000p_write_word(state, 1280, 0x001f - ((1 << 4) | (1 << 3)));
dib7000p_write_word(state, 770, 0);
dib7000p_write_word(state, 771, 0);
dib7000p_write_word(state, 772, 0);
dib7000p_write_word(state, 1280, 0);
if (state->version != SOC7090) {
dib7000p_write_word(state, 898, 0x0003);
dib7000p_write_word(state, 898, 0);
}
/* default */
dib7000p_reset_pll(state);
if (dib7000p_reset_gpio(state) != 0)
dprintk("GPIO reset was not successful.\n");
if (state->version == SOC7090) {
dib7000p_write_word(state, 899, 0);
/* impulse noise */
dib7000p_write_word(state, 42, (1<<5) | 3); /* P_iqc_thsat_ipc = 1 ; P_iqc_win2 = 3 */
dib7000p_write_word(state, 43, 0x2d4); /*-300 fag P_iqc_dect_min = -280 */
dib7000p_write_word(state, 44, 300); /* 300 fag P_iqc_dect_min = +280 */
dib7000p_write_word(state, 273, (0<<6) | 30);
}
if (dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) != 0)
dprintk("OUTPUT_MODE could not be reset.\n");
dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON);
dib7000p_sad_calib(state);
dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_OFF);
/* unforce divstr regardless whether i2c enumeration was done or not */
dib7000p_write_word(state, 1285, dib7000p_read_word(state, 1285) & ~(1 << 1));
dib7000p_set_bandwidth(state, 8000);
if (state->version == SOC7090) {
dib7000p_write_word(state, 36, 0x0755);/* P_iqc_impnc_on =1 & P_iqc_corr_inh = 1 for impulsive noise */
} else {
if (state->cfg.tuner_is_baseband)
dib7000p_write_word(state, 36, 0x0755);
else
dib7000p_write_word(state, 36, 0x1f55);
}
dib7000p_write_tab(state, dib7000p_defaults);
if (state->version != SOC7090) {
dib7000p_write_word(state, 901, 0x0006);
dib7000p_write_word(state, 902, (3 << 10) | (1 << 6));
dib7000p_write_word(state, 905, 0x2c8e);
}
dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
return 0;
}
static void dib7000p_pll_clk_cfg(struct dib7000p_state *state)
{
u16 tmp = 0;
tmp = dib7000p_read_word(state, 903);
dib7000p_write_word(state, 903, (tmp | 0x1));
tmp = dib7000p_read_word(state, 900);
dib7000p_write_word(state, 900, (tmp & 0x7fff) | (1 << 6));
}
static void dib7000p_restart_agc(struct dib7000p_state *state)
{
// P_restart_iqc & P_restart_agc
dib7000p_write_word(state, 770, (1 << 11) | (1 << 9));
dib7000p_write_word(state, 770, 0x0000);
}
static int dib7000p_update_lna(struct dib7000p_state *state)
{
u16 dyn_gain;
if (state->cfg.update_lna) {
dyn_gain = dib7000p_read_word(state, 394);
if (state->cfg.update_lna(&state->demod, dyn_gain)) {
dib7000p_restart_agc(state);
return 1;
}
}
return 0;
}
static int dib7000p_set_agc_config(struct dib7000p_state *state, u8 band)
{
struct dibx000_agc_config *agc = NULL;
int i;
if (state->current_band == band && state->current_agc != NULL)
return 0;
state->current_band = band;
for (i = 0; i < state->cfg.agc_config_count; i++)
if (state->cfg.agc[i].band_caps & band) {
agc = &state->cfg.agc[i];
break;
}
if (agc == NULL) {
dprintk("no valid AGC configuration found for band 0x%02x\n", band);
return -EINVAL;
}
state->current_agc = agc;
/* AGC */
dib7000p_write_word(state, 75, agc->setup);
dib7000p_write_word(state, 76, agc->inv_gain);
dib7000p_write_word(state, 77, agc->time_stabiliz);
dib7000p_write_word(state, 100, (agc->alpha_level << 12) | agc->thlock);
// Demod AGC loop configuration
dib7000p_write_word(state, 101, (agc->alpha_mant << 5) | agc->alpha_exp);
dib7000p_write_word(state, 102, (agc->beta_mant << 6) | agc->beta_exp);
/* AGC continued */
dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d\n",
state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel);
if (state->wbd_ref != 0)
dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | state->wbd_ref);
else
dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | agc->wbd_ref);
dib7000p_write_word(state, 106, (agc->wbd_sel << 13) | (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8));
dib7000p_write_word(state, 107, agc->agc1_max);
dib7000p_write_word(state, 108, agc->agc1_min);
dib7000p_write_word(state, 109, agc->agc2_max);
dib7000p_write_word(state, 110, agc->agc2_min);
dib7000p_write_word(state, 111, (agc->agc1_pt1 << 8) | agc->agc1_pt2);
dib7000p_write_word(state, 112, agc->agc1_pt3);
dib7000p_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
dib7000p_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
dib7000p_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
return 0;
}
static int dib7000p_set_dds(struct dib7000p_state *state, s32 offset_khz)
{
u32 internal = dib7000p_get_internal_freq(state);
s32 unit_khz_dds_val;
u32 abs_offset_khz = abs(offset_khz);
u32 dds = state->cfg.bw->ifreq & 0x1ffffff;
u8 invert = !!(state->cfg.bw->ifreq & (1 << 25));
if (internal == 0) {
pr_warn("DIB7000P: dib7000p_get_internal_freq returned 0\n");
return -1;
}
/* 2**26 / Fsampling is the unit 1KHz offset */
unit_khz_dds_val = 67108864 / (internal);
dprintk("setting a frequency offset of %dkHz internal freq = %d invert = %d\n", offset_khz, internal, invert);
if (offset_khz < 0)
unit_khz_dds_val *= -1;
/* IF tuner */
if (invert)
dds -= (abs_offset_khz * unit_khz_dds_val); /* /100 because of /100 on the unit_khz_dds_val line calc for better accuracy */
else
dds += (abs_offset_khz * unit_khz_dds_val);
if (abs_offset_khz <= (internal / 2)) { /* Max dds offset is the half of the demod freq */
dib7000p_write_word(state, 21, (u16) (((dds >> 16) & 0x1ff) | (0 << 10) | (invert << 9)));
dib7000p_write_word(state, 22, (u16) (dds & 0xffff));
}
return 0;
}
static int dib7000p_agc_startup(struct dvb_frontend *demod)
{
struct dtv_frontend_properties *ch = &demod->dtv_property_cache;
struct dib7000p_state *state = demod->demodulator_priv;
int ret = -1;
u8 *agc_state = &state->agc_state;
u8 agc_split;
u16 reg;
u32 upd_demod_gain_period = 0x1000;
s32 frequency_offset = 0;
switch (state->agc_state) {
case 0:
dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
if (state->version == SOC7090) {
reg = dib7000p_read_word(state, 0x79b) & 0xff00;
dib7000p_write_word(state, 0x79a, upd_demod_gain_period & 0xFFFF); /* lsb */
dib7000p_write_word(state, 0x79b, reg | (1 << 14) | ((upd_demod_gain_period >> 16) & 0xFF));
/* enable adc i & q */
reg = dib7000p_read_word(state, 0x780);
dib7000p_write_word(state, 0x780, (reg | (0x3)) & (~(1 << 7)));
} else {
dib7000p_set_adc_state(state, DIBX000_ADC_ON);
dib7000p_pll_clk_cfg(state);
}
if (dib7000p_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency / 1000)) != 0)
return -1;
if (demod->ops.tuner_ops.get_frequency) {
u32 frequency_tuner;
demod->ops.tuner_ops.get_frequency(demod, &frequency_tuner);
frequency_offset = (s32)frequency_tuner / 1000 - ch->frequency / 1000;
}
if (dib7000p_set_dds(state, frequency_offset) < 0)
return -1;
ret = 7;
(*agc_state)++;
break;
case 1:
if (state->cfg.agc_control)
state->cfg.agc_control(&state->demod, 1);
dib7000p_write_word(state, 78, 32768);
if (!state->current_agc->perform_agc_softsplit) {
/* we are using the wbd - so slow AGC startup */
/* force 0 split on WBD and restart AGC */
dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | (1 << 8));
(*agc_state)++;
ret = 5;
} else {
/* default AGC startup */
(*agc_state) = 4;
/* wait AGC rough lock time */
ret = 7;
}
dib7000p_restart_agc(state);
break;
case 2: /* fast split search path after 5sec */
dib7000p_write_word(state, 75, state->current_agc->setup | (1 << 4)); /* freeze AGC loop */
dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (2 << 9) | (0 << 8)); /* fast split search 0.25kHz */
(*agc_state)++;
ret = 14;
break;
case 3: /* split search ended */
agc_split = (u8) dib7000p_read_word(state, 396); /* store the split value for the next time */
dib7000p_write_word(state, 78, dib7000p_read_word(state, 394)); /* set AGC gain start value */
dib7000p_write_word(state, 75, state->current_agc->setup); /* std AGC loop */
dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | agc_split); /* standard split search */
dib7000p_restart_agc(state);
dprintk("SPLIT %p: %u\n", demod, agc_split);
(*agc_state)++;
ret = 5;
break;
case 4: /* LNA startup */
ret = 7;
if (dib7000p_update_lna(state))
ret = 5;
else
(*agc_state)++;
break;
case 5:
if (state->cfg.agc_control)
state->cfg.agc_control(&state->demod, 0);
(*agc_state)++;
break;
default:
break;
}
return ret;
}
static void dib7000p_update_timf(struct dib7000p_state *state)
{
u32 timf = (dib7000p_read_word(state, 427) << 16) | dib7000p_read_word(state, 428);
state->timf = timf * 160 / (state->current_bandwidth / 50);
dib7000p_write_word(state, 23, (u16) (timf >> 16));
dib7000p_write_word(state, 24, (u16) (timf & 0xffff));
dprintk("updated timf_frequency: %d (default: %d)\n", state->timf, state->cfg.bw->timf);
}
static u32 dib7000p_ctrl_timf(struct dvb_frontend *fe, u8 op, u32 timf)
{
struct dib7000p_state *state = fe->demodulator_priv;
switch (op) {
case DEMOD_TIMF_SET:
state->timf = timf;
break;
case DEMOD_TIMF_UPDATE:
dib7000p_update_timf(state);
break;
case DEMOD_TIMF_GET:
break;
}
dib7000p_set_bandwidth(state, state->current_bandwidth);
return state->timf;
}
static void dib7000p_set_channel(struct dib7000p_state *state,
struct dtv_frontend_properties *ch, u8 seq)
{
u16 value, est[4];
dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->bandwidth_hz));
/* nfft, guard, qam, alpha */
value = 0;
switch (ch->transmission_mode) {
case TRANSMISSION_MODE_2K:
value |= (0 << 7);
break;
case TRANSMISSION_MODE_4K:
value |= (2 << 7);
break;
default:
case TRANSMISSION_MODE_8K:
value |= (1 << 7);
break;
}
switch (ch->guard_interval) {
case GUARD_INTERVAL_1_32:
value |= (0 << 5);
break;
case GUARD_INTERVAL_1_16:
value |= (1 << 5);
break;
case GUARD_INTERVAL_1_4:
value |= (3 << 5);
break;
default:
case GUARD_INTERVAL_1_8:
value |= (2 << 5);
break;
}
switch (ch->modulation) {
case QPSK:
value |= (0 << 3);
break;
case QAM_16:
value |= (1 << 3);
break;
default:
case QAM_64:
value |= (2 << 3);
break;
}
switch (HIERARCHY_1) {
case HIERARCHY_2:
value |= 2;
break;
case HIERARCHY_4:
value |= 4;
break;
default:
case HIERARCHY_1:
value |= 1;
break;
}
dib7000p_write_word(state, 0, value);
dib7000p_write_word(state, 5, (seq << 4) | 1); /* do not force tps, search list 0 */
/* P_dintl_native, P_dintlv_inv, P_hrch, P_code_rate, P_select_hp */
value = 0;
if (1 != 0)
value |= (1 << 6);
if (ch->hierarchy == 1)
value |= (1 << 4);
if (1 == 1)
value |= 1;
switch ((ch->hierarchy == 0 || 1 == 1) ? ch->code_rate_HP : ch->code_rate_LP) {
case FEC_2_3:
value |= (2 << 1);
break;
case FEC_3_4:
value |= (3 << 1);
break;
case FEC_5_6:
value |= (5 << 1);
break;
case FEC_7_8:
value |= (7 << 1);
break;
default:
case FEC_1_2:
value |= (1 << 1);
break;
}
dib7000p_write_word(state, 208, value);
/* offset loop parameters */
dib7000p_write_word(state, 26, 0x6680);
dib7000p_write_word(state, 32, 0x0003);
dib7000p_write_word(state, 29, 0x1273);
dib7000p_write_word(state, 33, 0x0005);
/* P_dvsy_sync_wait */
switch (ch->transmission_mode) {
case TRANSMISSION_MODE_8K:
value = 256;
break;
case TRANSMISSION_MODE_4K:
value = 128;
break;
case TRANSMISSION_MODE_2K:
default:
value = 64;
break;
}
switch (ch->guard_interval) {
case GUARD_INTERVAL_1_16:
value *= 2;
break;
case GUARD_INTERVAL_1_8:
value *= 4;
break;
case GUARD_INTERVAL_1_4:
value *= 8;
break;
default:
case GUARD_INTERVAL_1_32:
value *= 1;
break;
}
if (state->cfg.diversity_delay == 0)
state->div_sync_wait = (value * 3) / 2 + 48;
else
state->div_sync_wait = (value * 3) / 2 + state->cfg.diversity_delay;
/* deactivate the possibility of diversity reception if extended interleaver */
state->div_force_off = !1 && ch->transmission_mode != TRANSMISSION_MODE_8K;
dib7000p_set_diversity_in(&state->demod, state->div_state);
/* channel estimation fine configuration */
switch (ch->modulation) {
case QAM_64:
est[0] = 0x0148; /* P_adp_regul_cnt 0.04 */
est[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */
est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */
est[3] = 0xfff8; /* P_adp_noise_ext -0.001 */
break;
case QAM_16:
est[0] = 0x023d; /* P_adp_regul_cnt 0.07 */
est[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */
est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */
est[3] = 0xfff0; /* P_adp_noise_ext -0.002 */
break;
default:
est[0] = 0x099a; /* P_adp_regul_cnt 0.3 */
est[1] = 0xffae; /* P_adp_noise_cnt -0.01 */
est[2] = 0x0333; /* P_adp_regul_ext 0.1 */
est[3] = 0xfff8; /* P_adp_noise_ext -0.002 */
break;
}
for (value = 0; value < 4; value++)
dib7000p_write_word(state, 187 + value, est[value]);
}
static int dib7000p_autosearch_start(struct dvb_frontend *demod)
{
struct dtv_frontend_properties *ch = &demod->dtv_property_cache;
struct dib7000p_state *state = demod->demodulator_priv;
struct dtv_frontend_properties schan;
u32 value, factor;
u32 internal = dib7000p_get_internal_freq(state);
schan = *ch;
schan.modulation = QAM_64;
schan.guard_interval = GUARD_INTERVAL_1_32;
schan.transmission_mode = TRANSMISSION_MODE_8K;
schan.code_rate_HP = FEC_2_3;
schan.code_rate_LP = FEC_3_4;
schan.hierarchy = 0;
dib7000p_set_channel(state, &schan, 7);
factor = BANDWIDTH_TO_KHZ(ch->bandwidth_hz);
if (factor >= 5000) {
if (state->version == SOC7090)
factor = 2;
else
factor = 1;
} else
factor = 6;
value = 30 * internal * factor;
dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff));
dib7000p_write_word(state, 7, (u16) (value & 0xffff));
value = 100 * internal * factor;
dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff));
dib7000p_write_word(state, 9, (u16) (value & 0xffff));
value = 500 * internal * factor;
dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff));
dib7000p_write_word(state, 11, (u16) (value & 0xffff));
value = dib7000p_read_word(state, 0);
dib7000p_write_word(state, 0, (u16) ((1 << 9) | value));
dib7000p_read_word(state, 1284);
dib7000p_write_word(state, 0, (u16) value);
return 0;
}
static int dib7000p_autosearch_is_irq(struct dvb_frontend *demod)
{
struct dib7000p_state *state = demod->demodulator_priv;
u16 irq_pending = dib7000p_read_word(state, 1284);
if (irq_pending & 0x1)
return 1;
if (irq_pending & 0x2)
return 2;
return 0;
}
static void dib7000p_spur_protect(struct dib7000p_state *state, u32 rf_khz, u32 bw)
{
static const s16 notch[] = { 16143, 14402, 12238, 9713, 6902, 3888, 759, -2392 };
static const u8 sine[] = { 0, 2, 3, 5, 6, 8, 9, 11, 13, 14, 16, 17, 19, 20, 22,
24, 25, 27, 28, 30, 31, 33, 34, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51,
53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80,
82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 104, 105,
107, 108, 109, 111, 112, 114, 115, 117, 118, 119, 121, 122, 123, 125, 126,
128, 129, 130, 132, 133, 134, 136, 137, 138, 140, 141, 142, 144, 145, 146,
147, 149, 150, 151, 152, 154, 155, 156, 157, 159, 160, 161, 162, 164, 165,
166, 167, 168, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 181, 182,
183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198,
199, 200, 201, 202, 203, 204, 205, 206, 207, 207, 208, 209, 210, 211, 212,
213, 214, 215, 215, 216, 217, 218, 219, 220, 220, 221, 222, 223, 224, 224,
225, 226, 227, 227, 228, 229, 229, 230, 231, 231, 232, 233, 233, 234, 235,
235, 236, 237, 237, 238, 238, 239, 239, 240, 241, 241, 242, 242, 243, 243,
244, 244, 245, 245, 245, 246, 246, 247, 247, 248, 248, 248, 249, 249, 249,
250, 250, 250, 251, 251, 251, 252, 252, 252, 252, 253, 253, 253, 253, 254,
254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255
};
u32 xtal = state->cfg.bw->xtal_hz / 1000;
int f_rel = DIV_ROUND_CLOSEST(rf_khz, xtal) * xtal - rf_khz;
int k;
int coef_re[8], coef_im[8];
int bw_khz = bw;
u32 pha;
dprintk("relative position of the Spur: %dk (RF: %dk, XTAL: %dk)\n", f_rel, rf_khz, xtal);
if (f_rel < -bw_khz / 2 || f_rel > bw_khz / 2)
return;
bw_khz /= 100;
dib7000p_write_word(state, 142, 0x0610);
for (k = 0; k < 8; k++) {
pha = ((f_rel * (k + 1) * 112 * 80 / bw_khz) / 1000) & 0x3ff;
if (pha == 0) {
coef_re[k] = 256;
coef_im[k] = 0;
} else if (pha < 256) {
coef_re[k] = sine[256 - (pha & 0xff)];
coef_im[k] = sine[pha & 0xff];
} else if (pha == 256) {
coef_re[k] = 0;
coef_im[k] = 256;
} else if (pha < 512) {
coef_re[k] = -sine[pha & 0xff];
coef_im[k] = sine[256 - (pha & 0xff)];
} else if (pha == 512) {
coef_re[k] = -256;
coef_im[k] = 0;
} else if (pha < 768) {
coef_re[k] = -sine[256 - (pha & 0xff)];
coef_im[k] = -sine[pha & 0xff];
} else if (pha == 768) {
coef_re[k] = 0;
coef_im[k] = -256;
} else {
coef_re[k] = sine[pha & 0xff];
coef_im[k] = -sine[256 - (pha & 0xff)];
}
coef_re[k] *= notch[k];
coef_re[k] += (1 << 14);
if (coef_re[k] >= (1 << 24))
coef_re[k] = (1 << 24) - 1;
coef_re[k] /= (1 << 15);
coef_im[k] *= notch[k];
coef_im[k] += (1 << 14);
if (coef_im[k] >= (1 << 24))
coef_im[k] = (1 << 24) - 1;
coef_im[k] /= (1 << 15);
dprintk("PALF COEF: %d re: %d im: %d\n", k, coef_re[k], coef_im[k]);
dib7000p_write_word(state, 143, (0 << 14) | (k << 10) | (coef_re[k] & 0x3ff));
dib7000p_write_word(state, 144, coef_im[k] & 0x3ff);
dib7000p_write_word(state, 143, (1 << 14) | (k << 10) | (coef_re[k] & 0x3ff));
}
dib7000p_write_word(state, 143, 0);
}
static int dib7000p_tune(struct dvb_frontend *demod)
{
struct dtv_frontend_properties *ch = &demod->dtv_property_cache;
struct dib7000p_state *state = demod->demodulator_priv;
u16 tmp = 0;
if (ch != NULL)
dib7000p_set_channel(state, ch, 0);
else
return -EINVAL;
// restart demod
dib7000p_write_word(state, 770, 0x4000);
dib7000p_write_word(state, 770, 0x0000);
msleep(45);
/* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */
tmp = (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3);
if (state->sfn_workaround_active) {
dprintk("SFN workaround is active\n");
tmp |= (1 << 9);
dib7000p_write_word(state, 166, 0x4000);
} else {
dib7000p_write_word(state, 166, 0x0000);
}
dib7000p_write_word(state, 29, tmp);
// never achieved a lock with that bandwidth so far - wait for osc-freq to update
if (state->timf == 0)
msleep(200);
/* offset loop parameters */
/* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */
tmp = (6 << 8) | 0x80;
switch (ch->transmission_mode) {
case TRANSMISSION_MODE_2K:
tmp |= (2 << 12);
break;
case TRANSMISSION_MODE_4K:
tmp |= (3 << 12);
break;
default:
case TRANSMISSION_MODE_8K:
tmp |= (4 << 12);
break;
}
dib7000p_write_word(state, 26, tmp); /* timf_a(6xxx) */
/* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */
tmp = (0 << 4);
switch (ch->transmission_mode) {
case TRANSMISSION_MODE_2K:
tmp |= 0x6;
break;
case TRANSMISSION_MODE_4K:
tmp |= 0x7;
break;
default:
case TRANSMISSION_MODE_8K:
tmp |= 0x8;
break;
}
dib7000p_write_word(state, 32, tmp);
/* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */
tmp = (0 << 4);
switch (ch->transmission_mode) {
case TRANSMISSION_MODE_2K:
tmp |= 0x6;
break;
case TRANSMISSION_MODE_4K:
tmp |= 0x7;
break;
default:
case TRANSMISSION_MODE_8K:
tmp |= 0x8;
break;
}
dib7000p_write_word(state, 33, tmp);
tmp = dib7000p_read_word(state, 509);
if (!((tmp >> 6) & 0x1)) {
/* restart the fec */
tmp = dib7000p_read_word(state, 771);
dib7000p_write_word(state, 771, tmp | (1 << 1));
dib7000p_write_word(state, 771, tmp);
msleep(40);
tmp = dib7000p_read_word(state, 509);
}
// we achieved a lock - it's time to update the osc freq
if ((tmp >> 6) & 0x1) {
dib7000p_update_timf(state);
/* P_timf_alpha += 2 */
tmp = dib7000p_read_word(state, 26);
dib7000p_write_word(state, 26, (tmp & ~(0xf << 12)) | ((((tmp >> 12) & 0xf) + 5) << 12));
}
if (state->cfg.spur_protect)
dib7000p_spur_protect(state, ch->frequency / 1000, BANDWIDTH_TO_KHZ(ch->bandwidth_hz));
dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->bandwidth_hz));
dib7000p_reset_stats(demod);
return 0;
}
static int dib7000p_wakeup(struct dvb_frontend *demod)
{
struct dib7000p_state *state = demod->demodulator_priv;
dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON);
if (state->version == SOC7090)
dib7000p_sad_calib(state);
return 0;
}
static int dib7000p_sleep(struct dvb_frontend *demod)
{
struct dib7000p_state *state = demod->demodulator_priv;
if (state->version == SOC7090)
return dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
return dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
}
static int dib7000p_identify(struct dib7000p_state *st)
{
u16 value;
dprintk("checking demod on I2C address: %d (%x)\n", st->i2c_addr, st->i2c_addr);
if ((value = dib7000p_read_word(st, 768)) != 0x01b3) {
dprintk("wrong Vendor ID (read=0x%x)\n", value);
return -EREMOTEIO;
}
if ((value = dib7000p_read_word(st, 769)) != 0x4000) {
dprintk("wrong Device ID (%x)\n", value);
return -EREMOTEIO;
}
return 0;
}
static int dib7000p_get_frontend(struct dvb_frontend *fe,
struct dtv_frontend_properties *fep)
{
struct dib7000p_state *state = fe->demodulator_priv;
u16 tps = dib7000p_read_word(state, 463);
fep->inversion = INVERSION_AUTO;
fep->bandwidth_hz = BANDWIDTH_TO_HZ(state->current_bandwidth);
switch ((tps >> 8) & 0x3) {
case 0:
fep->transmission_mode = TRANSMISSION_MODE_2K;
break;
case 1:
fep->transmission_mode = TRANSMISSION_MODE_8K;
break;
/* case 2: fep->transmission_mode = TRANSMISSION_MODE_4K; break; */
}
switch (tps & 0x3) {
case 0:
fep->guard_interval = GUARD_INTERVAL_1_32;
break;
case 1:
fep->guard_interval = GUARD_INTERVAL_1_16;
break;
case 2:
fep->guard_interval = GUARD_INTERVAL_1_8;
break;
case 3:
fep->guard_interval = GUARD_INTERVAL_1_4;
break;
}
switch ((tps >> 14) & 0x3) {
case 0:
fep->modulation = QPSK;
break;
case 1:
fep->modulation = QAM_16;
break;
case 2:
default:
fep->modulation = QAM_64;
break;
}
/* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */
/* (tps >> 13) & 0x1 == hrch is used, (tps >> 10) & 0x7 == alpha */
fep->hierarchy = HIERARCHY_NONE;
switch ((tps >> 5) & 0x7) {
case 1:
fep->code_rate_HP = FEC_1_2;
break;
case 2:
fep->code_rate_HP = FEC_2_3;
break;
case 3:
fep->code_rate_HP = FEC_3_4;
break;
case 5:
fep->code_rate_HP = FEC_5_6;
break;
case 7:
default:
fep->code_rate_HP = FEC_7_8;
break;
}
switch ((tps >> 2) & 0x7) {
case 1:
fep->code_rate_LP = FEC_1_2;
break;
case 2:
fep->code_rate_LP = FEC_2_3;
break;
case 3:
fep->code_rate_LP = FEC_3_4;
break;
case 5:
fep->code_rate_LP = FEC_5_6;
break;
case 7:
default:
fep->code_rate_LP = FEC_7_8;
break;
}
/* native interleaver: (dib7000p_read_word(state, 464) >> 5) & 0x1 */
return 0;
}
static int dib7000p_set_frontend(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *fep = &fe->dtv_property_cache;
struct dib7000p_state *state = fe->demodulator_priv;
int time, ret;
if (state->version == SOC7090)
dib7090_set_diversity_in(fe, 0);
else
dib7000p_set_output_mode(state, OUTMODE_HIGH_Z);
/* maybe the parameter has been changed */
state->sfn_workaround_active = buggy_sfn_workaround;
if (fe->ops.tuner_ops.set_params)
fe->ops.tuner_ops.set_params(fe);
/* start up the AGC */
state->agc_state = 0;
do {
time = dib7000p_agc_startup(fe);
if (time != -1)
msleep(time);
} while (time != -1);
if (fep->transmission_mode == TRANSMISSION_MODE_AUTO ||
fep->guard_interval == GUARD_INTERVAL_AUTO || fep->modulation == QAM_AUTO || fep->code_rate_HP == FEC_AUTO) {
int i = 800, found;
dib7000p_autosearch_start(fe);
do {
msleep(1);
found = dib7000p_autosearch_is_irq(fe);
} while (found == 0 && i--);
dprintk("autosearch returns: %d\n", found);
if (found == 0 || found == 1)
return 0;
dib7000p_get_frontend(fe, fep);
}
ret = dib7000p_tune(fe);
/* make this a config parameter */
if (state->version == SOC7090) {
dib7090_set_output_mode(fe, state->cfg.output_mode);
if (state->cfg.enMpegOutput == 0) {
dib7090_setDibTxMux(state, MPEG_ON_DIBTX);
dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS);
}
} else
dib7000p_set_output_mode(state, state->cfg.output_mode);
return ret;
}
static int dib7000p_get_stats(struct dvb_frontend *fe, enum fe_status stat);
static int dib7000p_read_status(struct dvb_frontend *fe, enum fe_status *stat)
{
struct dib7000p_state *state = fe->demodulator_priv;
u16 lock = dib7000p_read_word(state, 509);
*stat = 0;
if (lock & 0x8000)
*stat |= FE_HAS_SIGNAL;
if (lock & 0x3000)
*stat |= FE_HAS_CARRIER;
if (lock & 0x0100)
*stat |= FE_HAS_VITERBI;
if (lock & 0x0010)
*stat |= FE_HAS_SYNC;
if ((lock & 0x0038) == 0x38)
*stat |= FE_HAS_LOCK;
dib7000p_get_stats(fe, *stat);
return 0;
}
static int dib7000p_read_ber(struct dvb_frontend *fe, u32 * ber)
{
struct dib7000p_state *state = fe->demodulator_priv;
*ber = (dib7000p_read_word(state, 500) << 16) | dib7000p_read_word(state, 501);
return 0;
}
static int dib7000p_read_unc_blocks(struct dvb_frontend *fe, u32 * unc)
{
struct dib7000p_state *state = fe->demodulator_priv;
*unc = dib7000p_read_word(state, 506);
return 0;
}
static int dib7000p_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
{
struct dib7000p_state *state = fe->demodulator_priv;
u16 val = dib7000p_read_word(state, 394);
*strength = 65535 - val;
return 0;
}
static u32 dib7000p_get_snr(struct dvb_frontend *fe)
{
struct dib7000p_state *state = fe->demodulator_priv;
u16 val;
s32 signal_mant, signal_exp, noise_mant, noise_exp;
u32 result = 0;
val = dib7000p_read_word(state, 479);
noise_mant = (val >> 4) & 0xff;
noise_exp = ((val & 0xf) << 2);
val = dib7000p_read_word(state, 480);
noise_exp += ((val >> 14) & 0x3);
if ((noise_exp & 0x20) != 0)
noise_exp -= 0x40;
signal_mant = (val >> 6) & 0xFF;
signal_exp = (val & 0x3F);
if ((signal_exp & 0x20) != 0)
signal_exp -= 0x40;
if (signal_mant != 0)
result = intlog10(2) * 10 * signal_exp + 10 * intlog10(signal_mant);
else
result = intlog10(2) * 10 * signal_exp - 100;
if (noise_mant != 0)
result -= intlog10(2) * 10 * noise_exp + 10 * intlog10(noise_mant);
else
result -= intlog10(2) * 10 * noise_exp - 100;
return result;
}
static int dib7000p_read_snr(struct dvb_frontend *fe, u16 *snr)
{
u32 result;
result = dib7000p_get_snr(fe);
*snr = result / ((1 << 24) / 10);
return 0;
}
static void dib7000p_reset_stats(struct dvb_frontend *demod)
{
struct dib7000p_state *state = demod->demodulator_priv;
struct dtv_frontend_properties *c = &demod->dtv_property_cache;
u32 ucb;
memset(&c->strength, 0, sizeof(c->strength));
memset(&c->cnr, 0, sizeof(c->cnr));
memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
memset(&c->block_error, 0, sizeof(c->block_error));
c->strength.len = 1;
c->cnr.len = 1;
c->block_error.len = 1;
c->block_count.len = 1;
c->post_bit_error.len = 1;
c->post_bit_count.len = 1;
c->strength.stat[0].scale = FE_SCALE_DECIBEL;
c->strength.stat[0].uvalue = 0;
c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
dib7000p_read_unc_blocks(demod, &ucb);
state->old_ucb = ucb;
state->ber_jiffies_stats = 0;
state->per_jiffies_stats = 0;
}
struct linear_segments {
unsigned x;
signed y;
};
/*
* Table to estimate signal strength in dBm.
* This table should be empirically determinated by measuring the signal
* strength generated by a RF generator directly connected into
* a device.
* This table was determinated by measuring the signal strength generated
* by a DTA-2111 RF generator directly connected into a dib7000p device
* (a Hauppauge Nova-TD stick), using a good quality 3 meters length
* RC6 cable and good RC6 connectors, connected directly to antenna 1.
* As the minimum output power of DTA-2111 is -31dBm, a 16 dBm attenuator
* were used, for the lower power values.
* The real value can actually be on other devices, or even at the
* second antena input, depending on several factors, like if LNA
* is enabled or not, if diversity is enabled, type of connectors, etc.
* Yet, it is better to use this measure in dB than a random non-linear
* percentage value, especially for antenna adjustments.
* On my tests, the precision of the measure using this table is about
* 0.5 dB, with sounds reasonable enough to adjust antennas.
*/
#define DB_OFFSET 131000
static struct linear_segments strength_to_db_table[] = {
{ 63630, DB_OFFSET - 20500},
{ 62273, DB_OFFSET - 21000},
{ 60162, DB_OFFSET - 22000},
{ 58730, DB_OFFSET - 23000},
{ 58294, DB_OFFSET - 24000},
{ 57778, DB_OFFSET - 25000},
{ 57320, DB_OFFSET - 26000},
{ 56779, DB_OFFSET - 27000},
{ 56293, DB_OFFSET - 28000},
{ 55724, DB_OFFSET - 29000},
{ 55145, DB_OFFSET - 30000},
{ 54680, DB_OFFSET - 31000},
{ 54293, DB_OFFSET - 32000},
{ 53813, DB_OFFSET - 33000},
{ 53427, DB_OFFSET - 34000},
{ 52981, DB_OFFSET - 35000},
{ 52636, DB_OFFSET - 36000},
{ 52014, DB_OFFSET - 37000},
{ 51674, DB_OFFSET - 38000},
{ 50692, DB_OFFSET - 39000},
{ 49824, DB_OFFSET - 40000},
{ 49052, DB_OFFSET - 41000},
{ 48436, DB_OFFSET - 42000},
{ 47836, DB_OFFSET - 43000},
{ 47368, DB_OFFSET - 44000},
{ 46468, DB_OFFSET - 45000},
{ 45597, DB_OFFSET - 46000},
{ 44586, DB_OFFSET - 47000},
{ 43667, DB_OFFSET - 48000},
{ 42673, DB_OFFSET - 49000},
{ 41816, DB_OFFSET - 50000},
{ 40876, DB_OFFSET - 51000},
{ 0, 0},
};
static u32 interpolate_value(u32 value, struct linear_segments *segments,
unsigned len)
{
u64 tmp64;
u32 dx;
s32 dy;
int i, ret;
if (value >= segments[0].x)
return segments[0].y;
if (value < segments[len-1].x)
return segments[len-1].y;
for (i = 1; i < len - 1; i++) {
/* If value is identical, no need to interpolate */
if (value == segments[i].x)
return segments[i].y;
if (value > segments[i].x)
break;
}
/* Linear interpolation between the two (x,y) points */
dy = segments[i - 1].y - segments[i].y;
dx = segments[i - 1].x - segments[i].x;
tmp64 = value - segments[i].x;
tmp64 *= dy;
do_div(tmp64, dx);
ret = segments[i].y + tmp64;
return ret;
}
/* FIXME: may require changes - this one was borrowed from dib8000 */
static u32 dib7000p_get_time_us(struct dvb_frontend *demod)
{
struct dtv_frontend_properties *c = &demod->dtv_property_cache;
u64 time_us, tmp64;
u32 tmp, denom;
int guard, rate_num, rate_denum = 1, bits_per_symbol;
int interleaving = 0, fft_div;
switch (c->guard_interval) {
case GUARD_INTERVAL_1_4:
guard = 4;
break;
case GUARD_INTERVAL_1_8:
guard = 8;
break;
case GUARD_INTERVAL_1_16:
guard = 16;
break;
default:
case GUARD_INTERVAL_1_32:
guard = 32;
break;
}
switch (c->transmission_mode) {
case TRANSMISSION_MODE_2K:
fft_div = 4;
break;
case TRANSMISSION_MODE_4K:
fft_div = 2;
break;
default:
case TRANSMISSION_MODE_8K:
fft_div = 1;
break;
}
switch (c->modulation) {
case DQPSK:
case QPSK:
bits_per_symbol = 2;
break;
case QAM_16:
bits_per_symbol = 4;
break;
default:
case QAM_64:
bits_per_symbol = 6;
break;
}
switch ((c->hierarchy == 0 || 1 == 1) ? c->code_rate_HP : c->code_rate_LP) {
case FEC_1_2:
rate_num = 1;
rate_denum = 2;
break;
case FEC_2_3:
rate_num = 2;
rate_denum = 3;
break;
case FEC_3_4:
rate_num = 3;
rate_denum = 4;
break;
case FEC_5_6:
rate_num = 5;
rate_denum = 6;
break;
default:
case FEC_7_8:
rate_num = 7;
rate_denum = 8;
break;
}
denom = bits_per_symbol * rate_num * fft_div * 384;
/*
* FIXME: check if the math makes sense. If so, fill the
* interleaving var.
*/
/* If calculus gets wrong, wait for 1s for the next stats */
if (!denom)
return 0;
/* Estimate the period for the total bit rate */
time_us = rate_denum * (1008 * 1562500L);
tmp64 = time_us;
do_div(tmp64, guard);
time_us = time_us + tmp64;
time_us += denom / 2;
do_div(time_us, denom);
tmp = 1008 * 96 * interleaving;
time_us += tmp + tmp / guard;
return time_us;
}
static int dib7000p_get_stats(struct dvb_frontend *demod, enum fe_status stat)
{
struct dib7000p_state *state = demod->demodulator_priv;
struct dtv_frontend_properties *c = &demod->dtv_property_cache;
int show_per_stats = 0;
u32 time_us = 0, val, snr;
u64 blocks, ucb;
s32 db;
u16 strength;
/* Get Signal strength */
dib7000p_read_signal_strength(demod, &strength);
val = strength;
db = interpolate_value(val,
strength_to_db_table,
ARRAY_SIZE(strength_to_db_table)) - DB_OFFSET;
c->strength.stat[0].svalue = db;
/* UCB/BER/CNR measures require lock */
if (!(stat & FE_HAS_LOCK)) {
c->cnr.len = 1;
c->block_count.len = 1;
c->block_error.len = 1;
c->post_bit_error.len = 1;
c->post_bit_count.len = 1;
c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
return 0;
}
/* Check if time for stats was elapsed */
if (time_after(jiffies, state->per_jiffies_stats)) {
state->per_jiffies_stats = jiffies + msecs_to_jiffies(1000);
/* Get SNR */
snr = dib7000p_get_snr(demod);
if (snr)
snr = (1000L * snr) >> 24;
else
snr = 0;
c->cnr.stat[0].svalue = snr;
c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
/* Get UCB measures */
dib7000p_read_unc_blocks(demod, &val);
ucb = val - state->old_ucb;
if (val < state->old_ucb)
ucb += 0x100000000LL;
c->block_error.stat[0].scale = FE_SCALE_COUNTER;
c->block_error.stat[0].uvalue = ucb;
/* Estimate the number of packets based on bitrate */
if (!time_us)
time_us = dib7000p_get_time_us(demod);
if (time_us) {
blocks = 1250000ULL * 1000000ULL;
do_div(blocks, time_us * 8 * 204);
c->block_count.stat[0].scale = FE_SCALE_COUNTER;
c->block_count.stat[0].uvalue += blocks;
}
show_per_stats = 1;
}
/* Get post-BER measures */
if (time_after(jiffies, state->ber_jiffies_stats)) {
time_us = dib7000p_get_time_us(demod);
state->ber_jiffies_stats = jiffies + msecs_to_jiffies((time_us + 500) / 1000);
dprintk("Next all layers stats available in %u us.\n", time_us);
dib7000p_read_ber(demod, &val);
c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
c->post_bit_error.stat[0].uvalue += val;
c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
c->post_bit_count.stat[0].uvalue += 100000000;
}
/* Get PER measures */
if (show_per_stats) {
dib7000p_read_unc_blocks(demod, &val);
c->block_error.stat[0].scale = FE_SCALE_COUNTER;
c->block_error.stat[0].uvalue += val;
time_us = dib7000p_get_time_us(demod);
if (time_us) {
blocks = 1250000ULL * 1000000ULL;
do_div(blocks, time_us * 8 * 204);
c->block_count.stat[0].scale = FE_SCALE_COUNTER;
c->block_count.stat[0].uvalue += blocks;
}
}
return 0;
}
static int dib7000p_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune)
{
tune->min_delay_ms = 1000;
return 0;
}
static void dib7000p_release(struct dvb_frontend *demod)
{
struct dib7000p_state *st = demod->demodulator_priv;
dibx000_exit_i2c_master(&st->i2c_master);
i2c_del_adapter(&st->dib7090_tuner_adap);
kfree(st);
}
static int dib7000pc_detection(struct i2c_adapter *i2c_adap)
{
u8 *tx, *rx;
struct i2c_msg msg[2] = {
{.addr = 18 >> 1, .flags = 0, .len = 2},
{.addr = 18 >> 1, .flags = I2C_M_RD, .len = 2},
};
int ret = 0;
tx = kzalloc(2, GFP_KERNEL);
if (!tx)
return -ENOMEM;
rx = kzalloc(2, GFP_KERNEL);
if (!rx) {
ret = -ENOMEM;
goto rx_memory_error;
}
msg[0].buf = tx;
msg[1].buf = rx;
tx[0] = 0x03;
tx[1] = 0x00;
if (i2c_transfer(i2c_adap, msg, 2) == 2)
if (rx[0] == 0x01 && rx[1] == 0xb3) {
dprintk("-D- DiB7000PC detected\n");
ret = 1;
goto out;
}
msg[0].addr = msg[1].addr = 0x40;
if (i2c_transfer(i2c_adap, msg, 2) == 2)
if (rx[0] == 0x01 && rx[1] == 0xb3) {
dprintk("-D- DiB7000PC detected\n");
ret = 1;
goto out;
}
dprintk("-D- DiB7000PC not detected\n");
out:
kfree(rx);
rx_memory_error:
kfree(tx);
return ret;
}
static struct i2c_adapter *dib7000p_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating)
{
struct dib7000p_state *st = demod->demodulator_priv;
return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
}
static int dib7000p_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff)
{
struct dib7000p_state *state = fe->demodulator_priv;
u16 val = dib7000p_read_word(state, 235) & 0xffef;
val |= (onoff & 0x1) << 4;
dprintk("PID filter enabled %d\n", onoff);
return dib7000p_write_word(state, 235, val);
}
static int dib7000p_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff)
{
struct dib7000p_state *state = fe->demodulator_priv;
dprintk("PID filter: index %x, PID %d, OnOff %d\n", id, pid, onoff);
return dib7000p_write_word(state, 241 + id, onoff ? (1 << 13) | pid : 0);
}
static int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib7000p_config cfg[])
{
struct dib7000p_state *dpst;
int k = 0;
u8 new_addr = 0;
dpst = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL);
if (!dpst)
return -ENOMEM;
dpst->i2c_adap = i2c;
mutex_init(&dpst->i2c_buffer_lock);
for (k = no_of_demods - 1; k >= 0; k--) {
dpst->cfg = cfg[k];
/* designated i2c address */
if (cfg[k].default_i2c_addr != 0)
new_addr = cfg[k].default_i2c_addr + (k << 1);
else
new_addr = (0x40 + k) << 1;
dpst->i2c_addr = new_addr;
dib7000p_write_word(dpst, 1287, 0x0003); /* sram lead in, rdy */
if (dib7000p_identify(dpst) != 0) {
dpst->i2c_addr = default_addr;
dib7000p_write_word(dpst, 1287, 0x0003); /* sram lead in, rdy */
if (dib7000p_identify(dpst) != 0) {
dprintk("DiB7000P #%d: not identified\n", k);
kfree(dpst);
return -EIO;
}
}
/* start diversity to pull_down div_str - just for i2c-enumeration */
dib7000p_set_output_mode(dpst, OUTMODE_DIVERSITY);
/* set new i2c address and force divstart */
dib7000p_write_word(dpst, 1285, (new_addr << 2) | 0x2);
dprintk("IC %d initialized (to i2c_address 0x%x)\n", k, new_addr);
}
for (k = 0; k < no_of_demods; k++) {
dpst->cfg = cfg[k];
if (cfg[k].default_i2c_addr != 0)
dpst->i2c_addr = (cfg[k].default_i2c_addr + k) << 1;
else
dpst->i2c_addr = (0x40 + k) << 1;
// unforce divstr
dib7000p_write_word(dpst, 1285, dpst->i2c_addr << 2);
/* deactivate div - it was just for i2c-enumeration */
dib7000p_set_output_mode(dpst, OUTMODE_HIGH_Z);
}
kfree(dpst);
return 0;
}
static const s32 lut_1000ln_mant[] = {
6908, 6956, 7003, 7047, 7090, 7131, 7170, 7208, 7244, 7279, 7313, 7346, 7377, 7408, 7438, 7467, 7495, 7523, 7549, 7575, 7600
};
static s32 dib7000p_get_adc_power(struct dvb_frontend *fe)
{
struct dib7000p_state *state = fe->demodulator_priv;
u32 tmp_val = 0, exp = 0, mant = 0;
s32 pow_i;
u16 buf[2];
u8 ix = 0;
buf[0] = dib7000p_read_word(state, 0x184);
buf[1] = dib7000p_read_word(state, 0x185);
pow_i = (buf[0] << 16) | buf[1];
dprintk("raw pow_i = %d\n", pow_i);
tmp_val = pow_i;
while (tmp_val >>= 1)
exp++;
mant = (pow_i * 1000 / (1 << exp));
dprintk(" mant = %d exp = %d\n", mant / 1000, exp);
ix = (u8) ((mant - 1000) / 100); /* index of the LUT */
dprintk(" ix = %d\n", ix);
pow_i = (lut_1000ln_mant[ix] + 693 * (exp - 20) - 6908);
pow_i = (pow_i << 8) / 1000;
dprintk(" pow_i = %d\n", pow_i);
return pow_i;
}
static int map_addr_to_serpar_number(struct i2c_msg *msg)
{
if ((msg->buf[0] <= 15))
msg->buf[0] -= 1;
else if (msg->buf[0] == 17)
msg->buf[0] = 15;
else if (msg->buf[0] == 16)
msg->buf[0] = 17;
else if (msg->buf[0] == 19)
msg->buf[0] = 16;
else if (msg->buf[0] >= 21 && msg->buf[0] <= 25)
msg->buf[0] -= 3;
else if (msg->buf[0] == 28)
msg->buf[0] = 23;
else
return -EINVAL;
return 0;
}
static int w7090p_tuner_write_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
u8 n_overflow = 1;
u16 i = 1000;
u16 serpar_num = msg[0].buf[0];
while (n_overflow == 1 && i) {
n_overflow = (dib7000p_read_word(state, 1984) >> 1) & 0x1;
i--;
if (i == 0)
dprintk("Tuner ITF: write busy (overflow)\n");
}
dib7000p_write_word(state, 1985, (1 << 6) | (serpar_num & 0x3f));
dib7000p_write_word(state, 1986, (msg[0].buf[1] << 8) | msg[0].buf[2]);
return num;
}
static int w7090p_tuner_read_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
u8 n_overflow = 1, n_empty = 1;
u16 i = 1000;
u16 serpar_num = msg[0].buf[0];
u16 read_word;
while (n_overflow == 1 && i) {
n_overflow = (dib7000p_read_word(state, 1984) >> 1) & 0x1;
i--;
if (i == 0)
dprintk("TunerITF: read busy (overflow)\n");
}
dib7000p_write_word(state, 1985, (0 << 6) | (serpar_num & 0x3f));
i = 1000;
while (n_empty == 1 && i) {
n_empty = dib7000p_read_word(state, 1984) & 0x1;
i--;
if (i == 0)
dprintk("TunerITF: read busy (empty)\n");
}
read_word = dib7000p_read_word(state, 1987);
msg[1].buf[0] = (read_word >> 8) & 0xff;
msg[1].buf[1] = (read_word) & 0xff;
return num;
}
static int w7090p_tuner_rw_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
if (map_addr_to_serpar_number(&msg[0]) == 0) { /* else = Tuner regs to ignore : DIG_CFG, CTRL_RF_LT, PLL_CFG, PWM1_REG, ADCCLK, DIG_CFG_3; SLEEP_EN... */
if (num == 1) { /* write */
return w7090p_tuner_write_serpar(i2c_adap, msg, 1);
} else { /* read */
return w7090p_tuner_read_serpar(i2c_adap, msg, 2);
}
}
return num;
}
static int dib7090p_rw_on_apb(struct i2c_adapter *i2c_adap,
struct i2c_msg msg[], int num, u16 apb_address)
{
struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
u16 word;
if (num == 1) { /* write */
dib7000p_write_word(state, apb_address, ((msg[0].buf[1] << 8) | (msg[0].buf[2])));
} else {
word = dib7000p_read_word(state, apb_address);
msg[1].buf[0] = (word >> 8) & 0xff;
msg[1].buf[1] = (word) & 0xff;
}
return num;
}
static int dib7090_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
u16 apb_address = 0, word;
int i = 0;
switch (msg[0].buf[0]) {
case 0x12:
apb_address = 1920;
break;
case 0x14:
apb_address = 1921;
break;
case 0x24:
apb_address = 1922;
break;
case 0x1a:
apb_address = 1923;
break;
case 0x22:
apb_address = 1924;
break;
case 0x33:
apb_address = 1926;
break;
case 0x34:
apb_address = 1927;
break;
case 0x35:
apb_address = 1928;
break;
case 0x36:
apb_address = 1929;
break;
case 0x37:
apb_address = 1930;
break;
case 0x38:
apb_address = 1931;
break;
case 0x39:
apb_address = 1932;
break;
case 0x2a:
apb_address = 1935;
break;
case 0x2b:
apb_address = 1936;
break;
case 0x2c:
apb_address = 1937;
break;
case 0x2d:
apb_address = 1938;
break;
case 0x2e:
apb_address = 1939;
break;
case 0x2f:
apb_address = 1940;
break;
case 0x30:
apb_address = 1941;
break;
case 0x31:
apb_address = 1942;
break;
case 0x32:
apb_address = 1943;
break;
case 0x3e:
apb_address = 1944;
break;
case 0x3f:
apb_address = 1945;
break;
case 0x40:
apb_address = 1948;
break;
case 0x25:
apb_address = 914;
break;
case 0x26:
apb_address = 915;
break;
case 0x27:
apb_address = 917;
break;
case 0x28:
apb_address = 916;
break;
case 0x1d:
i = ((dib7000p_read_word(state, 72) >> 12) & 0x3);
word = dib7000p_read_word(state, 384 + i);
msg[1].buf[0] = (word >> 8) & 0xff;
msg[1].buf[1] = (word) & 0xff;
return num;
case 0x1f:
if (num == 1) { /* write */
word = (u16) ((msg[0].buf[1] << 8) | msg[0].buf[2]);
word &= 0x3;
word = (dib7000p_read_word(state, 72) & ~(3 << 12)) | (word << 12);
dib7000p_write_word(state, 72, word); /* Set the proper input */
return num;
}
}
if (apb_address != 0) /* R/W access via APB */
return dib7090p_rw_on_apb(i2c_adap, msg, num, apb_address);
else /* R/W access via SERPAR */
return w7090p_tuner_rw_serpar(i2c_adap, msg, num);
return 0;
}
static u32 dib7000p_i2c_func(struct i2c_adapter *adapter)
{
return I2C_FUNC_I2C;
}
static const struct i2c_algorithm dib7090_tuner_xfer_algo = {
.master_xfer = dib7090_tuner_xfer,
.functionality = dib7000p_i2c_func,
};
static struct i2c_adapter *dib7090_get_i2c_tuner(struct dvb_frontend *fe)
{
struct dib7000p_state *st = fe->demodulator_priv;
return &st->dib7090_tuner_adap;
}
static int dib7090_host_bus_drive(struct dib7000p_state *state, u8 drive)
{
u16 reg;
/* drive host bus 2, 3, 4 */
reg = dib7000p_read_word(state, 1798) & ~((0x7) | (0x7 << 6) | (0x7 << 12));
reg |= (drive << 12) | (drive << 6) | drive;
dib7000p_write_word(state, 1798, reg);
/* drive host bus 5,6 */
reg = dib7000p_read_word(state, 1799) & ~((0x7 << 2) | (0x7 << 8));
reg |= (drive << 8) | (drive << 2);
dib7000p_write_word(state, 1799, reg);
/* drive host bus 7, 8, 9 */
reg = dib7000p_read_word(state, 1800) & ~((0x7) | (0x7 << 6) | (0x7 << 12));
reg |= (drive << 12) | (drive << 6) | drive;
dib7000p_write_word(state, 1800, reg);
/* drive host bus 10, 11 */
reg = dib7000p_read_word(state, 1801) & ~((0x7 << 2) | (0x7 << 8));
reg |= (drive << 8) | (drive << 2);
dib7000p_write_word(state, 1801, reg);
/* drive host bus 12, 13, 14 */
reg = dib7000p_read_word(state, 1802) & ~((0x7) | (0x7 << 6) | (0x7 << 12));
reg |= (drive << 12) | (drive << 6) | drive;
dib7000p_write_word(state, 1802, reg);
return 0;
}
static u32 dib7090_calcSyncFreq(u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 syncSize)
{
u32 quantif = 3;
u32 nom = (insertExtSynchro * P_Kin + syncSize);
u32 denom = P_Kout;
u32 syncFreq = ((nom << quantif) / denom);
if ((syncFreq & ((1 << quantif) - 1)) != 0)
syncFreq = (syncFreq >> quantif) + 1;
else
syncFreq = (syncFreq >> quantif);
if (syncFreq != 0)
syncFreq = syncFreq - 1;
return syncFreq;
}
static int dib7090_cfg_DibTx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 synchroMode, u32 syncWord, u32 syncSize)
{
dprintk("Configure DibStream Tx\n");
dib7000p_write_word(state, 1615, 1);
dib7000p_write_word(state, 1603, P_Kin);
dib7000p_write_word(state, 1605, P_Kout);
dib7000p_write_word(state, 1606, insertExtSynchro);
dib7000p_write_word(state, 1608, synchroMode);
dib7000p_write_word(state, 1609, (syncWord >> 16) & 0xffff);
dib7000p_write_word(state, 1610, syncWord & 0xffff);
dib7000p_write_word(state, 1612, syncSize);
dib7000p_write_word(state, 1615, 0);
return 0;
}
static int dib7090_cfg_DibRx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout, u32 synchroMode, u32 insertExtSynchro, u32 syncWord, u32 syncSize,
u32 dataOutRate)
{
u32 syncFreq;
dprintk("Configure DibStream Rx\n");
if ((P_Kin != 0) && (P_Kout != 0)) {
syncFreq = dib7090_calcSyncFreq(P_Kin, P_Kout, insertExtSynchro, syncSize);
dib7000p_write_word(state, 1542, syncFreq);
}
dib7000p_write_word(state, 1554, 1);
dib7000p_write_word(state, 1536, P_Kin);
dib7000p_write_word(state, 1537, P_Kout);
dib7000p_write_word(state, 1539, synchroMode);
dib7000p_write_word(state, 1540, (syncWord >> 16) & 0xffff);
dib7000p_write_word(state, 1541, syncWord & 0xffff);
dib7000p_write_word(state, 1543, syncSize);
dib7000p_write_word(state, 1544, dataOutRate);
dib7000p_write_word(state, 1554, 0);
return 0;
}
static void dib7090_enMpegMux(struct dib7000p_state *state, int onoff)
{
u16 reg_1287 = dib7000p_read_word(state, 1287);
switch (onoff) {
case 1:
reg_1287 &= ~(1<<7);
break;
case 0:
reg_1287 |= (1<<7);
break;
}
dib7000p_write_word(state, 1287, reg_1287);
}
static void dib7090_configMpegMux(struct dib7000p_state *state,
u16 pulseWidth, u16 enSerialMode, u16 enSerialClkDiv2)
{
dprintk("Enable Mpeg mux\n");
dib7090_enMpegMux(state, 0);
/* If the input mode is MPEG do not divide the serial clock */
if ((enSerialMode == 1) && (state->input_mode_mpeg == 1))
enSerialClkDiv2 = 0;
dib7000p_write_word(state, 1287, ((pulseWidth & 0x1f) << 2)
| ((enSerialMode & 0x1) << 1)
| (enSerialClkDiv2 & 0x1));
dib7090_enMpegMux(state, 1);
}
static void dib7090_setDibTxMux(struct dib7000p_state *state, int mode)
{
u16 reg_1288 = dib7000p_read_word(state, 1288) & ~(0x7 << 7);
switch (mode) {
case MPEG_ON_DIBTX:
dprintk("SET MPEG ON DIBSTREAM TX\n");
dib7090_cfg_DibTx(state, 8, 5, 0, 0, 0, 0);
reg_1288 |= (1<<9);
break;
case DIV_ON_DIBTX:
dprintk("SET DIV_OUT ON DIBSTREAM TX\n");
dib7090_cfg_DibTx(state, 5, 5, 0, 0, 0, 0);
reg_1288 |= (1<<8);
break;
case ADC_ON_DIBTX:
dprintk("SET ADC_OUT ON DIBSTREAM TX\n");
dib7090_cfg_DibTx(state, 20, 5, 10, 0, 0, 0);
reg_1288 |= (1<<7);
break;
default:
break;
}
dib7000p_write_word(state, 1288, reg_1288);
}
static void dib7090_setHostBusMux(struct dib7000p_state *state, int mode)
{
u16 reg_1288 = dib7000p_read_word(state, 1288) & ~(0x7 << 4);
switch (mode) {
case DEMOUT_ON_HOSTBUS:
dprintk("SET DEM OUT OLD INTERF ON HOST BUS\n");
dib7090_enMpegMux(state, 0);
reg_1288 |= (1<<6);
break;
case DIBTX_ON_HOSTBUS:
dprintk("SET DIBSTREAM TX ON HOST BUS\n");
dib7090_enMpegMux(state, 0);
reg_1288 |= (1<<5);
break;
case MPEG_ON_HOSTBUS:
dprintk("SET MPEG MUX ON HOST BUS\n");
reg_1288 |= (1<<4);
break;
default:
break;
}
dib7000p_write_word(state, 1288, reg_1288);
}
static int dib7090_set_diversity_in(struct dvb_frontend *fe, int onoff)
{
struct dib7000p_state *state = fe->demodulator_priv;
u16 reg_1287;
switch (onoff) {
case 0: /* only use the internal way - not the diversity input */
dprintk("%s mode OFF : by default Enable Mpeg INPUT\n", __func__);
dib7090_cfg_DibRx(state, 8, 5, 0, 0, 0, 8, 0);
/* Do not divide the serial clock of MPEG MUX */
/* in SERIAL MODE in case input mode MPEG is used */
reg_1287 = dib7000p_read_word(state, 1287);
/* enSerialClkDiv2 == 1 ? */
if ((reg_1287 & 0x1) == 1) {
/* force enSerialClkDiv2 = 0 */
reg_1287 &= ~0x1;
dib7000p_write_word(state, 1287, reg_1287);
}
state->input_mode_mpeg = 1;
break;
case 1: /* both ways */
case 2: /* only the diversity input */
dprintk("%s ON : Enable diversity INPUT\n", __func__);
dib7090_cfg_DibRx(state, 5, 5, 0, 0, 0, 0, 0);
state->input_mode_mpeg = 0;
break;
}
dib7000p_set_diversity_in(&state->demod, onoff);
return 0;
}
static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode)
{
struct dib7000p_state *state = fe->demodulator_priv;
u16 outreg, smo_mode, fifo_threshold;
u8 prefer_mpeg_mux_use = 1;
int ret = 0;
dib7090_host_bus_drive(state, 1);
fifo_threshold = 1792;
smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1);
outreg = dib7000p_read_word(state, 1286) & ~((1 << 10) | (0x7 << 6) | (1 << 1));
switch (mode) {
case OUTMODE_HIGH_Z:
outreg = 0;
break;
case OUTMODE_MPEG2_SERIAL:
if (prefer_mpeg_mux_use) {
dprintk("setting output mode TS_SERIAL using Mpeg Mux\n");
dib7090_configMpegMux(state, 3, 1, 1);
dib7090_setHostBusMux(state, MPEG_ON_HOSTBUS);
} else {/* Use Smooth block */
dprintk("setting output mode TS_SERIAL using Smooth bloc\n");
dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS);
outreg |= (2<<6) | (0 << 1);
}
break;
case OUTMODE_MPEG2_PAR_GATED_CLK:
if (prefer_mpeg_mux_use) {
dprintk("setting output mode TS_PARALLEL_GATED using Mpeg Mux\n");
dib7090_configMpegMux(state, 2, 0, 0);
dib7090_setHostBusMux(state, MPEG_ON_HOSTBUS);
} else { /* Use Smooth block */
dprintk("setting output mode TS_PARALLEL_GATED using Smooth block\n");
dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS);
outreg |= (0<<6);
}
break;
case OUTMODE_MPEG2_PAR_CONT_CLK: /* Using Smooth block only */
dprintk("setting output mode TS_PARALLEL_CONT using Smooth block\n");
dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS);
outreg |= (1<<6);
break;
case OUTMODE_MPEG2_FIFO: /* Using Smooth block because not supported by new Mpeg Mux bloc */
dprintk("setting output mode TS_FIFO using Smooth block\n");
dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS);
outreg |= (5<<6);
smo_mode |= (3 << 1);
fifo_threshold = 512;
break;
case OUTMODE_DIVERSITY:
dprintk("setting output mode MODE_DIVERSITY\n");
dib7090_setDibTxMux(state, DIV_ON_DIBTX);
dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS);
break;
case OUTMODE_ANALOG_ADC:
dprintk("setting output mode MODE_ANALOG_ADC\n");
dib7090_setDibTxMux(state, ADC_ON_DIBTX);
dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS);
break;
}
if (mode != OUTMODE_HIGH_Z)
outreg |= (1 << 10);
if (state->cfg.output_mpeg2_in_188_bytes)
smo_mode |= (1 << 5);
ret |= dib7000p_write_word(state, 235, smo_mode);
ret |= dib7000p_write_word(state, 236, fifo_threshold); /* synchronous fread */
ret |= dib7000p_write_word(state, 1286, outreg);
return ret;
}
static int dib7090_tuner_sleep(struct dvb_frontend *fe, int onoff)
{
struct dib7000p_state *state = fe->demodulator_priv;
u16 en_cur_state;
dprintk("sleep dib7090: %d\n", onoff);
en_cur_state = dib7000p_read_word(state, 1922);
if (en_cur_state > 0xff)
state->tuner_enable = en_cur_state;
if (onoff)
en_cur_state &= 0x00ff;
else {
if (state->tuner_enable != 0)
en_cur_state = state->tuner_enable;
}
dib7000p_write_word(state, 1922, en_cur_state);
return 0;
}
static int dib7090_get_adc_power(struct dvb_frontend *fe)
{
return dib7000p_get_adc_power(fe);
}
static int dib7090_slave_reset(struct dvb_frontend *fe)
{
struct dib7000p_state *state = fe->demodulator_priv;
u16 reg;
reg = dib7000p_read_word(state, 1794);
dib7000p_write_word(state, 1794, reg | (4 << 12));
dib7000p_write_word(state, 1032, 0xffff);
return 0;
}
static const struct dvb_frontend_ops dib7000p_ops;
static struct dvb_frontend *dib7000p_init(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg)
{
struct dvb_frontend *demod;
struct dib7000p_state *st;
st = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL);
if (st == NULL)
return NULL;
memcpy(&st->cfg, cfg, sizeof(struct dib7000p_config));
st->i2c_adap = i2c_adap;
st->i2c_addr = i2c_addr;
st->gpio_val = cfg->gpio_val;
st->gpio_dir = cfg->gpio_dir;
/* Ensure the output mode remains at the previous default if it's
* not specifically set by the caller.
*/
if ((st->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (st->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK))
st->cfg.output_mode = OUTMODE_MPEG2_FIFO;
demod = &st->demod;
demod->demodulator_priv = st;
memcpy(&st->demod.ops, &dib7000p_ops, sizeof(struct dvb_frontend_ops));
mutex_init(&st->i2c_buffer_lock);
dib7000p_write_word(st, 1287, 0x0003); /* sram lead in, rdy */
if (dib7000p_identify(st) != 0)
goto error;
st->version = dib7000p_read_word(st, 897);
/* FIXME: make sure the dev.parent field is initialized, or else
request_firmware() will hit an OOPS (this should be moved somewhere
more common) */
st->i2c_master.gated_tuner_i2c_adap.dev.parent = i2c_adap->dev.parent;
dibx000_init_i2c_master(&st->i2c_master, DIB7000P, st->i2c_adap, st->i2c_addr);
/* init 7090 tuner adapter */
strscpy(st->dib7090_tuner_adap.name, "DiB7090 tuner interface",
sizeof(st->dib7090_tuner_adap.name));
st->dib7090_tuner_adap.algo = &dib7090_tuner_xfer_algo;
st->dib7090_tuner_adap.algo_data = NULL;
st->dib7090_tuner_adap.dev.parent = st->i2c_adap->dev.parent;
i2c_set_adapdata(&st->dib7090_tuner_adap, st);
i2c_add_adapter(&st->dib7090_tuner_adap);
dib7000p_demod_reset(st);
dib7000p_reset_stats(demod);
if (st->version == SOC7090) {
dib7090_set_output_mode(demod, st->cfg.output_mode);
dib7090_set_diversity_in(demod, 0);
}
return demod;
error:
kfree(st);
return NULL;
}
void *dib7000p_attach(struct dib7000p_ops *ops)
{
if (!ops)
return NULL;
ops->slave_reset = dib7090_slave_reset;
ops->get_adc_power = dib7090_get_adc_power;
ops->dib7000pc_detection = dib7000pc_detection;
ops->get_i2c_tuner = dib7090_get_i2c_tuner;
ops->tuner_sleep = dib7090_tuner_sleep;
ops->init = dib7000p_init;
ops->set_agc1_min = dib7000p_set_agc1_min;
ops->set_gpio = dib7000p_set_gpio;
ops->i2c_enumeration = dib7000p_i2c_enumeration;
ops->pid_filter = dib7000p_pid_filter;
ops->pid_filter_ctrl = dib7000p_pid_filter_ctrl;
ops->get_i2c_master = dib7000p_get_i2c_master;
ops->update_pll = dib7000p_update_pll;
ops->ctrl_timf = dib7000p_ctrl_timf;
ops->get_agc_values = dib7000p_get_agc_values;
ops->set_wbd_ref = dib7000p_set_wbd_ref;
return ops;
}
EXPORT_SYMBOL_GPL(dib7000p_attach);
static const struct dvb_frontend_ops dib7000p_ops = {
.delsys = { SYS_DVBT },
.info = {
.name = "DiBcom 7000PC",
.frequency_min_hz = 44250 * kHz,
.frequency_max_hz = 867250 * kHz,
.frequency_stepsize_hz = 62500,
.caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO,
},
.release = dib7000p_release,
.init = dib7000p_wakeup,
.sleep = dib7000p_sleep,
.set_frontend = dib7000p_set_frontend,
.get_tune_settings = dib7000p_fe_get_tune_settings,
.get_frontend = dib7000p_get_frontend,
.read_status = dib7000p_read_status,
.read_ber = dib7000p_read_ber,
.read_signal_strength = dib7000p_read_signal_strength,
.read_snr = dib7000p_read_snr,
.read_ucblocks = dib7000p_read_unc_blocks,
};
MODULE_AUTHOR("Olivier Grenie <olivie.grenie@parrot.com>");
MODULE_AUTHOR("Patrick Boettcher <patrick.boettcher@posteo.de>");
MODULE_DESCRIPTION("Driver for the DiBcom 7000PC COFDM demodulator");
MODULE_LICENSE("GPL");