mirror_ubuntu-kernels/drivers/irqchip/irq-apple-aic.c

1082 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright The Asahi Linux Contributors
*
* Based on irq-lpc32xx:
* Copyright 2015-2016 Vladimir Zapolskiy <vz@mleia.com>
* Based on irq-bcm2836:
* Copyright 2015 Broadcom
*/
/*
* AIC is a fairly simple interrupt controller with the following features:
*
* - 896 level-triggered hardware IRQs
* - Single mask bit per IRQ
* - Per-IRQ affinity setting
* - Automatic masking on event delivery (auto-ack)
* - Software triggering (ORed with hw line)
* - 2 per-CPU IPIs (meant as "self" and "other", but they are
* interchangeable if not symmetric)
* - Automatic prioritization (single event/ack register per CPU, lower IRQs =
* higher priority)
* - Automatic masking on ack
* - Default "this CPU" register view and explicit per-CPU views
*
* In addition, this driver also handles FIQs, as these are routed to the same
* IRQ vector. These are used for Fast IPIs, the ARMv8 timer IRQs, and
* performance counters (TODO).
*
* Implementation notes:
*
* - This driver creates two IRQ domains, one for HW IRQs and internal FIQs,
* and one for IPIs.
* - Since Linux needs more than 2 IPIs, we implement a software IRQ controller
* and funnel all IPIs into one per-CPU IPI (the second "self" IPI is unused).
* - FIQ hwirq numbers are assigned after true hwirqs, and are per-cpu.
* - DT bindings use 3-cell form (like GIC):
* - <0 nr flags> - hwirq #nr
* - <1 nr flags> - FIQ #nr
* - nr=0 Physical HV timer
* - nr=1 Virtual HV timer
* - nr=2 Physical guest timer
* - nr=3 Virtual guest timer
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/bits.h>
#include <linux/bitfield.h>
#include <linux/cpuhotplug.h>
#include <linux/io.h>
#include <linux/irqchip.h>
#include <linux/irqchip/arm-vgic-info.h>
#include <linux/irqdomain.h>
#include <linux/jump_label.h>
#include <linux/limits.h>
#include <linux/of_address.h>
#include <linux/slab.h>
#include <asm/apple_m1_pmu.h>
#include <asm/cputype.h>
#include <asm/exception.h>
#include <asm/sysreg.h>
#include <asm/virt.h>
#include <dt-bindings/interrupt-controller/apple-aic.h>
/*
* AIC v1 registers (MMIO)
*/
#define AIC_INFO 0x0004
#define AIC_INFO_NR_IRQ GENMASK(15, 0)
#define AIC_CONFIG 0x0010
#define AIC_WHOAMI 0x2000
#define AIC_EVENT 0x2004
#define AIC_EVENT_DIE GENMASK(31, 24)
#define AIC_EVENT_TYPE GENMASK(23, 16)
#define AIC_EVENT_NUM GENMASK(15, 0)
#define AIC_EVENT_TYPE_FIQ 0 /* Software use */
#define AIC_EVENT_TYPE_IRQ 1
#define AIC_EVENT_TYPE_IPI 4
#define AIC_EVENT_IPI_OTHER 1
#define AIC_EVENT_IPI_SELF 2
#define AIC_IPI_SEND 0x2008
#define AIC_IPI_ACK 0x200c
#define AIC_IPI_MASK_SET 0x2024
#define AIC_IPI_MASK_CLR 0x2028
#define AIC_IPI_SEND_CPU(cpu) BIT(cpu)
#define AIC_IPI_OTHER BIT(0)
#define AIC_IPI_SELF BIT(31)
#define AIC_TARGET_CPU 0x3000
#define AIC_CPU_IPI_SET(cpu) (0x5008 + ((cpu) << 7))
#define AIC_CPU_IPI_CLR(cpu) (0x500c + ((cpu) << 7))
#define AIC_CPU_IPI_MASK_SET(cpu) (0x5024 + ((cpu) << 7))
#define AIC_CPU_IPI_MASK_CLR(cpu) (0x5028 + ((cpu) << 7))
#define AIC_MAX_IRQ 0x400
/*
* AIC v2 registers (MMIO)
*/
#define AIC2_VERSION 0x0000
#define AIC2_VERSION_VER GENMASK(7, 0)
#define AIC2_INFO1 0x0004
#define AIC2_INFO1_NR_IRQ GENMASK(15, 0)
#define AIC2_INFO1_LAST_DIE GENMASK(27, 24)
#define AIC2_INFO2 0x0008
#define AIC2_INFO3 0x000c
#define AIC2_INFO3_MAX_IRQ GENMASK(15, 0)
#define AIC2_INFO3_MAX_DIE GENMASK(27, 24)
#define AIC2_RESET 0x0010
#define AIC2_RESET_RESET BIT(0)
#define AIC2_CONFIG 0x0014
#define AIC2_CONFIG_ENABLE BIT(0)
#define AIC2_CONFIG_PREFER_PCPU BIT(28)
#define AIC2_TIMEOUT 0x0028
#define AIC2_CLUSTER_PRIO 0x0030
#define AIC2_DELAY_GROUPS 0x0100
#define AIC2_IRQ_CFG 0x2000
/*
* AIC2 registers are laid out like this, starting at AIC2_IRQ_CFG:
*
* Repeat for each die:
* IRQ_CFG: u32 * MAX_IRQS
* SW_SET: u32 * (MAX_IRQS / 32)
* SW_CLR: u32 * (MAX_IRQS / 32)
* MASK_SET: u32 * (MAX_IRQS / 32)
* MASK_CLR: u32 * (MAX_IRQS / 32)
* HW_STATE: u32 * (MAX_IRQS / 32)
*
* This is followed by a set of event registers, each 16K page aligned.
* The first one is the AP event register we will use. Unfortunately,
* the actual implemented die count is not specified anywhere in the
* capability registers, so we have to explicitly specify the event
* register as a second reg entry in the device tree to remain
* forward-compatible.
*/
#define AIC2_IRQ_CFG_TARGET GENMASK(3, 0)
#define AIC2_IRQ_CFG_DELAY_IDX GENMASK(7, 5)
#define MASK_REG(x) (4 * ((x) >> 5))
#define MASK_BIT(x) BIT((x) & GENMASK(4, 0))
/*
* IMP-DEF sysregs that control FIQ sources
*/
/* IPI request registers */
#define SYS_IMP_APL_IPI_RR_LOCAL_EL1 sys_reg(3, 5, 15, 0, 0)
#define SYS_IMP_APL_IPI_RR_GLOBAL_EL1 sys_reg(3, 5, 15, 0, 1)
#define IPI_RR_CPU GENMASK(7, 0)
/* Cluster only used for the GLOBAL register */
#define IPI_RR_CLUSTER GENMASK(23, 16)
#define IPI_RR_TYPE GENMASK(29, 28)
#define IPI_RR_IMMEDIATE 0
#define IPI_RR_RETRACT 1
#define IPI_RR_DEFERRED 2
#define IPI_RR_NOWAKE 3
/* IPI status register */
#define SYS_IMP_APL_IPI_SR_EL1 sys_reg(3, 5, 15, 1, 1)
#define IPI_SR_PENDING BIT(0)
/* Guest timer FIQ enable register */
#define SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2 sys_reg(3, 5, 15, 1, 3)
#define VM_TMR_FIQ_ENABLE_V BIT(0)
#define VM_TMR_FIQ_ENABLE_P BIT(1)
/* Deferred IPI countdown register */
#define SYS_IMP_APL_IPI_CR_EL1 sys_reg(3, 5, 15, 3, 1)
/* Uncore PMC control register */
#define SYS_IMP_APL_UPMCR0_EL1 sys_reg(3, 7, 15, 0, 4)
#define UPMCR0_IMODE GENMASK(18, 16)
#define UPMCR0_IMODE_OFF 0
#define UPMCR0_IMODE_AIC 2
#define UPMCR0_IMODE_HALT 3
#define UPMCR0_IMODE_FIQ 4
/* Uncore PMC status register */
#define SYS_IMP_APL_UPMSR_EL1 sys_reg(3, 7, 15, 6, 4)
#define UPMSR_IACT BIT(0)
/* MPIDR fields */
#define MPIDR_CPU(x) MPIDR_AFFINITY_LEVEL(x, 0)
#define MPIDR_CLUSTER(x) MPIDR_AFFINITY_LEVEL(x, 1)
#define AIC_IRQ_HWIRQ(die, irq) (FIELD_PREP(AIC_EVENT_DIE, die) | \
FIELD_PREP(AIC_EVENT_TYPE, AIC_EVENT_TYPE_IRQ) | \
FIELD_PREP(AIC_EVENT_NUM, irq))
#define AIC_FIQ_HWIRQ(x) (FIELD_PREP(AIC_EVENT_TYPE, AIC_EVENT_TYPE_FIQ) | \
FIELD_PREP(AIC_EVENT_NUM, x))
#define AIC_HWIRQ_IRQ(x) FIELD_GET(AIC_EVENT_NUM, x)
#define AIC_HWIRQ_DIE(x) FIELD_GET(AIC_EVENT_DIE, x)
#define AIC_NR_SWIPI 32
/*
* FIQ hwirq index definitions: FIQ sources use the DT binding defines
* directly, except that timers are special. At the irqchip level, the
* two timer types are represented by their access method: _EL0 registers
* or _EL02 registers. In the DT binding, the timers are represented
* by their purpose (HV or guest). This mapping is for when the kernel is
* running at EL2 (with VHE). When the kernel is running at EL1, the
* mapping differs and aic_irq_domain_translate() performs the remapping.
*/
enum fiq_hwirq {
/* Must be ordered as in apple-aic.h */
AIC_TMR_EL0_PHYS = AIC_TMR_HV_PHYS,
AIC_TMR_EL0_VIRT = AIC_TMR_HV_VIRT,
AIC_TMR_EL02_PHYS = AIC_TMR_GUEST_PHYS,
AIC_TMR_EL02_VIRT = AIC_TMR_GUEST_VIRT,
AIC_CPU_PMU_Effi = AIC_CPU_PMU_E,
AIC_CPU_PMU_Perf = AIC_CPU_PMU_P,
/* No need for this to be discovered from DT */
AIC_VGIC_MI,
AIC_NR_FIQ
};
static DEFINE_STATIC_KEY_TRUE(use_fast_ipi);
struct aic_info {
int version;
/* Register offsets */
u32 event;
u32 target_cpu;
u32 irq_cfg;
u32 sw_set;
u32 sw_clr;
u32 mask_set;
u32 mask_clr;
u32 die_stride;
/* Features */
bool fast_ipi;
};
static const struct aic_info aic1_info __initconst = {
.version = 1,
.event = AIC_EVENT,
.target_cpu = AIC_TARGET_CPU,
};
static const struct aic_info aic1_fipi_info __initconst = {
.version = 1,
.event = AIC_EVENT,
.target_cpu = AIC_TARGET_CPU,
.fast_ipi = true,
};
static const struct aic_info aic2_info __initconst = {
.version = 2,
.irq_cfg = AIC2_IRQ_CFG,
.fast_ipi = true,
};
static const struct of_device_id aic_info_match[] = {
{
.compatible = "apple,t8103-aic",
.data = &aic1_fipi_info,
},
{
.compatible = "apple,aic",
.data = &aic1_info,
},
{
.compatible = "apple,aic2",
.data = &aic2_info,
},
{}
};
struct aic_irq_chip {
void __iomem *base;
void __iomem *event;
struct irq_domain *hw_domain;
struct {
cpumask_t aff;
} *fiq_aff[AIC_NR_FIQ];
int nr_irq;
int max_irq;
int nr_die;
int max_die;
struct aic_info info;
};
static DEFINE_PER_CPU(uint32_t, aic_fiq_unmasked);
static struct aic_irq_chip *aic_irqc;
static void aic_handle_ipi(struct pt_regs *regs);
static u32 aic_ic_read(struct aic_irq_chip *ic, u32 reg)
{
return readl_relaxed(ic->base + reg);
}
static void aic_ic_write(struct aic_irq_chip *ic, u32 reg, u32 val)
{
writel_relaxed(val, ic->base + reg);
}
/*
* IRQ irqchip
*/
static void aic_irq_mask(struct irq_data *d)
{
irq_hw_number_t hwirq = irqd_to_hwirq(d);
struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
u32 off = AIC_HWIRQ_DIE(hwirq) * ic->info.die_stride;
u32 irq = AIC_HWIRQ_IRQ(hwirq);
aic_ic_write(ic, ic->info.mask_set + off + MASK_REG(irq), MASK_BIT(irq));
}
static void aic_irq_unmask(struct irq_data *d)
{
irq_hw_number_t hwirq = irqd_to_hwirq(d);
struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
u32 off = AIC_HWIRQ_DIE(hwirq) * ic->info.die_stride;
u32 irq = AIC_HWIRQ_IRQ(hwirq);
aic_ic_write(ic, ic->info.mask_clr + off + MASK_REG(irq), MASK_BIT(irq));
}
static void aic_irq_eoi(struct irq_data *d)
{
/*
* Reading the interrupt reason automatically acknowledges and masks
* the IRQ, so we just unmask it here if needed.
*/
if (!irqd_irq_masked(d))
aic_irq_unmask(d);
}
static void __exception_irq_entry aic_handle_irq(struct pt_regs *regs)
{
struct aic_irq_chip *ic = aic_irqc;
u32 event, type, irq;
do {
/*
* We cannot use a relaxed read here, as reads from DMA buffers
* need to be ordered after the IRQ fires.
*/
event = readl(ic->event + ic->info.event);
type = FIELD_GET(AIC_EVENT_TYPE, event);
irq = FIELD_GET(AIC_EVENT_NUM, event);
if (type == AIC_EVENT_TYPE_IRQ)
generic_handle_domain_irq(aic_irqc->hw_domain, event);
else if (type == AIC_EVENT_TYPE_IPI && irq == 1)
aic_handle_ipi(regs);
else if (event != 0)
pr_err_ratelimited("Unknown IRQ event %d, %d\n", type, irq);
} while (event);
/*
* vGIC maintenance interrupts end up here too, so we need to check
* for them separately. It should however only trigger when NV is
* in use, and be cleared when coming back from the handler.
*/
if (is_kernel_in_hyp_mode() &&
(read_sysreg_s(SYS_ICH_HCR_EL2) & ICH_HCR_EN) &&
read_sysreg_s(SYS_ICH_MISR_EL2) != 0) {
generic_handle_domain_irq(aic_irqc->hw_domain,
AIC_FIQ_HWIRQ(AIC_VGIC_MI));
if (unlikely((read_sysreg_s(SYS_ICH_HCR_EL2) & ICH_HCR_EN) &&
read_sysreg_s(SYS_ICH_MISR_EL2))) {
pr_err_ratelimited("vGIC IRQ fired and not handled by KVM, disabling.\n");
sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0);
}
}
}
static int aic_irq_set_affinity(struct irq_data *d,
const struct cpumask *mask_val, bool force)
{
irq_hw_number_t hwirq = irqd_to_hwirq(d);
struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
int cpu;
BUG_ON(!ic->info.target_cpu);
if (force)
cpu = cpumask_first(mask_val);
else
cpu = cpumask_any_and(mask_val, cpu_online_mask);
aic_ic_write(ic, ic->info.target_cpu + AIC_HWIRQ_IRQ(hwirq) * 4, BIT(cpu));
irq_data_update_effective_affinity(d, cpumask_of(cpu));
return IRQ_SET_MASK_OK;
}
static int aic_irq_set_type(struct irq_data *d, unsigned int type)
{
/*
* Some IRQs (e.g. MSIs) implicitly have edge semantics, and we don't
* have a way to find out the type of any given IRQ, so just allow both.
*/
return (type == IRQ_TYPE_LEVEL_HIGH || type == IRQ_TYPE_EDGE_RISING) ? 0 : -EINVAL;
}
static struct irq_chip aic_chip = {
.name = "AIC",
.irq_mask = aic_irq_mask,
.irq_unmask = aic_irq_unmask,
.irq_eoi = aic_irq_eoi,
.irq_set_affinity = aic_irq_set_affinity,
.irq_set_type = aic_irq_set_type,
};
static struct irq_chip aic2_chip = {
.name = "AIC2",
.irq_mask = aic_irq_mask,
.irq_unmask = aic_irq_unmask,
.irq_eoi = aic_irq_eoi,
.irq_set_type = aic_irq_set_type,
};
/*
* FIQ irqchip
*/
static unsigned long aic_fiq_get_idx(struct irq_data *d)
{
return AIC_HWIRQ_IRQ(irqd_to_hwirq(d));
}
static void aic_fiq_set_mask(struct irq_data *d)
{
/* Only the guest timers have real mask bits, unfortunately. */
switch (aic_fiq_get_idx(d)) {
case AIC_TMR_EL02_PHYS:
sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_P, 0);
isb();
break;
case AIC_TMR_EL02_VIRT:
sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_V, 0);
isb();
break;
default:
break;
}
}
static void aic_fiq_clear_mask(struct irq_data *d)
{
switch (aic_fiq_get_idx(d)) {
case AIC_TMR_EL02_PHYS:
sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_P);
isb();
break;
case AIC_TMR_EL02_VIRT:
sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_V);
isb();
break;
default:
break;
}
}
static void aic_fiq_mask(struct irq_data *d)
{
aic_fiq_set_mask(d);
__this_cpu_and(aic_fiq_unmasked, ~BIT(aic_fiq_get_idx(d)));
}
static void aic_fiq_unmask(struct irq_data *d)
{
aic_fiq_clear_mask(d);
__this_cpu_or(aic_fiq_unmasked, BIT(aic_fiq_get_idx(d)));
}
static void aic_fiq_eoi(struct irq_data *d)
{
/* We mask to ack (where we can), so we need to unmask at EOI. */
if (__this_cpu_read(aic_fiq_unmasked) & BIT(aic_fiq_get_idx(d)))
aic_fiq_clear_mask(d);
}
#define TIMER_FIRING(x) \
(((x) & (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_MASK | \
ARCH_TIMER_CTRL_IT_STAT)) == \
(ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_STAT))
static void __exception_irq_entry aic_handle_fiq(struct pt_regs *regs)
{
/*
* It would be really nice if we had a system register that lets us get
* the FIQ source state without having to peek down into sources...
* but such a register does not seem to exist.
*
* So, we have these potential sources to test for:
* - Fast IPIs (not yet used)
* - The 4 timers (CNTP, CNTV for each of HV and guest)
* - Per-core PMCs (not yet supported)
* - Per-cluster uncore PMCs (not yet supported)
*
* Since not dealing with any of these results in a FIQ storm,
* we check for everything here, even things we don't support yet.
*/
if (read_sysreg_s(SYS_IMP_APL_IPI_SR_EL1) & IPI_SR_PENDING) {
if (static_branch_likely(&use_fast_ipi)) {
aic_handle_ipi(regs);
} else {
pr_err_ratelimited("Fast IPI fired. Acking.\n");
write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
}
}
if (TIMER_FIRING(read_sysreg(cntp_ctl_el0)))
generic_handle_domain_irq(aic_irqc->hw_domain,
AIC_FIQ_HWIRQ(AIC_TMR_EL0_PHYS));
if (TIMER_FIRING(read_sysreg(cntv_ctl_el0)))
generic_handle_domain_irq(aic_irqc->hw_domain,
AIC_FIQ_HWIRQ(AIC_TMR_EL0_VIRT));
if (is_kernel_in_hyp_mode()) {
uint64_t enabled = read_sysreg_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2);
if ((enabled & VM_TMR_FIQ_ENABLE_P) &&
TIMER_FIRING(read_sysreg_s(SYS_CNTP_CTL_EL02)))
generic_handle_domain_irq(aic_irqc->hw_domain,
AIC_FIQ_HWIRQ(AIC_TMR_EL02_PHYS));
if ((enabled & VM_TMR_FIQ_ENABLE_V) &&
TIMER_FIRING(read_sysreg_s(SYS_CNTV_CTL_EL02)))
generic_handle_domain_irq(aic_irqc->hw_domain,
AIC_FIQ_HWIRQ(AIC_TMR_EL02_VIRT));
}
if (read_sysreg_s(SYS_IMP_APL_PMCR0_EL1) & PMCR0_IACT) {
int irq;
if (cpumask_test_cpu(smp_processor_id(),
&aic_irqc->fiq_aff[AIC_CPU_PMU_P]->aff))
irq = AIC_CPU_PMU_P;
else
irq = AIC_CPU_PMU_E;
generic_handle_domain_irq(aic_irqc->hw_domain,
AIC_FIQ_HWIRQ(irq));
}
if (FIELD_GET(UPMCR0_IMODE, read_sysreg_s(SYS_IMP_APL_UPMCR0_EL1)) == UPMCR0_IMODE_FIQ &&
(read_sysreg_s(SYS_IMP_APL_UPMSR_EL1) & UPMSR_IACT)) {
/* Same story with uncore PMCs */
pr_err_ratelimited("Uncore PMC FIQ fired. Masking.\n");
sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
}
}
static int aic_fiq_set_type(struct irq_data *d, unsigned int type)
{
return (type == IRQ_TYPE_LEVEL_HIGH) ? 0 : -EINVAL;
}
static struct irq_chip fiq_chip = {
.name = "AIC-FIQ",
.irq_mask = aic_fiq_mask,
.irq_unmask = aic_fiq_unmask,
.irq_ack = aic_fiq_set_mask,
.irq_eoi = aic_fiq_eoi,
.irq_set_type = aic_fiq_set_type,
};
/*
* Main IRQ domain
*/
static int aic_irq_domain_map(struct irq_domain *id, unsigned int irq,
irq_hw_number_t hw)
{
struct aic_irq_chip *ic = id->host_data;
u32 type = FIELD_GET(AIC_EVENT_TYPE, hw);
struct irq_chip *chip = &aic_chip;
if (ic->info.version == 2)
chip = &aic2_chip;
if (type == AIC_EVENT_TYPE_IRQ) {
irq_domain_set_info(id, irq, hw, chip, id->host_data,
handle_fasteoi_irq, NULL, NULL);
irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(irq)));
} else {
int fiq = FIELD_GET(AIC_EVENT_NUM, hw);
switch (fiq) {
case AIC_CPU_PMU_P:
case AIC_CPU_PMU_E:
irq_set_percpu_devid_partition(irq, &ic->fiq_aff[fiq]->aff);
break;
default:
irq_set_percpu_devid(irq);
break;
}
irq_domain_set_info(id, irq, hw, &fiq_chip, id->host_data,
handle_percpu_devid_irq, NULL, NULL);
}
return 0;
}
static int aic_irq_domain_translate(struct irq_domain *id,
struct irq_fwspec *fwspec,
unsigned long *hwirq,
unsigned int *type)
{
struct aic_irq_chip *ic = id->host_data;
u32 *args;
u32 die = 0;
if (fwspec->param_count < 3 || fwspec->param_count > 4 ||
!is_of_node(fwspec->fwnode))
return -EINVAL;
args = &fwspec->param[1];
if (fwspec->param_count == 4) {
die = args[0];
args++;
}
switch (fwspec->param[0]) {
case AIC_IRQ:
if (die >= ic->nr_die)
return -EINVAL;
if (args[0] >= ic->nr_irq)
return -EINVAL;
*hwirq = AIC_IRQ_HWIRQ(die, args[0]);
break;
case AIC_FIQ:
if (die != 0)
return -EINVAL;
if (args[0] >= AIC_NR_FIQ)
return -EINVAL;
*hwirq = AIC_FIQ_HWIRQ(args[0]);
/*
* In EL1 the non-redirected registers are the guest's,
* not EL2's, so remap the hwirqs to match.
*/
if (!is_kernel_in_hyp_mode()) {
switch (args[0]) {
case AIC_TMR_GUEST_PHYS:
*hwirq = AIC_FIQ_HWIRQ(AIC_TMR_EL0_PHYS);
break;
case AIC_TMR_GUEST_VIRT:
*hwirq = AIC_FIQ_HWIRQ(AIC_TMR_EL0_VIRT);
break;
case AIC_TMR_HV_PHYS:
case AIC_TMR_HV_VIRT:
return -ENOENT;
default:
break;
}
}
break;
default:
return -EINVAL;
}
*type = args[1] & IRQ_TYPE_SENSE_MASK;
return 0;
}
static int aic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *arg)
{
unsigned int type = IRQ_TYPE_NONE;
struct irq_fwspec *fwspec = arg;
irq_hw_number_t hwirq;
int i, ret;
ret = aic_irq_domain_translate(domain, fwspec, &hwirq, &type);
if (ret)
return ret;
for (i = 0; i < nr_irqs; i++) {
ret = aic_irq_domain_map(domain, virq + i, hwirq + i);
if (ret)
return ret;
}
return 0;
}
static void aic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs)
{
int i;
for (i = 0; i < nr_irqs; i++) {
struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
irq_set_handler(virq + i, NULL);
irq_domain_reset_irq_data(d);
}
}
static const struct irq_domain_ops aic_irq_domain_ops = {
.translate = aic_irq_domain_translate,
.alloc = aic_irq_domain_alloc,
.free = aic_irq_domain_free,
};
/*
* IPI irqchip
*/
static void aic_ipi_send_fast(int cpu)
{
u64 mpidr = cpu_logical_map(cpu);
u64 my_mpidr = read_cpuid_mpidr();
u64 cluster = MPIDR_CLUSTER(mpidr);
u64 idx = MPIDR_CPU(mpidr);
if (MPIDR_CLUSTER(my_mpidr) == cluster)
write_sysreg_s(FIELD_PREP(IPI_RR_CPU, idx),
SYS_IMP_APL_IPI_RR_LOCAL_EL1);
else
write_sysreg_s(FIELD_PREP(IPI_RR_CPU, idx) | FIELD_PREP(IPI_RR_CLUSTER, cluster),
SYS_IMP_APL_IPI_RR_GLOBAL_EL1);
isb();
}
static void aic_handle_ipi(struct pt_regs *regs)
{
/*
* Ack the IPI. We need to order this after the AIC event read, but
* that is enforced by normal MMIO ordering guarantees.
*
* For the Fast IPI case, this needs to be ordered before the vIPI
* handling below, so we need to isb();
*/
if (static_branch_likely(&use_fast_ipi)) {
write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
isb();
} else {
aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_OTHER);
}
ipi_mux_process();
/*
* No ordering needed here; at worst this just changes the timing of
* when the next IPI will be delivered.
*/
if (!static_branch_likely(&use_fast_ipi))
aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
}
static void aic_ipi_send_single(unsigned int cpu)
{
if (static_branch_likely(&use_fast_ipi))
aic_ipi_send_fast(cpu);
else
aic_ic_write(aic_irqc, AIC_IPI_SEND, AIC_IPI_SEND_CPU(cpu));
}
static int __init aic_init_smp(struct aic_irq_chip *irqc, struct device_node *node)
{
int base_ipi;
base_ipi = ipi_mux_create(AIC_NR_SWIPI, aic_ipi_send_single);
if (WARN_ON(base_ipi <= 0))
return -ENODEV;
set_smp_ipi_range(base_ipi, AIC_NR_SWIPI);
return 0;
}
static int aic_init_cpu(unsigned int cpu)
{
/* Mask all hard-wired per-CPU IRQ/FIQ sources */
/* Pending Fast IPI FIQs */
write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
/* Timer FIQs */
sysreg_clear_set(cntp_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
sysreg_clear_set(cntv_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
/* EL2-only (VHE mode) IRQ sources */
if (is_kernel_in_hyp_mode()) {
/* Guest timers */
sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2,
VM_TMR_FIQ_ENABLE_V | VM_TMR_FIQ_ENABLE_P, 0);
/* vGIC maintenance IRQ */
sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0);
}
/* PMC FIQ */
sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT,
FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF));
/* Uncore PMC FIQ */
sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
/* Commit all of the above */
isb();
if (aic_irqc->info.version == 1) {
/*
* Make sure the kernel's idea of logical CPU order is the same as AIC's
* If we ever end up with a mismatch here, we will have to introduce
* a mapping table similar to what other irqchip drivers do.
*/
WARN_ON(aic_ic_read(aic_irqc, AIC_WHOAMI) != smp_processor_id());
/*
* Always keep IPIs unmasked at the hardware level (except auto-masking
* by AIC during processing). We manage masks at the vIPI level.
* These registers only exist on AICv1, AICv2 always uses fast IPIs.
*/
aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_SELF | AIC_IPI_OTHER);
if (static_branch_likely(&use_fast_ipi)) {
aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF | AIC_IPI_OTHER);
} else {
aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF);
aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
}
}
/* Initialize the local mask state */
__this_cpu_write(aic_fiq_unmasked, 0);
return 0;
}
static struct gic_kvm_info vgic_info __initdata = {
.type = GIC_V3,
.no_maint_irq_mask = true,
.no_hw_deactivation = true,
};
static void build_fiq_affinity(struct aic_irq_chip *ic, struct device_node *aff)
{
int i, n;
u32 fiq;
if (of_property_read_u32(aff, "apple,fiq-index", &fiq) ||
WARN_ON(fiq >= AIC_NR_FIQ) || ic->fiq_aff[fiq])
return;
n = of_property_count_elems_of_size(aff, "cpus", sizeof(u32));
if (WARN_ON(n < 0))
return;
ic->fiq_aff[fiq] = kzalloc(sizeof(*ic->fiq_aff[fiq]), GFP_KERNEL);
if (!ic->fiq_aff[fiq])
return;
for (i = 0; i < n; i++) {
struct device_node *cpu_node;
u32 cpu_phandle;
int cpu;
if (of_property_read_u32_index(aff, "cpus", i, &cpu_phandle))
continue;
cpu_node = of_find_node_by_phandle(cpu_phandle);
if (WARN_ON(!cpu_node))
continue;
cpu = of_cpu_node_to_id(cpu_node);
of_node_put(cpu_node);
if (WARN_ON(cpu < 0))
continue;
cpumask_set_cpu(cpu, &ic->fiq_aff[fiq]->aff);
}
}
static int __init aic_of_ic_init(struct device_node *node, struct device_node *parent)
{
int i, die;
u32 off, start_off;
void __iomem *regs;
struct aic_irq_chip *irqc;
struct device_node *affs;
const struct of_device_id *match;
regs = of_iomap(node, 0);
if (WARN_ON(!regs))
return -EIO;
irqc = kzalloc(sizeof(*irqc), GFP_KERNEL);
if (!irqc) {
iounmap(regs);
return -ENOMEM;
}
irqc->base = regs;
match = of_match_node(aic_info_match, node);
if (!match)
goto err_unmap;
irqc->info = *(struct aic_info *)match->data;
aic_irqc = irqc;
switch (irqc->info.version) {
case 1: {
u32 info;
info = aic_ic_read(irqc, AIC_INFO);
irqc->nr_irq = FIELD_GET(AIC_INFO_NR_IRQ, info);
irqc->max_irq = AIC_MAX_IRQ;
irqc->nr_die = irqc->max_die = 1;
off = start_off = irqc->info.target_cpu;
off += sizeof(u32) * irqc->max_irq; /* TARGET_CPU */
irqc->event = irqc->base;
break;
}
case 2: {
u32 info1, info3;
info1 = aic_ic_read(irqc, AIC2_INFO1);
info3 = aic_ic_read(irqc, AIC2_INFO3);
irqc->nr_irq = FIELD_GET(AIC2_INFO1_NR_IRQ, info1);
irqc->max_irq = FIELD_GET(AIC2_INFO3_MAX_IRQ, info3);
irqc->nr_die = FIELD_GET(AIC2_INFO1_LAST_DIE, info1) + 1;
irqc->max_die = FIELD_GET(AIC2_INFO3_MAX_DIE, info3);
off = start_off = irqc->info.irq_cfg;
off += sizeof(u32) * irqc->max_irq; /* IRQ_CFG */
irqc->event = of_iomap(node, 1);
if (WARN_ON(!irqc->event))
goto err_unmap;
break;
}
}
irqc->info.sw_set = off;
off += sizeof(u32) * (irqc->max_irq >> 5); /* SW_SET */
irqc->info.sw_clr = off;
off += sizeof(u32) * (irqc->max_irq >> 5); /* SW_CLR */
irqc->info.mask_set = off;
off += sizeof(u32) * (irqc->max_irq >> 5); /* MASK_SET */
irqc->info.mask_clr = off;
off += sizeof(u32) * (irqc->max_irq >> 5); /* MASK_CLR */
off += sizeof(u32) * (irqc->max_irq >> 5); /* HW_STATE */
if (irqc->info.fast_ipi)
static_branch_enable(&use_fast_ipi);
else
static_branch_disable(&use_fast_ipi);
irqc->info.die_stride = off - start_off;
irqc->hw_domain = irq_domain_create_tree(of_node_to_fwnode(node),
&aic_irq_domain_ops, irqc);
if (WARN_ON(!irqc->hw_domain))
goto err_unmap;
irq_domain_update_bus_token(irqc->hw_domain, DOMAIN_BUS_WIRED);
if (aic_init_smp(irqc, node))
goto err_remove_domain;
affs = of_get_child_by_name(node, "affinities");
if (affs) {
struct device_node *chld;
for_each_child_of_node(affs, chld)
build_fiq_affinity(irqc, chld);
}
of_node_put(affs);
set_handle_irq(aic_handle_irq);
set_handle_fiq(aic_handle_fiq);
off = 0;
for (die = 0; die < irqc->nr_die; die++) {
for (i = 0; i < BITS_TO_U32(irqc->nr_irq); i++)
aic_ic_write(irqc, irqc->info.mask_set + off + i * 4, U32_MAX);
for (i = 0; i < BITS_TO_U32(irqc->nr_irq); i++)
aic_ic_write(irqc, irqc->info.sw_clr + off + i * 4, U32_MAX);
if (irqc->info.target_cpu)
for (i = 0; i < irqc->nr_irq; i++)
aic_ic_write(irqc, irqc->info.target_cpu + off + i * 4, 1);
off += irqc->info.die_stride;
}
if (irqc->info.version == 2) {
u32 config = aic_ic_read(irqc, AIC2_CONFIG);
config |= AIC2_CONFIG_ENABLE;
aic_ic_write(irqc, AIC2_CONFIG, config);
}
if (!is_kernel_in_hyp_mode())
pr_info("Kernel running in EL1, mapping interrupts");
if (static_branch_likely(&use_fast_ipi))
pr_info("Using Fast IPIs");
cpuhp_setup_state(CPUHP_AP_IRQ_APPLE_AIC_STARTING,
"irqchip/apple-aic/ipi:starting",
aic_init_cpu, NULL);
if (is_kernel_in_hyp_mode()) {
struct irq_fwspec mi = {
.fwnode = of_node_to_fwnode(node),
.param_count = 3,
.param = {
[0] = AIC_FIQ, /* This is a lie */
[1] = AIC_VGIC_MI,
[2] = IRQ_TYPE_LEVEL_HIGH,
},
};
vgic_info.maint_irq = irq_create_fwspec_mapping(&mi);
WARN_ON(!vgic_info.maint_irq);
}
vgic_set_kvm_info(&vgic_info);
pr_info("Initialized with %d/%d IRQs * %d/%d die(s), %d FIQs, %d vIPIs",
irqc->nr_irq, irqc->max_irq, irqc->nr_die, irqc->max_die, AIC_NR_FIQ, AIC_NR_SWIPI);
return 0;
err_remove_domain:
irq_domain_remove(irqc->hw_domain);
err_unmap:
if (irqc->event && irqc->event != irqc->base)
iounmap(irqc->event);
iounmap(irqc->base);
kfree(irqc);
return -ENODEV;
}
IRQCHIP_DECLARE(apple_aic, "apple,aic", aic_of_ic_init);
IRQCHIP_DECLARE(apple_aic2, "apple,aic2", aic_of_ic_init);