3245 lines
90 KiB
C
3245 lines
90 KiB
C
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
|
|
/*
|
|
* Copyright(c) 2015 - 2018 Intel Corporation.
|
|
*/
|
|
|
|
#include <linux/io.h>
|
|
#include <rdma/rdma_vt.h>
|
|
#include <rdma/rdmavt_qp.h>
|
|
|
|
#include "hfi.h"
|
|
#include "qp.h"
|
|
#include "rc.h"
|
|
#include "verbs_txreq.h"
|
|
#include "trace.h"
|
|
|
|
struct rvt_ack_entry *find_prev_entry(struct rvt_qp *qp, u32 psn, u8 *prev,
|
|
u8 *prev_ack, bool *scheduled)
|
|
__must_hold(&qp->s_lock)
|
|
{
|
|
struct rvt_ack_entry *e = NULL;
|
|
u8 i, p;
|
|
bool s = true;
|
|
|
|
for (i = qp->r_head_ack_queue; ; i = p) {
|
|
if (i == qp->s_tail_ack_queue)
|
|
s = false;
|
|
if (i)
|
|
p = i - 1;
|
|
else
|
|
p = rvt_size_atomic(ib_to_rvt(qp->ibqp.device));
|
|
if (p == qp->r_head_ack_queue) {
|
|
e = NULL;
|
|
break;
|
|
}
|
|
e = &qp->s_ack_queue[p];
|
|
if (!e->opcode) {
|
|
e = NULL;
|
|
break;
|
|
}
|
|
if (cmp_psn(psn, e->psn) >= 0) {
|
|
if (p == qp->s_tail_ack_queue &&
|
|
cmp_psn(psn, e->lpsn) <= 0)
|
|
s = false;
|
|
break;
|
|
}
|
|
}
|
|
if (prev)
|
|
*prev = p;
|
|
if (prev_ack)
|
|
*prev_ack = i;
|
|
if (scheduled)
|
|
*scheduled = s;
|
|
return e;
|
|
}
|
|
|
|
/**
|
|
* make_rc_ack - construct a response packet (ACK, NAK, or RDMA read)
|
|
* @dev: the device for this QP
|
|
* @qp: a pointer to the QP
|
|
* @ohdr: a pointer to the IB header being constructed
|
|
* @ps: the xmit packet state
|
|
*
|
|
* Return 1 if constructed; otherwise, return 0.
|
|
* Note that we are in the responder's side of the QP context.
|
|
* Note the QP s_lock must be held.
|
|
*/
|
|
static int make_rc_ack(struct hfi1_ibdev *dev, struct rvt_qp *qp,
|
|
struct ib_other_headers *ohdr,
|
|
struct hfi1_pkt_state *ps)
|
|
{
|
|
struct rvt_ack_entry *e;
|
|
u32 hwords, hdrlen;
|
|
u32 len = 0;
|
|
u32 bth0 = 0, bth2 = 0;
|
|
u32 bth1 = qp->remote_qpn | (HFI1_CAP_IS_KSET(OPFN) << IB_BTHE_E_SHIFT);
|
|
int middle = 0;
|
|
u32 pmtu = qp->pmtu;
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
bool last_pkt;
|
|
u32 delta;
|
|
u8 next = qp->s_tail_ack_queue;
|
|
struct tid_rdma_request *req;
|
|
|
|
trace_hfi1_rsp_make_rc_ack(qp, 0);
|
|
lockdep_assert_held(&qp->s_lock);
|
|
/* Don't send an ACK if we aren't supposed to. */
|
|
if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK))
|
|
goto bail;
|
|
|
|
if (qpriv->hdr_type == HFI1_PKT_TYPE_9B)
|
|
/* header size in 32-bit words LRH+BTH = (8+12)/4. */
|
|
hwords = 5;
|
|
else
|
|
/* header size in 32-bit words 16B LRH+BTH = (16+12)/4. */
|
|
hwords = 7;
|
|
|
|
switch (qp->s_ack_state) {
|
|
case OP(RDMA_READ_RESPONSE_LAST):
|
|
case OP(RDMA_READ_RESPONSE_ONLY):
|
|
e = &qp->s_ack_queue[qp->s_tail_ack_queue];
|
|
release_rdma_sge_mr(e);
|
|
fallthrough;
|
|
case OP(ATOMIC_ACKNOWLEDGE):
|
|
/*
|
|
* We can increment the tail pointer now that the last
|
|
* response has been sent instead of only being
|
|
* constructed.
|
|
*/
|
|
if (++next > rvt_size_atomic(&dev->rdi))
|
|
next = 0;
|
|
/*
|
|
* Only advance the s_acked_ack_queue pointer if there
|
|
* have been no TID RDMA requests.
|
|
*/
|
|
e = &qp->s_ack_queue[qp->s_tail_ack_queue];
|
|
if (e->opcode != TID_OP(WRITE_REQ) &&
|
|
qp->s_acked_ack_queue == qp->s_tail_ack_queue)
|
|
qp->s_acked_ack_queue = next;
|
|
qp->s_tail_ack_queue = next;
|
|
trace_hfi1_rsp_make_rc_ack(qp, e->psn);
|
|
fallthrough;
|
|
case OP(SEND_ONLY):
|
|
case OP(ACKNOWLEDGE):
|
|
/* Check for no next entry in the queue. */
|
|
if (qp->r_head_ack_queue == qp->s_tail_ack_queue) {
|
|
if (qp->s_flags & RVT_S_ACK_PENDING)
|
|
goto normal;
|
|
goto bail;
|
|
}
|
|
|
|
e = &qp->s_ack_queue[qp->s_tail_ack_queue];
|
|
/* Check for tid write fence */
|
|
if ((qpriv->s_flags & HFI1_R_TID_WAIT_INTERLCK) ||
|
|
hfi1_tid_rdma_ack_interlock(qp, e)) {
|
|
iowait_set_flag(&qpriv->s_iowait, IOWAIT_PENDING_IB);
|
|
goto bail;
|
|
}
|
|
if (e->opcode == OP(RDMA_READ_REQUEST)) {
|
|
/*
|
|
* If a RDMA read response is being resent and
|
|
* we haven't seen the duplicate request yet,
|
|
* then stop sending the remaining responses the
|
|
* responder has seen until the requester re-sends it.
|
|
*/
|
|
len = e->rdma_sge.sge_length;
|
|
if (len && !e->rdma_sge.mr) {
|
|
if (qp->s_acked_ack_queue ==
|
|
qp->s_tail_ack_queue)
|
|
qp->s_acked_ack_queue =
|
|
qp->r_head_ack_queue;
|
|
qp->s_tail_ack_queue = qp->r_head_ack_queue;
|
|
goto bail;
|
|
}
|
|
/* Copy SGE state in case we need to resend */
|
|
ps->s_txreq->mr = e->rdma_sge.mr;
|
|
if (ps->s_txreq->mr)
|
|
rvt_get_mr(ps->s_txreq->mr);
|
|
qp->s_ack_rdma_sge.sge = e->rdma_sge;
|
|
qp->s_ack_rdma_sge.num_sge = 1;
|
|
ps->s_txreq->ss = &qp->s_ack_rdma_sge;
|
|
if (len > pmtu) {
|
|
len = pmtu;
|
|
qp->s_ack_state = OP(RDMA_READ_RESPONSE_FIRST);
|
|
} else {
|
|
qp->s_ack_state = OP(RDMA_READ_RESPONSE_ONLY);
|
|
e->sent = 1;
|
|
}
|
|
ohdr->u.aeth = rvt_compute_aeth(qp);
|
|
hwords++;
|
|
qp->s_ack_rdma_psn = e->psn;
|
|
bth2 = mask_psn(qp->s_ack_rdma_psn++);
|
|
} else if (e->opcode == TID_OP(WRITE_REQ)) {
|
|
/*
|
|
* If a TID RDMA WRITE RESP is being resent, we have to
|
|
* wait for the actual request. All requests that are to
|
|
* be resent will have their state set to
|
|
* TID_REQUEST_RESEND. When the new request arrives, the
|
|
* state will be changed to TID_REQUEST_RESEND_ACTIVE.
|
|
*/
|
|
req = ack_to_tid_req(e);
|
|
if (req->state == TID_REQUEST_RESEND ||
|
|
req->state == TID_REQUEST_INIT_RESEND)
|
|
goto bail;
|
|
qp->s_ack_state = TID_OP(WRITE_RESP);
|
|
qp->s_ack_rdma_psn = mask_psn(e->psn + req->cur_seg);
|
|
goto write_resp;
|
|
} else if (e->opcode == TID_OP(READ_REQ)) {
|
|
/*
|
|
* If a TID RDMA read response is being resent and
|
|
* we haven't seen the duplicate request yet,
|
|
* then stop sending the remaining responses the
|
|
* responder has seen until the requester re-sends it.
|
|
*/
|
|
len = e->rdma_sge.sge_length;
|
|
if (len && !e->rdma_sge.mr) {
|
|
if (qp->s_acked_ack_queue ==
|
|
qp->s_tail_ack_queue)
|
|
qp->s_acked_ack_queue =
|
|
qp->r_head_ack_queue;
|
|
qp->s_tail_ack_queue = qp->r_head_ack_queue;
|
|
goto bail;
|
|
}
|
|
/* Copy SGE state in case we need to resend */
|
|
ps->s_txreq->mr = e->rdma_sge.mr;
|
|
if (ps->s_txreq->mr)
|
|
rvt_get_mr(ps->s_txreq->mr);
|
|
qp->s_ack_rdma_sge.sge = e->rdma_sge;
|
|
qp->s_ack_rdma_sge.num_sge = 1;
|
|
qp->s_ack_state = TID_OP(READ_RESP);
|
|
goto read_resp;
|
|
} else {
|
|
/* COMPARE_SWAP or FETCH_ADD */
|
|
ps->s_txreq->ss = NULL;
|
|
len = 0;
|
|
qp->s_ack_state = OP(ATOMIC_ACKNOWLEDGE);
|
|
ohdr->u.at.aeth = rvt_compute_aeth(qp);
|
|
ib_u64_put(e->atomic_data, &ohdr->u.at.atomic_ack_eth);
|
|
hwords += sizeof(ohdr->u.at) / sizeof(u32);
|
|
bth2 = mask_psn(e->psn);
|
|
e->sent = 1;
|
|
}
|
|
trace_hfi1_tid_write_rsp_make_rc_ack(qp);
|
|
bth0 = qp->s_ack_state << 24;
|
|
break;
|
|
|
|
case OP(RDMA_READ_RESPONSE_FIRST):
|
|
qp->s_ack_state = OP(RDMA_READ_RESPONSE_MIDDLE);
|
|
fallthrough;
|
|
case OP(RDMA_READ_RESPONSE_MIDDLE):
|
|
ps->s_txreq->ss = &qp->s_ack_rdma_sge;
|
|
ps->s_txreq->mr = qp->s_ack_rdma_sge.sge.mr;
|
|
if (ps->s_txreq->mr)
|
|
rvt_get_mr(ps->s_txreq->mr);
|
|
len = qp->s_ack_rdma_sge.sge.sge_length;
|
|
if (len > pmtu) {
|
|
len = pmtu;
|
|
middle = HFI1_CAP_IS_KSET(SDMA_AHG);
|
|
} else {
|
|
ohdr->u.aeth = rvt_compute_aeth(qp);
|
|
hwords++;
|
|
qp->s_ack_state = OP(RDMA_READ_RESPONSE_LAST);
|
|
e = &qp->s_ack_queue[qp->s_tail_ack_queue];
|
|
e->sent = 1;
|
|
}
|
|
bth0 = qp->s_ack_state << 24;
|
|
bth2 = mask_psn(qp->s_ack_rdma_psn++);
|
|
break;
|
|
|
|
case TID_OP(WRITE_RESP):
|
|
write_resp:
|
|
/*
|
|
* 1. Check if RVT_S_ACK_PENDING is set. If yes,
|
|
* goto normal.
|
|
* 2. Attempt to allocate TID resources.
|
|
* 3. Remove RVT_S_RESP_PENDING flags from s_flags
|
|
* 4. If resources not available:
|
|
* 4.1 Set RVT_S_WAIT_TID_SPACE
|
|
* 4.2 Queue QP on RCD TID queue
|
|
* 4.3 Put QP on iowait list.
|
|
* 4.4 Build IB RNR NAK with appropriate timeout value
|
|
* 4.5 Return indication progress made.
|
|
* 5. If resources are available:
|
|
* 5.1 Program HW flow CSRs
|
|
* 5.2 Build TID RDMA WRITE RESP packet
|
|
* 5.3 If more resources needed, do 2.1 - 2.3.
|
|
* 5.4 Wake up next QP on RCD TID queue.
|
|
* 5.5 Return indication progress made.
|
|
*/
|
|
|
|
e = &qp->s_ack_queue[qp->s_tail_ack_queue];
|
|
req = ack_to_tid_req(e);
|
|
|
|
/*
|
|
* Send scheduled RNR NAK's. RNR NAK's need to be sent at
|
|
* segment boundaries, not at request boundaries. Don't change
|
|
* s_ack_state because we are still in the middle of a request
|
|
*/
|
|
if (qpriv->rnr_nak_state == TID_RNR_NAK_SEND &&
|
|
qp->s_tail_ack_queue == qpriv->r_tid_alloc &&
|
|
req->cur_seg == req->alloc_seg) {
|
|
qpriv->rnr_nak_state = TID_RNR_NAK_SENT;
|
|
goto normal_no_state;
|
|
}
|
|
|
|
bth2 = mask_psn(qp->s_ack_rdma_psn);
|
|
hdrlen = hfi1_build_tid_rdma_write_resp(qp, e, ohdr, &bth1,
|
|
bth2, &len,
|
|
&ps->s_txreq->ss);
|
|
if (!hdrlen)
|
|
return 0;
|
|
|
|
hwords += hdrlen;
|
|
bth0 = qp->s_ack_state << 24;
|
|
qp->s_ack_rdma_psn++;
|
|
trace_hfi1_tid_req_make_rc_ack_write(qp, 0, e->opcode, e->psn,
|
|
e->lpsn, req);
|
|
if (req->cur_seg != req->total_segs)
|
|
break;
|
|
|
|
e->sent = 1;
|
|
/* Do not free e->rdma_sge until all data are received */
|
|
qp->s_ack_state = OP(ATOMIC_ACKNOWLEDGE);
|
|
break;
|
|
|
|
case TID_OP(READ_RESP):
|
|
read_resp:
|
|
e = &qp->s_ack_queue[qp->s_tail_ack_queue];
|
|
ps->s_txreq->ss = &qp->s_ack_rdma_sge;
|
|
delta = hfi1_build_tid_rdma_read_resp(qp, e, ohdr, &bth0,
|
|
&bth1, &bth2, &len,
|
|
&last_pkt);
|
|
if (delta == 0)
|
|
goto error_qp;
|
|
hwords += delta;
|
|
if (last_pkt) {
|
|
e->sent = 1;
|
|
/*
|
|
* Increment qp->s_tail_ack_queue through s_ack_state
|
|
* transition.
|
|
*/
|
|
qp->s_ack_state = OP(RDMA_READ_RESPONSE_LAST);
|
|
}
|
|
break;
|
|
case TID_OP(READ_REQ):
|
|
goto bail;
|
|
|
|
default:
|
|
normal:
|
|
/*
|
|
* Send a regular ACK.
|
|
* Set the s_ack_state so we wait until after sending
|
|
* the ACK before setting s_ack_state to ACKNOWLEDGE
|
|
* (see above).
|
|
*/
|
|
qp->s_ack_state = OP(SEND_ONLY);
|
|
normal_no_state:
|
|
if (qp->s_nak_state)
|
|
ohdr->u.aeth =
|
|
cpu_to_be32((qp->r_msn & IB_MSN_MASK) |
|
|
(qp->s_nak_state <<
|
|
IB_AETH_CREDIT_SHIFT));
|
|
else
|
|
ohdr->u.aeth = rvt_compute_aeth(qp);
|
|
hwords++;
|
|
len = 0;
|
|
bth0 = OP(ACKNOWLEDGE) << 24;
|
|
bth2 = mask_psn(qp->s_ack_psn);
|
|
qp->s_flags &= ~RVT_S_ACK_PENDING;
|
|
ps->s_txreq->txreq.flags |= SDMA_TXREQ_F_VIP;
|
|
ps->s_txreq->ss = NULL;
|
|
}
|
|
qp->s_rdma_ack_cnt++;
|
|
ps->s_txreq->sde = qpriv->s_sde;
|
|
ps->s_txreq->s_cur_size = len;
|
|
ps->s_txreq->hdr_dwords = hwords;
|
|
hfi1_make_ruc_header(qp, ohdr, bth0, bth1, bth2, middle, ps);
|
|
return 1;
|
|
error_qp:
|
|
spin_unlock_irqrestore(&qp->s_lock, ps->flags);
|
|
spin_lock_irqsave(&qp->r_lock, ps->flags);
|
|
spin_lock(&qp->s_lock);
|
|
rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
|
|
spin_unlock(&qp->s_lock);
|
|
spin_unlock_irqrestore(&qp->r_lock, ps->flags);
|
|
spin_lock_irqsave(&qp->s_lock, ps->flags);
|
|
bail:
|
|
qp->s_ack_state = OP(ACKNOWLEDGE);
|
|
/*
|
|
* Ensure s_rdma_ack_cnt changes are committed prior to resetting
|
|
* RVT_S_RESP_PENDING
|
|
*/
|
|
smp_wmb();
|
|
qp->s_flags &= ~(RVT_S_RESP_PENDING
|
|
| RVT_S_ACK_PENDING
|
|
| HFI1_S_AHG_VALID);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* hfi1_make_rc_req - construct a request packet (SEND, RDMA r/w, ATOMIC)
|
|
* @qp: a pointer to the QP
|
|
* @ps: the current packet state
|
|
*
|
|
* Assumes s_lock is held.
|
|
*
|
|
* Return 1 if constructed; otherwise, return 0.
|
|
*/
|
|
int hfi1_make_rc_req(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
|
|
{
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
|
|
struct ib_other_headers *ohdr;
|
|
struct rvt_sge_state *ss = NULL;
|
|
struct rvt_swqe *wqe;
|
|
struct hfi1_swqe_priv *wpriv;
|
|
struct tid_rdma_request *req = NULL;
|
|
/* header size in 32-bit words LRH+BTH = (8+12)/4. */
|
|
u32 hwords = 5;
|
|
u32 len = 0;
|
|
u32 bth0 = 0, bth2 = 0;
|
|
u32 bth1 = qp->remote_qpn | (HFI1_CAP_IS_KSET(OPFN) << IB_BTHE_E_SHIFT);
|
|
u32 pmtu = qp->pmtu;
|
|
char newreq;
|
|
int middle = 0;
|
|
int delta;
|
|
struct tid_rdma_flow *flow = NULL;
|
|
struct tid_rdma_params *remote;
|
|
|
|
trace_hfi1_sender_make_rc_req(qp);
|
|
lockdep_assert_held(&qp->s_lock);
|
|
ps->s_txreq = get_txreq(ps->dev, qp);
|
|
if (!ps->s_txreq)
|
|
goto bail_no_tx;
|
|
|
|
if (priv->hdr_type == HFI1_PKT_TYPE_9B) {
|
|
/* header size in 32-bit words LRH+BTH = (8+12)/4. */
|
|
hwords = 5;
|
|
if (rdma_ah_get_ah_flags(&qp->remote_ah_attr) & IB_AH_GRH)
|
|
ohdr = &ps->s_txreq->phdr.hdr.ibh.u.l.oth;
|
|
else
|
|
ohdr = &ps->s_txreq->phdr.hdr.ibh.u.oth;
|
|
} else {
|
|
/* header size in 32-bit words 16B LRH+BTH = (16+12)/4. */
|
|
hwords = 7;
|
|
if ((rdma_ah_get_ah_flags(&qp->remote_ah_attr) & IB_AH_GRH) &&
|
|
(hfi1_check_mcast(rdma_ah_get_dlid(&qp->remote_ah_attr))))
|
|
ohdr = &ps->s_txreq->phdr.hdr.opah.u.l.oth;
|
|
else
|
|
ohdr = &ps->s_txreq->phdr.hdr.opah.u.oth;
|
|
}
|
|
|
|
/* Sending responses has higher priority over sending requests. */
|
|
if ((qp->s_flags & RVT_S_RESP_PENDING) &&
|
|
make_rc_ack(dev, qp, ohdr, ps))
|
|
return 1;
|
|
|
|
if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_SEND_OK)) {
|
|
if (!(ib_rvt_state_ops[qp->state] & RVT_FLUSH_SEND))
|
|
goto bail;
|
|
/* We are in the error state, flush the work request. */
|
|
if (qp->s_last == READ_ONCE(qp->s_head))
|
|
goto bail;
|
|
/* If DMAs are in progress, we can't flush immediately. */
|
|
if (iowait_sdma_pending(&priv->s_iowait)) {
|
|
qp->s_flags |= RVT_S_WAIT_DMA;
|
|
goto bail;
|
|
}
|
|
clear_ahg(qp);
|
|
wqe = rvt_get_swqe_ptr(qp, qp->s_last);
|
|
hfi1_trdma_send_complete(qp, wqe, qp->s_last != qp->s_acked ?
|
|
IB_WC_SUCCESS : IB_WC_WR_FLUSH_ERR);
|
|
/* will get called again */
|
|
goto done_free_tx;
|
|
}
|
|
|
|
if (qp->s_flags & (RVT_S_WAIT_RNR | RVT_S_WAIT_ACK | HFI1_S_WAIT_HALT))
|
|
goto bail;
|
|
|
|
if (cmp_psn(qp->s_psn, qp->s_sending_hpsn) <= 0) {
|
|
if (cmp_psn(qp->s_sending_psn, qp->s_sending_hpsn) <= 0) {
|
|
qp->s_flags |= RVT_S_WAIT_PSN;
|
|
goto bail;
|
|
}
|
|
qp->s_sending_psn = qp->s_psn;
|
|
qp->s_sending_hpsn = qp->s_psn - 1;
|
|
}
|
|
|
|
/* Send a request. */
|
|
wqe = rvt_get_swqe_ptr(qp, qp->s_cur);
|
|
check_s_state:
|
|
switch (qp->s_state) {
|
|
default:
|
|
if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_NEXT_SEND_OK))
|
|
goto bail;
|
|
/*
|
|
* Resend an old request or start a new one.
|
|
*
|
|
* We keep track of the current SWQE so that
|
|
* we don't reset the "furthest progress" state
|
|
* if we need to back up.
|
|
*/
|
|
newreq = 0;
|
|
if (qp->s_cur == qp->s_tail) {
|
|
/* Check if send work queue is empty. */
|
|
if (qp->s_tail == READ_ONCE(qp->s_head)) {
|
|
clear_ahg(qp);
|
|
goto bail;
|
|
}
|
|
/*
|
|
* If a fence is requested, wait for previous
|
|
* RDMA read and atomic operations to finish.
|
|
* However, there is no need to guard against
|
|
* TID RDMA READ after TID RDMA READ.
|
|
*/
|
|
if ((wqe->wr.send_flags & IB_SEND_FENCE) &&
|
|
qp->s_num_rd_atomic &&
|
|
(wqe->wr.opcode != IB_WR_TID_RDMA_READ ||
|
|
priv->pending_tid_r_segs < qp->s_num_rd_atomic)) {
|
|
qp->s_flags |= RVT_S_WAIT_FENCE;
|
|
goto bail;
|
|
}
|
|
/*
|
|
* Local operations are processed immediately
|
|
* after all prior requests have completed
|
|
*/
|
|
if (wqe->wr.opcode == IB_WR_REG_MR ||
|
|
wqe->wr.opcode == IB_WR_LOCAL_INV) {
|
|
int local_ops = 0;
|
|
int err = 0;
|
|
|
|
if (qp->s_last != qp->s_cur)
|
|
goto bail;
|
|
if (++qp->s_cur == qp->s_size)
|
|
qp->s_cur = 0;
|
|
if (++qp->s_tail == qp->s_size)
|
|
qp->s_tail = 0;
|
|
if (!(wqe->wr.send_flags &
|
|
RVT_SEND_COMPLETION_ONLY)) {
|
|
err = rvt_invalidate_rkey(
|
|
qp,
|
|
wqe->wr.ex.invalidate_rkey);
|
|
local_ops = 1;
|
|
}
|
|
rvt_send_complete(qp, wqe,
|
|
err ? IB_WC_LOC_PROT_ERR
|
|
: IB_WC_SUCCESS);
|
|
if (local_ops)
|
|
atomic_dec(&qp->local_ops_pending);
|
|
goto done_free_tx;
|
|
}
|
|
|
|
newreq = 1;
|
|
qp->s_psn = wqe->psn;
|
|
}
|
|
/*
|
|
* Note that we have to be careful not to modify the
|
|
* original work request since we may need to resend
|
|
* it.
|
|
*/
|
|
len = wqe->length;
|
|
ss = &qp->s_sge;
|
|
bth2 = mask_psn(qp->s_psn);
|
|
|
|
/*
|
|
* Interlock between various IB requests and TID RDMA
|
|
* if necessary.
|
|
*/
|
|
if ((priv->s_flags & HFI1_S_TID_WAIT_INTERLCK) ||
|
|
hfi1_tid_rdma_wqe_interlock(qp, wqe))
|
|
goto bail;
|
|
|
|
switch (wqe->wr.opcode) {
|
|
case IB_WR_SEND:
|
|
case IB_WR_SEND_WITH_IMM:
|
|
case IB_WR_SEND_WITH_INV:
|
|
/* If no credit, return. */
|
|
if (!rvt_rc_credit_avail(qp, wqe))
|
|
goto bail;
|
|
if (len > pmtu) {
|
|
qp->s_state = OP(SEND_FIRST);
|
|
len = pmtu;
|
|
break;
|
|
}
|
|
if (wqe->wr.opcode == IB_WR_SEND) {
|
|
qp->s_state = OP(SEND_ONLY);
|
|
} else if (wqe->wr.opcode == IB_WR_SEND_WITH_IMM) {
|
|
qp->s_state = OP(SEND_ONLY_WITH_IMMEDIATE);
|
|
/* Immediate data comes after the BTH */
|
|
ohdr->u.imm_data = wqe->wr.ex.imm_data;
|
|
hwords += 1;
|
|
} else {
|
|
qp->s_state = OP(SEND_ONLY_WITH_INVALIDATE);
|
|
/* Invalidate rkey comes after the BTH */
|
|
ohdr->u.ieth = cpu_to_be32(
|
|
wqe->wr.ex.invalidate_rkey);
|
|
hwords += 1;
|
|
}
|
|
if (wqe->wr.send_flags & IB_SEND_SOLICITED)
|
|
bth0 |= IB_BTH_SOLICITED;
|
|
bth2 |= IB_BTH_REQ_ACK;
|
|
if (++qp->s_cur == qp->s_size)
|
|
qp->s_cur = 0;
|
|
break;
|
|
|
|
case IB_WR_RDMA_WRITE:
|
|
if (newreq && !(qp->s_flags & RVT_S_UNLIMITED_CREDIT))
|
|
qp->s_lsn++;
|
|
goto no_flow_control;
|
|
case IB_WR_RDMA_WRITE_WITH_IMM:
|
|
/* If no credit, return. */
|
|
if (!rvt_rc_credit_avail(qp, wqe))
|
|
goto bail;
|
|
no_flow_control:
|
|
put_ib_reth_vaddr(
|
|
wqe->rdma_wr.remote_addr,
|
|
&ohdr->u.rc.reth);
|
|
ohdr->u.rc.reth.rkey =
|
|
cpu_to_be32(wqe->rdma_wr.rkey);
|
|
ohdr->u.rc.reth.length = cpu_to_be32(len);
|
|
hwords += sizeof(struct ib_reth) / sizeof(u32);
|
|
if (len > pmtu) {
|
|
qp->s_state = OP(RDMA_WRITE_FIRST);
|
|
len = pmtu;
|
|
break;
|
|
}
|
|
if (wqe->wr.opcode == IB_WR_RDMA_WRITE) {
|
|
qp->s_state = OP(RDMA_WRITE_ONLY);
|
|
} else {
|
|
qp->s_state =
|
|
OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE);
|
|
/* Immediate data comes after RETH */
|
|
ohdr->u.rc.imm_data = wqe->wr.ex.imm_data;
|
|
hwords += 1;
|
|
if (wqe->wr.send_flags & IB_SEND_SOLICITED)
|
|
bth0 |= IB_BTH_SOLICITED;
|
|
}
|
|
bth2 |= IB_BTH_REQ_ACK;
|
|
if (++qp->s_cur == qp->s_size)
|
|
qp->s_cur = 0;
|
|
break;
|
|
|
|
case IB_WR_TID_RDMA_WRITE:
|
|
if (newreq) {
|
|
/*
|
|
* Limit the number of TID RDMA WRITE requests.
|
|
*/
|
|
if (atomic_read(&priv->n_tid_requests) >=
|
|
HFI1_TID_RDMA_WRITE_CNT)
|
|
goto bail;
|
|
|
|
if (!(qp->s_flags & RVT_S_UNLIMITED_CREDIT))
|
|
qp->s_lsn++;
|
|
}
|
|
|
|
hwords += hfi1_build_tid_rdma_write_req(qp, wqe, ohdr,
|
|
&bth1, &bth2,
|
|
&len);
|
|
ss = NULL;
|
|
if (priv->s_tid_cur == HFI1_QP_WQE_INVALID) {
|
|
priv->s_tid_cur = qp->s_cur;
|
|
if (priv->s_tid_tail == HFI1_QP_WQE_INVALID) {
|
|
priv->s_tid_tail = qp->s_cur;
|
|
priv->s_state = TID_OP(WRITE_RESP);
|
|
}
|
|
} else if (priv->s_tid_cur == priv->s_tid_head) {
|
|
struct rvt_swqe *__w;
|
|
struct tid_rdma_request *__r;
|
|
|
|
__w = rvt_get_swqe_ptr(qp, priv->s_tid_cur);
|
|
__r = wqe_to_tid_req(__w);
|
|
|
|
/*
|
|
* The s_tid_cur pointer is advanced to s_cur if
|
|
* any of the following conditions about the WQE
|
|
* to which s_ti_cur currently points to are
|
|
* satisfied:
|
|
* 1. The request is not a TID RDMA WRITE
|
|
* request,
|
|
* 2. The request is in the INACTIVE or
|
|
* COMPLETE states (TID RDMA READ requests
|
|
* stay at INACTIVE and TID RDMA WRITE
|
|
* transition to COMPLETE when done),
|
|
* 3. The request is in the ACTIVE or SYNC
|
|
* state and the number of completed
|
|
* segments is equal to the total segment
|
|
* count.
|
|
* (If ACTIVE, the request is waiting for
|
|
* ACKs. If SYNC, the request has not
|
|
* received any responses because it's
|
|
* waiting on a sync point.)
|
|
*/
|
|
if (__w->wr.opcode != IB_WR_TID_RDMA_WRITE ||
|
|
__r->state == TID_REQUEST_INACTIVE ||
|
|
__r->state == TID_REQUEST_COMPLETE ||
|
|
((__r->state == TID_REQUEST_ACTIVE ||
|
|
__r->state == TID_REQUEST_SYNC) &&
|
|
__r->comp_seg == __r->total_segs)) {
|
|
if (priv->s_tid_tail ==
|
|
priv->s_tid_cur &&
|
|
priv->s_state ==
|
|
TID_OP(WRITE_DATA_LAST)) {
|
|
priv->s_tid_tail = qp->s_cur;
|
|
priv->s_state =
|
|
TID_OP(WRITE_RESP);
|
|
}
|
|
priv->s_tid_cur = qp->s_cur;
|
|
}
|
|
/*
|
|
* A corner case: when the last TID RDMA WRITE
|
|
* request was completed, s_tid_head,
|
|
* s_tid_cur, and s_tid_tail all point to the
|
|
* same location. Other requests are posted and
|
|
* s_cur wraps around to the same location,
|
|
* where a new TID RDMA WRITE is posted. In
|
|
* this case, none of the indices need to be
|
|
* updated. However, the priv->s_state should.
|
|
*/
|
|
if (priv->s_tid_tail == qp->s_cur &&
|
|
priv->s_state == TID_OP(WRITE_DATA_LAST))
|
|
priv->s_state = TID_OP(WRITE_RESP);
|
|
}
|
|
req = wqe_to_tid_req(wqe);
|
|
if (newreq) {
|
|
priv->s_tid_head = qp->s_cur;
|
|
priv->pending_tid_w_resp += req->total_segs;
|
|
atomic_inc(&priv->n_tid_requests);
|
|
atomic_dec(&priv->n_requests);
|
|
} else {
|
|
req->state = TID_REQUEST_RESEND;
|
|
req->comp_seg = delta_psn(bth2, wqe->psn);
|
|
/*
|
|
* Pull back any segments since we are going
|
|
* to re-receive them.
|
|
*/
|
|
req->setup_head = req->clear_tail;
|
|
priv->pending_tid_w_resp +=
|
|
delta_psn(wqe->lpsn, bth2) + 1;
|
|
}
|
|
|
|
trace_hfi1_tid_write_sender_make_req(qp, newreq);
|
|
trace_hfi1_tid_req_make_req_write(qp, newreq,
|
|
wqe->wr.opcode,
|
|
wqe->psn, wqe->lpsn,
|
|
req);
|
|
if (++qp->s_cur == qp->s_size)
|
|
qp->s_cur = 0;
|
|
break;
|
|
|
|
case IB_WR_RDMA_READ:
|
|
/*
|
|
* Don't allow more operations to be started
|
|
* than the QP limits allow.
|
|
*/
|
|
if (qp->s_num_rd_atomic >=
|
|
qp->s_max_rd_atomic) {
|
|
qp->s_flags |= RVT_S_WAIT_RDMAR;
|
|
goto bail;
|
|
}
|
|
qp->s_num_rd_atomic++;
|
|
if (newreq && !(qp->s_flags & RVT_S_UNLIMITED_CREDIT))
|
|
qp->s_lsn++;
|
|
put_ib_reth_vaddr(
|
|
wqe->rdma_wr.remote_addr,
|
|
&ohdr->u.rc.reth);
|
|
ohdr->u.rc.reth.rkey =
|
|
cpu_to_be32(wqe->rdma_wr.rkey);
|
|
ohdr->u.rc.reth.length = cpu_to_be32(len);
|
|
qp->s_state = OP(RDMA_READ_REQUEST);
|
|
hwords += sizeof(ohdr->u.rc.reth) / sizeof(u32);
|
|
ss = NULL;
|
|
len = 0;
|
|
bth2 |= IB_BTH_REQ_ACK;
|
|
if (++qp->s_cur == qp->s_size)
|
|
qp->s_cur = 0;
|
|
break;
|
|
|
|
case IB_WR_TID_RDMA_READ:
|
|
trace_hfi1_tid_read_sender_make_req(qp, newreq);
|
|
wpriv = wqe->priv;
|
|
req = wqe_to_tid_req(wqe);
|
|
trace_hfi1_tid_req_make_req_read(qp, newreq,
|
|
wqe->wr.opcode,
|
|
wqe->psn, wqe->lpsn,
|
|
req);
|
|
delta = cmp_psn(qp->s_psn, wqe->psn);
|
|
|
|
/*
|
|
* Don't allow more operations to be started
|
|
* than the QP limits allow. We could get here under
|
|
* three conditions; (1) It's a new request; (2) We are
|
|
* sending the second or later segment of a request,
|
|
* but the qp->s_state is set to OP(RDMA_READ_REQUEST)
|
|
* when the last segment of a previous request is
|
|
* received just before this; (3) We are re-sending a
|
|
* request.
|
|
*/
|
|
if (qp->s_num_rd_atomic >= qp->s_max_rd_atomic) {
|
|
qp->s_flags |= RVT_S_WAIT_RDMAR;
|
|
goto bail;
|
|
}
|
|
if (newreq) {
|
|
struct tid_rdma_flow *flow =
|
|
&req->flows[req->setup_head];
|
|
|
|
/*
|
|
* Set up s_sge as it is needed for TID
|
|
* allocation. However, if the pages have been
|
|
* walked and mapped, skip it. An earlier try
|
|
* has failed to allocate the TID entries.
|
|
*/
|
|
if (!flow->npagesets) {
|
|
qp->s_sge.sge = wqe->sg_list[0];
|
|
qp->s_sge.sg_list = wqe->sg_list + 1;
|
|
qp->s_sge.num_sge = wqe->wr.num_sge;
|
|
qp->s_sge.total_len = wqe->length;
|
|
qp->s_len = wqe->length;
|
|
req->isge = 0;
|
|
req->clear_tail = req->setup_head;
|
|
req->flow_idx = req->setup_head;
|
|
req->state = TID_REQUEST_ACTIVE;
|
|
}
|
|
} else if (delta == 0) {
|
|
/* Re-send a request */
|
|
req->cur_seg = 0;
|
|
req->comp_seg = 0;
|
|
req->ack_pending = 0;
|
|
req->flow_idx = req->clear_tail;
|
|
req->state = TID_REQUEST_RESEND;
|
|
}
|
|
req->s_next_psn = qp->s_psn;
|
|
/* Read one segment at a time */
|
|
len = min_t(u32, req->seg_len,
|
|
wqe->length - req->seg_len * req->cur_seg);
|
|
delta = hfi1_build_tid_rdma_read_req(qp, wqe, ohdr,
|
|
&bth1, &bth2,
|
|
&len);
|
|
if (delta <= 0) {
|
|
/* Wait for TID space */
|
|
goto bail;
|
|
}
|
|
if (newreq && !(qp->s_flags & RVT_S_UNLIMITED_CREDIT))
|
|
qp->s_lsn++;
|
|
hwords += delta;
|
|
ss = &wpriv->ss;
|
|
/* Check if this is the last segment */
|
|
if (req->cur_seg >= req->total_segs &&
|
|
++qp->s_cur == qp->s_size)
|
|
qp->s_cur = 0;
|
|
break;
|
|
|
|
case IB_WR_ATOMIC_CMP_AND_SWP:
|
|
case IB_WR_ATOMIC_FETCH_AND_ADD:
|
|
/*
|
|
* Don't allow more operations to be started
|
|
* than the QP limits allow.
|
|
*/
|
|
if (qp->s_num_rd_atomic >=
|
|
qp->s_max_rd_atomic) {
|
|
qp->s_flags |= RVT_S_WAIT_RDMAR;
|
|
goto bail;
|
|
}
|
|
qp->s_num_rd_atomic++;
|
|
fallthrough;
|
|
case IB_WR_OPFN:
|
|
if (newreq && !(qp->s_flags & RVT_S_UNLIMITED_CREDIT))
|
|
qp->s_lsn++;
|
|
if (wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP ||
|
|
wqe->wr.opcode == IB_WR_OPFN) {
|
|
qp->s_state = OP(COMPARE_SWAP);
|
|
put_ib_ateth_swap(wqe->atomic_wr.swap,
|
|
&ohdr->u.atomic_eth);
|
|
put_ib_ateth_compare(wqe->atomic_wr.compare_add,
|
|
&ohdr->u.atomic_eth);
|
|
} else {
|
|
qp->s_state = OP(FETCH_ADD);
|
|
put_ib_ateth_swap(wqe->atomic_wr.compare_add,
|
|
&ohdr->u.atomic_eth);
|
|
put_ib_ateth_compare(0, &ohdr->u.atomic_eth);
|
|
}
|
|
put_ib_ateth_vaddr(wqe->atomic_wr.remote_addr,
|
|
&ohdr->u.atomic_eth);
|
|
ohdr->u.atomic_eth.rkey = cpu_to_be32(
|
|
wqe->atomic_wr.rkey);
|
|
hwords += sizeof(struct ib_atomic_eth) / sizeof(u32);
|
|
ss = NULL;
|
|
len = 0;
|
|
bth2 |= IB_BTH_REQ_ACK;
|
|
if (++qp->s_cur == qp->s_size)
|
|
qp->s_cur = 0;
|
|
break;
|
|
|
|
default:
|
|
goto bail;
|
|
}
|
|
if (wqe->wr.opcode != IB_WR_TID_RDMA_READ) {
|
|
qp->s_sge.sge = wqe->sg_list[0];
|
|
qp->s_sge.sg_list = wqe->sg_list + 1;
|
|
qp->s_sge.num_sge = wqe->wr.num_sge;
|
|
qp->s_sge.total_len = wqe->length;
|
|
qp->s_len = wqe->length;
|
|
}
|
|
if (newreq) {
|
|
qp->s_tail++;
|
|
if (qp->s_tail >= qp->s_size)
|
|
qp->s_tail = 0;
|
|
}
|
|
if (wqe->wr.opcode == IB_WR_RDMA_READ ||
|
|
wqe->wr.opcode == IB_WR_TID_RDMA_WRITE)
|
|
qp->s_psn = wqe->lpsn + 1;
|
|
else if (wqe->wr.opcode == IB_WR_TID_RDMA_READ)
|
|
qp->s_psn = req->s_next_psn;
|
|
else
|
|
qp->s_psn++;
|
|
break;
|
|
|
|
case OP(RDMA_READ_RESPONSE_FIRST):
|
|
/*
|
|
* qp->s_state is normally set to the opcode of the
|
|
* last packet constructed for new requests and therefore
|
|
* is never set to RDMA read response.
|
|
* RDMA_READ_RESPONSE_FIRST is used by the ACK processing
|
|
* thread to indicate a SEND needs to be restarted from an
|
|
* earlier PSN without interfering with the sending thread.
|
|
* See restart_rc().
|
|
*/
|
|
qp->s_len = restart_sge(&qp->s_sge, wqe, qp->s_psn, pmtu);
|
|
fallthrough;
|
|
case OP(SEND_FIRST):
|
|
qp->s_state = OP(SEND_MIDDLE);
|
|
fallthrough;
|
|
case OP(SEND_MIDDLE):
|
|
bth2 = mask_psn(qp->s_psn++);
|
|
ss = &qp->s_sge;
|
|
len = qp->s_len;
|
|
if (len > pmtu) {
|
|
len = pmtu;
|
|
middle = HFI1_CAP_IS_KSET(SDMA_AHG);
|
|
break;
|
|
}
|
|
if (wqe->wr.opcode == IB_WR_SEND) {
|
|
qp->s_state = OP(SEND_LAST);
|
|
} else if (wqe->wr.opcode == IB_WR_SEND_WITH_IMM) {
|
|
qp->s_state = OP(SEND_LAST_WITH_IMMEDIATE);
|
|
/* Immediate data comes after the BTH */
|
|
ohdr->u.imm_data = wqe->wr.ex.imm_data;
|
|
hwords += 1;
|
|
} else {
|
|
qp->s_state = OP(SEND_LAST_WITH_INVALIDATE);
|
|
/* invalidate data comes after the BTH */
|
|
ohdr->u.ieth = cpu_to_be32(wqe->wr.ex.invalidate_rkey);
|
|
hwords += 1;
|
|
}
|
|
if (wqe->wr.send_flags & IB_SEND_SOLICITED)
|
|
bth0 |= IB_BTH_SOLICITED;
|
|
bth2 |= IB_BTH_REQ_ACK;
|
|
qp->s_cur++;
|
|
if (qp->s_cur >= qp->s_size)
|
|
qp->s_cur = 0;
|
|
break;
|
|
|
|
case OP(RDMA_READ_RESPONSE_LAST):
|
|
/*
|
|
* qp->s_state is normally set to the opcode of the
|
|
* last packet constructed for new requests and therefore
|
|
* is never set to RDMA read response.
|
|
* RDMA_READ_RESPONSE_LAST is used by the ACK processing
|
|
* thread to indicate a RDMA write needs to be restarted from
|
|
* an earlier PSN without interfering with the sending thread.
|
|
* See restart_rc().
|
|
*/
|
|
qp->s_len = restart_sge(&qp->s_sge, wqe, qp->s_psn, pmtu);
|
|
fallthrough;
|
|
case OP(RDMA_WRITE_FIRST):
|
|
qp->s_state = OP(RDMA_WRITE_MIDDLE);
|
|
fallthrough;
|
|
case OP(RDMA_WRITE_MIDDLE):
|
|
bth2 = mask_psn(qp->s_psn++);
|
|
ss = &qp->s_sge;
|
|
len = qp->s_len;
|
|
if (len > pmtu) {
|
|
len = pmtu;
|
|
middle = HFI1_CAP_IS_KSET(SDMA_AHG);
|
|
break;
|
|
}
|
|
if (wqe->wr.opcode == IB_WR_RDMA_WRITE) {
|
|
qp->s_state = OP(RDMA_WRITE_LAST);
|
|
} else {
|
|
qp->s_state = OP(RDMA_WRITE_LAST_WITH_IMMEDIATE);
|
|
/* Immediate data comes after the BTH */
|
|
ohdr->u.imm_data = wqe->wr.ex.imm_data;
|
|
hwords += 1;
|
|
if (wqe->wr.send_flags & IB_SEND_SOLICITED)
|
|
bth0 |= IB_BTH_SOLICITED;
|
|
}
|
|
bth2 |= IB_BTH_REQ_ACK;
|
|
qp->s_cur++;
|
|
if (qp->s_cur >= qp->s_size)
|
|
qp->s_cur = 0;
|
|
break;
|
|
|
|
case OP(RDMA_READ_RESPONSE_MIDDLE):
|
|
/*
|
|
* qp->s_state is normally set to the opcode of the
|
|
* last packet constructed for new requests and therefore
|
|
* is never set to RDMA read response.
|
|
* RDMA_READ_RESPONSE_MIDDLE is used by the ACK processing
|
|
* thread to indicate a RDMA read needs to be restarted from
|
|
* an earlier PSN without interfering with the sending thread.
|
|
* See restart_rc().
|
|
*/
|
|
len = (delta_psn(qp->s_psn, wqe->psn)) * pmtu;
|
|
put_ib_reth_vaddr(
|
|
wqe->rdma_wr.remote_addr + len,
|
|
&ohdr->u.rc.reth);
|
|
ohdr->u.rc.reth.rkey =
|
|
cpu_to_be32(wqe->rdma_wr.rkey);
|
|
ohdr->u.rc.reth.length = cpu_to_be32(wqe->length - len);
|
|
qp->s_state = OP(RDMA_READ_REQUEST);
|
|
hwords += sizeof(ohdr->u.rc.reth) / sizeof(u32);
|
|
bth2 = mask_psn(qp->s_psn) | IB_BTH_REQ_ACK;
|
|
qp->s_psn = wqe->lpsn + 1;
|
|
ss = NULL;
|
|
len = 0;
|
|
qp->s_cur++;
|
|
if (qp->s_cur == qp->s_size)
|
|
qp->s_cur = 0;
|
|
break;
|
|
|
|
case TID_OP(WRITE_RESP):
|
|
/*
|
|
* This value for s_state is used for restarting a TID RDMA
|
|
* WRITE request. See comment in OP(RDMA_READ_RESPONSE_MIDDLE
|
|
* for more).
|
|
*/
|
|
req = wqe_to_tid_req(wqe);
|
|
req->state = TID_REQUEST_RESEND;
|
|
rcu_read_lock();
|
|
remote = rcu_dereference(priv->tid_rdma.remote);
|
|
req->comp_seg = delta_psn(qp->s_psn, wqe->psn);
|
|
len = wqe->length - (req->comp_seg * remote->max_len);
|
|
rcu_read_unlock();
|
|
|
|
bth2 = mask_psn(qp->s_psn);
|
|
hwords += hfi1_build_tid_rdma_write_req(qp, wqe, ohdr, &bth1,
|
|
&bth2, &len);
|
|
qp->s_psn = wqe->lpsn + 1;
|
|
ss = NULL;
|
|
qp->s_state = TID_OP(WRITE_REQ);
|
|
priv->pending_tid_w_resp += delta_psn(wqe->lpsn, bth2) + 1;
|
|
priv->s_tid_cur = qp->s_cur;
|
|
if (++qp->s_cur == qp->s_size)
|
|
qp->s_cur = 0;
|
|
trace_hfi1_tid_req_make_req_write(qp, 0, wqe->wr.opcode,
|
|
wqe->psn, wqe->lpsn, req);
|
|
break;
|
|
|
|
case TID_OP(READ_RESP):
|
|
if (wqe->wr.opcode != IB_WR_TID_RDMA_READ)
|
|
goto bail;
|
|
/* This is used to restart a TID read request */
|
|
req = wqe_to_tid_req(wqe);
|
|
wpriv = wqe->priv;
|
|
/*
|
|
* Back down. The field qp->s_psn has been set to the psn with
|
|
* which the request should be restart. It's OK to use division
|
|
* as this is on the retry path.
|
|
*/
|
|
req->cur_seg = delta_psn(qp->s_psn, wqe->psn) / priv->pkts_ps;
|
|
|
|
/*
|
|
* The following function need to be redefined to return the
|
|
* status to make sure that we find the flow. At the same
|
|
* time, we can use the req->state change to check if the
|
|
* call succeeds or not.
|
|
*/
|
|
req->state = TID_REQUEST_RESEND;
|
|
hfi1_tid_rdma_restart_req(qp, wqe, &bth2);
|
|
if (req->state != TID_REQUEST_ACTIVE) {
|
|
/*
|
|
* Failed to find the flow. Release all allocated tid
|
|
* resources.
|
|
*/
|
|
hfi1_kern_exp_rcv_clear_all(req);
|
|
hfi1_kern_clear_hw_flow(priv->rcd, qp);
|
|
|
|
hfi1_trdma_send_complete(qp, wqe, IB_WC_LOC_QP_OP_ERR);
|
|
goto bail;
|
|
}
|
|
req->state = TID_REQUEST_RESEND;
|
|
len = min_t(u32, req->seg_len,
|
|
wqe->length - req->seg_len * req->cur_seg);
|
|
flow = &req->flows[req->flow_idx];
|
|
len -= flow->sent;
|
|
req->s_next_psn = flow->flow_state.ib_lpsn + 1;
|
|
delta = hfi1_build_tid_rdma_read_packet(wqe, ohdr, &bth1,
|
|
&bth2, &len);
|
|
if (delta <= 0) {
|
|
/* Wait for TID space */
|
|
goto bail;
|
|
}
|
|
hwords += delta;
|
|
ss = &wpriv->ss;
|
|
/* Check if this is the last segment */
|
|
if (req->cur_seg >= req->total_segs &&
|
|
++qp->s_cur == qp->s_size)
|
|
qp->s_cur = 0;
|
|
qp->s_psn = req->s_next_psn;
|
|
trace_hfi1_tid_req_make_req_read(qp, 0, wqe->wr.opcode,
|
|
wqe->psn, wqe->lpsn, req);
|
|
break;
|
|
case TID_OP(READ_REQ):
|
|
req = wqe_to_tid_req(wqe);
|
|
delta = cmp_psn(qp->s_psn, wqe->psn);
|
|
/*
|
|
* If the current WR is not TID RDMA READ, or this is the start
|
|
* of a new request, we need to change the qp->s_state so that
|
|
* the request can be set up properly.
|
|
*/
|
|
if (wqe->wr.opcode != IB_WR_TID_RDMA_READ || delta == 0 ||
|
|
qp->s_cur == qp->s_tail) {
|
|
qp->s_state = OP(RDMA_READ_REQUEST);
|
|
if (delta == 0 || qp->s_cur == qp->s_tail)
|
|
goto check_s_state;
|
|
else
|
|
goto bail;
|
|
}
|
|
|
|
/* Rate limiting */
|
|
if (qp->s_num_rd_atomic >= qp->s_max_rd_atomic) {
|
|
qp->s_flags |= RVT_S_WAIT_RDMAR;
|
|
goto bail;
|
|
}
|
|
|
|
wpriv = wqe->priv;
|
|
/* Read one segment at a time */
|
|
len = min_t(u32, req->seg_len,
|
|
wqe->length - req->seg_len * req->cur_seg);
|
|
delta = hfi1_build_tid_rdma_read_req(qp, wqe, ohdr, &bth1,
|
|
&bth2, &len);
|
|
if (delta <= 0) {
|
|
/* Wait for TID space */
|
|
goto bail;
|
|
}
|
|
hwords += delta;
|
|
ss = &wpriv->ss;
|
|
/* Check if this is the last segment */
|
|
if (req->cur_seg >= req->total_segs &&
|
|
++qp->s_cur == qp->s_size)
|
|
qp->s_cur = 0;
|
|
qp->s_psn = req->s_next_psn;
|
|
trace_hfi1_tid_req_make_req_read(qp, 0, wqe->wr.opcode,
|
|
wqe->psn, wqe->lpsn, req);
|
|
break;
|
|
}
|
|
qp->s_sending_hpsn = bth2;
|
|
delta = delta_psn(bth2, wqe->psn);
|
|
if (delta && delta % HFI1_PSN_CREDIT == 0 &&
|
|
wqe->wr.opcode != IB_WR_TID_RDMA_WRITE)
|
|
bth2 |= IB_BTH_REQ_ACK;
|
|
if (qp->s_flags & RVT_S_SEND_ONE) {
|
|
qp->s_flags &= ~RVT_S_SEND_ONE;
|
|
qp->s_flags |= RVT_S_WAIT_ACK;
|
|
bth2 |= IB_BTH_REQ_ACK;
|
|
}
|
|
qp->s_len -= len;
|
|
ps->s_txreq->hdr_dwords = hwords;
|
|
ps->s_txreq->sde = priv->s_sde;
|
|
ps->s_txreq->ss = ss;
|
|
ps->s_txreq->s_cur_size = len;
|
|
hfi1_make_ruc_header(
|
|
qp,
|
|
ohdr,
|
|
bth0 | (qp->s_state << 24),
|
|
bth1,
|
|
bth2,
|
|
middle,
|
|
ps);
|
|
return 1;
|
|
|
|
done_free_tx:
|
|
hfi1_put_txreq(ps->s_txreq);
|
|
ps->s_txreq = NULL;
|
|
return 1;
|
|
|
|
bail:
|
|
hfi1_put_txreq(ps->s_txreq);
|
|
|
|
bail_no_tx:
|
|
ps->s_txreq = NULL;
|
|
qp->s_flags &= ~RVT_S_BUSY;
|
|
/*
|
|
* If we didn't get a txreq, the QP will be woken up later to try
|
|
* again. Set the flags to indicate which work item to wake
|
|
* up.
|
|
*/
|
|
iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_IB);
|
|
return 0;
|
|
}
|
|
|
|
static inline void hfi1_make_bth_aeth(struct rvt_qp *qp,
|
|
struct ib_other_headers *ohdr,
|
|
u32 bth0, u32 bth1)
|
|
{
|
|
if (qp->r_nak_state)
|
|
ohdr->u.aeth = cpu_to_be32((qp->r_msn & IB_MSN_MASK) |
|
|
(qp->r_nak_state <<
|
|
IB_AETH_CREDIT_SHIFT));
|
|
else
|
|
ohdr->u.aeth = rvt_compute_aeth(qp);
|
|
|
|
ohdr->bth[0] = cpu_to_be32(bth0);
|
|
ohdr->bth[1] = cpu_to_be32(bth1 | qp->remote_qpn);
|
|
ohdr->bth[2] = cpu_to_be32(mask_psn(qp->r_ack_psn));
|
|
}
|
|
|
|
static inline void hfi1_queue_rc_ack(struct hfi1_packet *packet, bool is_fecn)
|
|
{
|
|
struct rvt_qp *qp = packet->qp;
|
|
struct hfi1_ibport *ibp;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&qp->s_lock, flags);
|
|
if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK))
|
|
goto unlock;
|
|
ibp = rcd_to_iport(packet->rcd);
|
|
this_cpu_inc(*ibp->rvp.rc_qacks);
|
|
qp->s_flags |= RVT_S_ACK_PENDING | RVT_S_RESP_PENDING;
|
|
qp->s_nak_state = qp->r_nak_state;
|
|
qp->s_ack_psn = qp->r_ack_psn;
|
|
if (is_fecn)
|
|
qp->s_flags |= RVT_S_ECN;
|
|
|
|
/* Schedule the send tasklet. */
|
|
hfi1_schedule_send(qp);
|
|
unlock:
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
}
|
|
|
|
static inline void hfi1_make_rc_ack_9B(struct hfi1_packet *packet,
|
|
struct hfi1_opa_header *opa_hdr,
|
|
u8 sc5, bool is_fecn,
|
|
u64 *pbc_flags, u32 *hwords,
|
|
u32 *nwords)
|
|
{
|
|
struct rvt_qp *qp = packet->qp;
|
|
struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
|
|
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
|
|
struct ib_header *hdr = &opa_hdr->ibh;
|
|
struct ib_other_headers *ohdr;
|
|
u16 lrh0 = HFI1_LRH_BTH;
|
|
u16 pkey;
|
|
u32 bth0, bth1;
|
|
|
|
opa_hdr->hdr_type = HFI1_PKT_TYPE_9B;
|
|
ohdr = &hdr->u.oth;
|
|
/* header size in 32-bit words LRH+BTH+AETH = (8+12+4)/4 */
|
|
*hwords = 6;
|
|
|
|
if (unlikely(rdma_ah_get_ah_flags(&qp->remote_ah_attr) & IB_AH_GRH)) {
|
|
*hwords += hfi1_make_grh(ibp, &hdr->u.l.grh,
|
|
rdma_ah_read_grh(&qp->remote_ah_attr),
|
|
*hwords - 2, SIZE_OF_CRC);
|
|
ohdr = &hdr->u.l.oth;
|
|
lrh0 = HFI1_LRH_GRH;
|
|
}
|
|
/* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
|
|
*pbc_flags |= ((!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT);
|
|
|
|
/* read pkey_index w/o lock (its atomic) */
|
|
pkey = hfi1_get_pkey(ibp, qp->s_pkey_index);
|
|
|
|
lrh0 |= (sc5 & IB_SC_MASK) << IB_SC_SHIFT |
|
|
(rdma_ah_get_sl(&qp->remote_ah_attr) & IB_SL_MASK) <<
|
|
IB_SL_SHIFT;
|
|
|
|
hfi1_make_ib_hdr(hdr, lrh0, *hwords + SIZE_OF_CRC,
|
|
opa_get_lid(rdma_ah_get_dlid(&qp->remote_ah_attr), 9B),
|
|
ppd->lid | rdma_ah_get_path_bits(&qp->remote_ah_attr));
|
|
|
|
bth0 = pkey | (OP(ACKNOWLEDGE) << 24);
|
|
if (qp->s_mig_state == IB_MIG_MIGRATED)
|
|
bth0 |= IB_BTH_MIG_REQ;
|
|
bth1 = (!!is_fecn) << IB_BECN_SHIFT;
|
|
/*
|
|
* Inline ACKs go out without the use of the Verbs send engine, so
|
|
* we need to set the STL Verbs Extended bit here
|
|
*/
|
|
bth1 |= HFI1_CAP_IS_KSET(OPFN) << IB_BTHE_E_SHIFT;
|
|
hfi1_make_bth_aeth(qp, ohdr, bth0, bth1);
|
|
}
|
|
|
|
static inline void hfi1_make_rc_ack_16B(struct hfi1_packet *packet,
|
|
struct hfi1_opa_header *opa_hdr,
|
|
u8 sc5, bool is_fecn,
|
|
u64 *pbc_flags, u32 *hwords,
|
|
u32 *nwords)
|
|
{
|
|
struct rvt_qp *qp = packet->qp;
|
|
struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
|
|
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
|
|
struct hfi1_16b_header *hdr = &opa_hdr->opah;
|
|
struct ib_other_headers *ohdr;
|
|
u32 bth0, bth1 = 0;
|
|
u16 len, pkey;
|
|
bool becn = is_fecn;
|
|
u8 l4 = OPA_16B_L4_IB_LOCAL;
|
|
u8 extra_bytes;
|
|
|
|
opa_hdr->hdr_type = HFI1_PKT_TYPE_16B;
|
|
ohdr = &hdr->u.oth;
|
|
/* header size in 32-bit words 16B LRH+BTH+AETH = (16+12+4)/4 */
|
|
*hwords = 8;
|
|
extra_bytes = hfi1_get_16b_padding(*hwords << 2, 0);
|
|
*nwords = SIZE_OF_CRC + ((extra_bytes + SIZE_OF_LT) >> 2);
|
|
|
|
if (unlikely(rdma_ah_get_ah_flags(&qp->remote_ah_attr) & IB_AH_GRH) &&
|
|
hfi1_check_mcast(rdma_ah_get_dlid(&qp->remote_ah_attr))) {
|
|
*hwords += hfi1_make_grh(ibp, &hdr->u.l.grh,
|
|
rdma_ah_read_grh(&qp->remote_ah_attr),
|
|
*hwords - 4, *nwords);
|
|
ohdr = &hdr->u.l.oth;
|
|
l4 = OPA_16B_L4_IB_GLOBAL;
|
|
}
|
|
*pbc_flags |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC;
|
|
|
|
/* read pkey_index w/o lock (its atomic) */
|
|
pkey = hfi1_get_pkey(ibp, qp->s_pkey_index);
|
|
|
|
/* Convert dwords to flits */
|
|
len = (*hwords + *nwords) >> 1;
|
|
|
|
hfi1_make_16b_hdr(hdr, ppd->lid |
|
|
(rdma_ah_get_path_bits(&qp->remote_ah_attr) &
|
|
((1 << ppd->lmc) - 1)),
|
|
opa_get_lid(rdma_ah_get_dlid(&qp->remote_ah_attr),
|
|
16B), len, pkey, becn, 0, l4, sc5);
|
|
|
|
bth0 = pkey | (OP(ACKNOWLEDGE) << 24);
|
|
bth0 |= extra_bytes << 20;
|
|
if (qp->s_mig_state == IB_MIG_MIGRATED)
|
|
bth1 = OPA_BTH_MIG_REQ;
|
|
hfi1_make_bth_aeth(qp, ohdr, bth0, bth1);
|
|
}
|
|
|
|
typedef void (*hfi1_make_rc_ack)(struct hfi1_packet *packet,
|
|
struct hfi1_opa_header *opa_hdr,
|
|
u8 sc5, bool is_fecn,
|
|
u64 *pbc_flags, u32 *hwords,
|
|
u32 *nwords);
|
|
|
|
/* We support only two types - 9B and 16B for now */
|
|
static const hfi1_make_rc_ack hfi1_make_rc_ack_tbl[2] = {
|
|
[HFI1_PKT_TYPE_9B] = &hfi1_make_rc_ack_9B,
|
|
[HFI1_PKT_TYPE_16B] = &hfi1_make_rc_ack_16B
|
|
};
|
|
|
|
/*
|
|
* hfi1_send_rc_ack - Construct an ACK packet and send it
|
|
*
|
|
* This is called from hfi1_rc_rcv() and handle_receive_interrupt().
|
|
* Note that RDMA reads and atomics are handled in the
|
|
* send side QP state and send engine.
|
|
*/
|
|
void hfi1_send_rc_ack(struct hfi1_packet *packet, bool is_fecn)
|
|
{
|
|
struct hfi1_ctxtdata *rcd = packet->rcd;
|
|
struct rvt_qp *qp = packet->qp;
|
|
struct hfi1_ibport *ibp = rcd_to_iport(rcd);
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
|
|
u8 sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&qp->remote_ah_attr)];
|
|
u64 pbc, pbc_flags = 0;
|
|
u32 hwords = 0;
|
|
u32 nwords = 0;
|
|
u32 plen;
|
|
struct pio_buf *pbuf;
|
|
struct hfi1_opa_header opa_hdr;
|
|
|
|
/* clear the defer count */
|
|
qp->r_adefered = 0;
|
|
|
|
/* Don't send ACK or NAK if a RDMA read or atomic is pending. */
|
|
if (qp->s_flags & RVT_S_RESP_PENDING) {
|
|
hfi1_queue_rc_ack(packet, is_fecn);
|
|
return;
|
|
}
|
|
|
|
/* Ensure s_rdma_ack_cnt changes are committed */
|
|
if (qp->s_rdma_ack_cnt) {
|
|
hfi1_queue_rc_ack(packet, is_fecn);
|
|
return;
|
|
}
|
|
|
|
/* Don't try to send ACKs if the link isn't ACTIVE */
|
|
if (driver_lstate(ppd) != IB_PORT_ACTIVE)
|
|
return;
|
|
|
|
/* Make the appropriate header */
|
|
hfi1_make_rc_ack_tbl[priv->hdr_type](packet, &opa_hdr, sc5, is_fecn,
|
|
&pbc_flags, &hwords, &nwords);
|
|
|
|
plen = 2 /* PBC */ + hwords + nwords;
|
|
pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps,
|
|
sc_to_vlt(ppd->dd, sc5), plen);
|
|
pbuf = sc_buffer_alloc(rcd->sc, plen, NULL, NULL);
|
|
if (IS_ERR_OR_NULL(pbuf)) {
|
|
/*
|
|
* We have no room to send at the moment. Pass
|
|
* responsibility for sending the ACK to the send engine
|
|
* so that when enough buffer space becomes available,
|
|
* the ACK is sent ahead of other outgoing packets.
|
|
*/
|
|
hfi1_queue_rc_ack(packet, is_fecn);
|
|
return;
|
|
}
|
|
trace_ack_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
|
|
&opa_hdr, ib_is_sc5(sc5));
|
|
|
|
/* write the pbc and data */
|
|
ppd->dd->pio_inline_send(ppd->dd, pbuf, pbc,
|
|
(priv->hdr_type == HFI1_PKT_TYPE_9B ?
|
|
(void *)&opa_hdr.ibh :
|
|
(void *)&opa_hdr.opah), hwords);
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* update_num_rd_atomic - update the qp->s_num_rd_atomic
|
|
* @qp: the QP
|
|
* @psn: the packet sequence number to restart at
|
|
* @wqe: the wqe
|
|
*
|
|
* This is called from reset_psn() to update qp->s_num_rd_atomic
|
|
* for the current wqe.
|
|
* Called at interrupt level with the QP s_lock held.
|
|
*/
|
|
static void update_num_rd_atomic(struct rvt_qp *qp, u32 psn,
|
|
struct rvt_swqe *wqe)
|
|
{
|
|
u32 opcode = wqe->wr.opcode;
|
|
|
|
if (opcode == IB_WR_RDMA_READ ||
|
|
opcode == IB_WR_ATOMIC_CMP_AND_SWP ||
|
|
opcode == IB_WR_ATOMIC_FETCH_AND_ADD) {
|
|
qp->s_num_rd_atomic++;
|
|
} else if (opcode == IB_WR_TID_RDMA_READ) {
|
|
struct tid_rdma_request *req = wqe_to_tid_req(wqe);
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
|
|
if (cmp_psn(psn, wqe->lpsn) <= 0) {
|
|
u32 cur_seg;
|
|
|
|
cur_seg = (psn - wqe->psn) / priv->pkts_ps;
|
|
req->ack_pending = cur_seg - req->comp_seg;
|
|
priv->pending_tid_r_segs += req->ack_pending;
|
|
qp->s_num_rd_atomic += req->ack_pending;
|
|
trace_hfi1_tid_req_update_num_rd_atomic(qp, 0,
|
|
wqe->wr.opcode,
|
|
wqe->psn,
|
|
wqe->lpsn,
|
|
req);
|
|
} else {
|
|
priv->pending_tid_r_segs += req->total_segs;
|
|
qp->s_num_rd_atomic += req->total_segs;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* reset_psn - reset the QP state to send starting from PSN
|
|
* @qp: the QP
|
|
* @psn: the packet sequence number to restart at
|
|
*
|
|
* This is called from hfi1_rc_rcv() to process an incoming RC ACK
|
|
* for the given QP.
|
|
* Called at interrupt level with the QP s_lock held.
|
|
*/
|
|
static void reset_psn(struct rvt_qp *qp, u32 psn)
|
|
{
|
|
u32 n = qp->s_acked;
|
|
struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, n);
|
|
u32 opcode;
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
|
|
lockdep_assert_held(&qp->s_lock);
|
|
qp->s_cur = n;
|
|
priv->pending_tid_r_segs = 0;
|
|
priv->pending_tid_w_resp = 0;
|
|
qp->s_num_rd_atomic = 0;
|
|
|
|
/*
|
|
* If we are starting the request from the beginning,
|
|
* let the normal send code handle initialization.
|
|
*/
|
|
if (cmp_psn(psn, wqe->psn) <= 0) {
|
|
qp->s_state = OP(SEND_LAST);
|
|
goto done;
|
|
}
|
|
update_num_rd_atomic(qp, psn, wqe);
|
|
|
|
/* Find the work request opcode corresponding to the given PSN. */
|
|
for (;;) {
|
|
int diff;
|
|
|
|
if (++n == qp->s_size)
|
|
n = 0;
|
|
if (n == qp->s_tail)
|
|
break;
|
|
wqe = rvt_get_swqe_ptr(qp, n);
|
|
diff = cmp_psn(psn, wqe->psn);
|
|
if (diff < 0) {
|
|
/* Point wqe back to the previous one*/
|
|
wqe = rvt_get_swqe_ptr(qp, qp->s_cur);
|
|
break;
|
|
}
|
|
qp->s_cur = n;
|
|
/*
|
|
* If we are starting the request from the beginning,
|
|
* let the normal send code handle initialization.
|
|
*/
|
|
if (diff == 0) {
|
|
qp->s_state = OP(SEND_LAST);
|
|
goto done;
|
|
}
|
|
|
|
update_num_rd_atomic(qp, psn, wqe);
|
|
}
|
|
opcode = wqe->wr.opcode;
|
|
|
|
/*
|
|
* Set the state to restart in the middle of a request.
|
|
* Don't change the s_sge, s_cur_sge, or s_cur_size.
|
|
* See hfi1_make_rc_req().
|
|
*/
|
|
switch (opcode) {
|
|
case IB_WR_SEND:
|
|
case IB_WR_SEND_WITH_IMM:
|
|
qp->s_state = OP(RDMA_READ_RESPONSE_FIRST);
|
|
break;
|
|
|
|
case IB_WR_RDMA_WRITE:
|
|
case IB_WR_RDMA_WRITE_WITH_IMM:
|
|
qp->s_state = OP(RDMA_READ_RESPONSE_LAST);
|
|
break;
|
|
|
|
case IB_WR_TID_RDMA_WRITE:
|
|
qp->s_state = TID_OP(WRITE_RESP);
|
|
break;
|
|
|
|
case IB_WR_RDMA_READ:
|
|
qp->s_state = OP(RDMA_READ_RESPONSE_MIDDLE);
|
|
break;
|
|
|
|
case IB_WR_TID_RDMA_READ:
|
|
qp->s_state = TID_OP(READ_RESP);
|
|
break;
|
|
|
|
default:
|
|
/*
|
|
* This case shouldn't happen since its only
|
|
* one PSN per req.
|
|
*/
|
|
qp->s_state = OP(SEND_LAST);
|
|
}
|
|
done:
|
|
priv->s_flags &= ~HFI1_S_TID_WAIT_INTERLCK;
|
|
qp->s_psn = psn;
|
|
/*
|
|
* Set RVT_S_WAIT_PSN as rc_complete() may start the timer
|
|
* asynchronously before the send engine can get scheduled.
|
|
* Doing it in hfi1_make_rc_req() is too late.
|
|
*/
|
|
if ((cmp_psn(qp->s_psn, qp->s_sending_hpsn) <= 0) &&
|
|
(cmp_psn(qp->s_sending_psn, qp->s_sending_hpsn) <= 0))
|
|
qp->s_flags |= RVT_S_WAIT_PSN;
|
|
qp->s_flags &= ~HFI1_S_AHG_VALID;
|
|
trace_hfi1_sender_reset_psn(qp);
|
|
}
|
|
|
|
/*
|
|
* Back up requester to resend the last un-ACKed request.
|
|
* The QP r_lock and s_lock should be held and interrupts disabled.
|
|
*/
|
|
void hfi1_restart_rc(struct rvt_qp *qp, u32 psn, int wait)
|
|
{
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
|
|
struct hfi1_ibport *ibp;
|
|
|
|
lockdep_assert_held(&qp->r_lock);
|
|
lockdep_assert_held(&qp->s_lock);
|
|
trace_hfi1_sender_restart_rc(qp);
|
|
if (qp->s_retry == 0) {
|
|
if (qp->s_mig_state == IB_MIG_ARMED) {
|
|
hfi1_migrate_qp(qp);
|
|
qp->s_retry = qp->s_retry_cnt;
|
|
} else if (qp->s_last == qp->s_acked) {
|
|
/*
|
|
* We need special handling for the OPFN request WQEs as
|
|
* they are not allowed to generate real user errors
|
|
*/
|
|
if (wqe->wr.opcode == IB_WR_OPFN) {
|
|
struct hfi1_ibport *ibp =
|
|
to_iport(qp->ibqp.device, qp->port_num);
|
|
/*
|
|
* Call opfn_conn_reply() with capcode and
|
|
* remaining data as 0 to close out the
|
|
* current request
|
|
*/
|
|
opfn_conn_reply(qp, priv->opfn.curr);
|
|
wqe = do_rc_completion(qp, wqe, ibp);
|
|
qp->s_flags &= ~RVT_S_WAIT_ACK;
|
|
} else {
|
|
trace_hfi1_tid_write_sender_restart_rc(qp, 0);
|
|
if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
|
|
struct tid_rdma_request *req;
|
|
|
|
req = wqe_to_tid_req(wqe);
|
|
hfi1_kern_exp_rcv_clear_all(req);
|
|
hfi1_kern_clear_hw_flow(priv->rcd, qp);
|
|
}
|
|
|
|
hfi1_trdma_send_complete(qp, wqe,
|
|
IB_WC_RETRY_EXC_ERR);
|
|
rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
|
|
}
|
|
return;
|
|
} else { /* need to handle delayed completion */
|
|
return;
|
|
}
|
|
} else {
|
|
qp->s_retry--;
|
|
}
|
|
|
|
ibp = to_iport(qp->ibqp.device, qp->port_num);
|
|
if (wqe->wr.opcode == IB_WR_RDMA_READ ||
|
|
wqe->wr.opcode == IB_WR_TID_RDMA_READ)
|
|
ibp->rvp.n_rc_resends++;
|
|
else
|
|
ibp->rvp.n_rc_resends += delta_psn(qp->s_psn, psn);
|
|
|
|
qp->s_flags &= ~(RVT_S_WAIT_FENCE | RVT_S_WAIT_RDMAR |
|
|
RVT_S_WAIT_SSN_CREDIT | RVT_S_WAIT_PSN |
|
|
RVT_S_WAIT_ACK | HFI1_S_WAIT_TID_RESP);
|
|
if (wait)
|
|
qp->s_flags |= RVT_S_SEND_ONE;
|
|
reset_psn(qp, psn);
|
|
}
|
|
|
|
/*
|
|
* Set qp->s_sending_psn to the next PSN after the given one.
|
|
* This would be psn+1 except when RDMA reads or TID RDMA ops
|
|
* are present.
|
|
*/
|
|
static void reset_sending_psn(struct rvt_qp *qp, u32 psn)
|
|
{
|
|
struct rvt_swqe *wqe;
|
|
u32 n = qp->s_last;
|
|
|
|
lockdep_assert_held(&qp->s_lock);
|
|
/* Find the work request corresponding to the given PSN. */
|
|
for (;;) {
|
|
wqe = rvt_get_swqe_ptr(qp, n);
|
|
if (cmp_psn(psn, wqe->lpsn) <= 0) {
|
|
if (wqe->wr.opcode == IB_WR_RDMA_READ ||
|
|
wqe->wr.opcode == IB_WR_TID_RDMA_READ ||
|
|
wqe->wr.opcode == IB_WR_TID_RDMA_WRITE)
|
|
qp->s_sending_psn = wqe->lpsn + 1;
|
|
else
|
|
qp->s_sending_psn = psn + 1;
|
|
break;
|
|
}
|
|
if (++n == qp->s_size)
|
|
n = 0;
|
|
if (n == qp->s_tail)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* hfi1_rc_verbs_aborted - handle abort status
|
|
* @qp: the QP
|
|
* @opah: the opa header
|
|
*
|
|
* This code modifies both ACK bit in BTH[2]
|
|
* and the s_flags to go into send one mode.
|
|
*
|
|
* This serves to throttle the send engine to only
|
|
* send a single packet in the likely case the
|
|
* a link has gone down.
|
|
*/
|
|
void hfi1_rc_verbs_aborted(struct rvt_qp *qp, struct hfi1_opa_header *opah)
|
|
{
|
|
struct ib_other_headers *ohdr = hfi1_get_rc_ohdr(opah);
|
|
u8 opcode = ib_bth_get_opcode(ohdr);
|
|
u32 psn;
|
|
|
|
/* ignore responses */
|
|
if ((opcode >= OP(RDMA_READ_RESPONSE_FIRST) &&
|
|
opcode <= OP(ATOMIC_ACKNOWLEDGE)) ||
|
|
opcode == TID_OP(READ_RESP) ||
|
|
opcode == TID_OP(WRITE_RESP))
|
|
return;
|
|
|
|
psn = ib_bth_get_psn(ohdr) | IB_BTH_REQ_ACK;
|
|
ohdr->bth[2] = cpu_to_be32(psn);
|
|
qp->s_flags |= RVT_S_SEND_ONE;
|
|
}
|
|
|
|
/*
|
|
* This should be called with the QP s_lock held and interrupts disabled.
|
|
*/
|
|
void hfi1_rc_send_complete(struct rvt_qp *qp, struct hfi1_opa_header *opah)
|
|
{
|
|
struct ib_other_headers *ohdr;
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
struct rvt_swqe *wqe;
|
|
u32 opcode, head, tail;
|
|
u32 psn;
|
|
struct tid_rdma_request *req;
|
|
|
|
lockdep_assert_held(&qp->s_lock);
|
|
if (!(ib_rvt_state_ops[qp->state] & RVT_SEND_OR_FLUSH_OR_RECV_OK))
|
|
return;
|
|
|
|
ohdr = hfi1_get_rc_ohdr(opah);
|
|
opcode = ib_bth_get_opcode(ohdr);
|
|
if ((opcode >= OP(RDMA_READ_RESPONSE_FIRST) &&
|
|
opcode <= OP(ATOMIC_ACKNOWLEDGE)) ||
|
|
opcode == TID_OP(READ_RESP) ||
|
|
opcode == TID_OP(WRITE_RESP)) {
|
|
WARN_ON(!qp->s_rdma_ack_cnt);
|
|
qp->s_rdma_ack_cnt--;
|
|
return;
|
|
}
|
|
|
|
psn = ib_bth_get_psn(ohdr);
|
|
/*
|
|
* Don't attempt to reset the sending PSN for packets in the
|
|
* KDETH PSN space since the PSN does not match anything.
|
|
*/
|
|
if (opcode != TID_OP(WRITE_DATA) &&
|
|
opcode != TID_OP(WRITE_DATA_LAST) &&
|
|
opcode != TID_OP(ACK) && opcode != TID_OP(RESYNC))
|
|
reset_sending_psn(qp, psn);
|
|
|
|
/* Handle TID RDMA WRITE packets differently */
|
|
if (opcode >= TID_OP(WRITE_REQ) &&
|
|
opcode <= TID_OP(WRITE_DATA_LAST)) {
|
|
head = priv->s_tid_head;
|
|
tail = priv->s_tid_cur;
|
|
/*
|
|
* s_tid_cur is set to s_tid_head in the case, where
|
|
* a new TID RDMA request is being started and all
|
|
* previous ones have been completed.
|
|
* Therefore, we need to do a secondary check in order
|
|
* to properly determine whether we should start the
|
|
* RC timer.
|
|
*/
|
|
wqe = rvt_get_swqe_ptr(qp, tail);
|
|
req = wqe_to_tid_req(wqe);
|
|
if (head == tail && req->comp_seg < req->total_segs) {
|
|
if (tail == 0)
|
|
tail = qp->s_size - 1;
|
|
else
|
|
tail -= 1;
|
|
}
|
|
} else {
|
|
head = qp->s_tail;
|
|
tail = qp->s_acked;
|
|
}
|
|
|
|
/*
|
|
* Start timer after a packet requesting an ACK has been sent and
|
|
* there are still requests that haven't been acked.
|
|
*/
|
|
if ((psn & IB_BTH_REQ_ACK) && tail != head &&
|
|
opcode != TID_OP(WRITE_DATA) && opcode != TID_OP(WRITE_DATA_LAST) &&
|
|
opcode != TID_OP(RESYNC) &&
|
|
!(qp->s_flags &
|
|
(RVT_S_TIMER | RVT_S_WAIT_RNR | RVT_S_WAIT_PSN)) &&
|
|
(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
|
|
if (opcode == TID_OP(READ_REQ))
|
|
rvt_add_retry_timer_ext(qp, priv->timeout_shift);
|
|
else
|
|
rvt_add_retry_timer(qp);
|
|
}
|
|
|
|
/* Start TID RDMA ACK timer */
|
|
if ((opcode == TID_OP(WRITE_DATA) ||
|
|
opcode == TID_OP(WRITE_DATA_LAST) ||
|
|
opcode == TID_OP(RESYNC)) &&
|
|
(psn & IB_BTH_REQ_ACK) &&
|
|
!(priv->s_flags & HFI1_S_TID_RETRY_TIMER) &&
|
|
(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
|
|
/*
|
|
* The TID RDMA ACK packet could be received before this
|
|
* function is called. Therefore, add the timer only if TID
|
|
* RDMA ACK packets are actually pending.
|
|
*/
|
|
wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
|
|
req = wqe_to_tid_req(wqe);
|
|
if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE &&
|
|
req->ack_seg < req->cur_seg)
|
|
hfi1_add_tid_retry_timer(qp);
|
|
}
|
|
|
|
while (qp->s_last != qp->s_acked) {
|
|
wqe = rvt_get_swqe_ptr(qp, qp->s_last);
|
|
if (cmp_psn(wqe->lpsn, qp->s_sending_psn) >= 0 &&
|
|
cmp_psn(qp->s_sending_psn, qp->s_sending_hpsn) <= 0)
|
|
break;
|
|
trdma_clean_swqe(qp, wqe);
|
|
trace_hfi1_qp_send_completion(qp, wqe, qp->s_last);
|
|
rvt_qp_complete_swqe(qp,
|
|
wqe,
|
|
ib_hfi1_wc_opcode[wqe->wr.opcode],
|
|
IB_WC_SUCCESS);
|
|
}
|
|
/*
|
|
* If we were waiting for sends to complete before re-sending,
|
|
* and they are now complete, restart sending.
|
|
*/
|
|
trace_hfi1_sendcomplete(qp, psn);
|
|
if (qp->s_flags & RVT_S_WAIT_PSN &&
|
|
cmp_psn(qp->s_sending_psn, qp->s_sending_hpsn) > 0) {
|
|
qp->s_flags &= ~RVT_S_WAIT_PSN;
|
|
qp->s_sending_psn = qp->s_psn;
|
|
qp->s_sending_hpsn = qp->s_psn - 1;
|
|
hfi1_schedule_send(qp);
|
|
}
|
|
}
|
|
|
|
static inline void update_last_psn(struct rvt_qp *qp, u32 psn)
|
|
{
|
|
qp->s_last_psn = psn;
|
|
}
|
|
|
|
/*
|
|
* Generate a SWQE completion.
|
|
* This is similar to hfi1_send_complete but has to check to be sure
|
|
* that the SGEs are not being referenced if the SWQE is being resent.
|
|
*/
|
|
struct rvt_swqe *do_rc_completion(struct rvt_qp *qp,
|
|
struct rvt_swqe *wqe,
|
|
struct hfi1_ibport *ibp)
|
|
{
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
|
|
lockdep_assert_held(&qp->s_lock);
|
|
/*
|
|
* Don't decrement refcount and don't generate a
|
|
* completion if the SWQE is being resent until the send
|
|
* is finished.
|
|
*/
|
|
trace_hfi1_rc_completion(qp, wqe->lpsn);
|
|
if (cmp_psn(wqe->lpsn, qp->s_sending_psn) < 0 ||
|
|
cmp_psn(qp->s_sending_psn, qp->s_sending_hpsn) > 0) {
|
|
trdma_clean_swqe(qp, wqe);
|
|
trace_hfi1_qp_send_completion(qp, wqe, qp->s_last);
|
|
rvt_qp_complete_swqe(qp,
|
|
wqe,
|
|
ib_hfi1_wc_opcode[wqe->wr.opcode],
|
|
IB_WC_SUCCESS);
|
|
} else {
|
|
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
|
|
|
|
this_cpu_inc(*ibp->rvp.rc_delayed_comp);
|
|
/*
|
|
* If send progress not running attempt to progress
|
|
* SDMA queue.
|
|
*/
|
|
if (ppd->dd->flags & HFI1_HAS_SEND_DMA) {
|
|
struct sdma_engine *engine;
|
|
u8 sl = rdma_ah_get_sl(&qp->remote_ah_attr);
|
|
u8 sc5;
|
|
|
|
/* For now use sc to find engine */
|
|
sc5 = ibp->sl_to_sc[sl];
|
|
engine = qp_to_sdma_engine(qp, sc5);
|
|
sdma_engine_progress_schedule(engine);
|
|
}
|
|
}
|
|
|
|
qp->s_retry = qp->s_retry_cnt;
|
|
/*
|
|
* Don't update the last PSN if the request being completed is
|
|
* a TID RDMA WRITE request.
|
|
* Completion of the TID RDMA WRITE requests are done by the
|
|
* TID RDMA ACKs and as such could be for a request that has
|
|
* already been ACKed as far as the IB state machine is
|
|
* concerned.
|
|
*/
|
|
if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE)
|
|
update_last_psn(qp, wqe->lpsn);
|
|
|
|
/*
|
|
* If we are completing a request which is in the process of
|
|
* being resent, we can stop re-sending it since we know the
|
|
* responder has already seen it.
|
|
*/
|
|
if (qp->s_acked == qp->s_cur) {
|
|
if (++qp->s_cur >= qp->s_size)
|
|
qp->s_cur = 0;
|
|
qp->s_acked = qp->s_cur;
|
|
wqe = rvt_get_swqe_ptr(qp, qp->s_cur);
|
|
if (qp->s_acked != qp->s_tail) {
|
|
qp->s_state = OP(SEND_LAST);
|
|
qp->s_psn = wqe->psn;
|
|
}
|
|
} else {
|
|
if (++qp->s_acked >= qp->s_size)
|
|
qp->s_acked = 0;
|
|
if (qp->state == IB_QPS_SQD && qp->s_acked == qp->s_cur)
|
|
qp->s_draining = 0;
|
|
wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
|
|
}
|
|
if (priv->s_flags & HFI1_S_TID_WAIT_INTERLCK) {
|
|
priv->s_flags &= ~HFI1_S_TID_WAIT_INTERLCK;
|
|
hfi1_schedule_send(qp);
|
|
}
|
|
return wqe;
|
|
}
|
|
|
|
static void set_restart_qp(struct rvt_qp *qp, struct hfi1_ctxtdata *rcd)
|
|
{
|
|
/* Retry this request. */
|
|
if (!(qp->r_flags & RVT_R_RDMAR_SEQ)) {
|
|
qp->r_flags |= RVT_R_RDMAR_SEQ;
|
|
hfi1_restart_rc(qp, qp->s_last_psn + 1, 0);
|
|
if (list_empty(&qp->rspwait)) {
|
|
qp->r_flags |= RVT_R_RSP_SEND;
|
|
rvt_get_qp(qp);
|
|
list_add_tail(&qp->rspwait, &rcd->qp_wait_list);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* update_qp_retry_state - Update qp retry state.
|
|
* @qp: the QP
|
|
* @psn: the packet sequence number of the TID RDMA WRITE RESP.
|
|
* @spsn: The start psn for the given TID RDMA WRITE swqe.
|
|
* @lpsn: The last psn for the given TID RDMA WRITE swqe.
|
|
*
|
|
* This function is called to update the qp retry state upon
|
|
* receiving a TID WRITE RESP after the qp is scheduled to retry
|
|
* a request.
|
|
*/
|
|
static void update_qp_retry_state(struct rvt_qp *qp, u32 psn, u32 spsn,
|
|
u32 lpsn)
|
|
{
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
|
|
qp->s_psn = psn + 1;
|
|
/*
|
|
* If this is the first TID RDMA WRITE RESP packet for the current
|
|
* request, change the s_state so that the retry will be processed
|
|
* correctly. Similarly, if this is the last TID RDMA WRITE RESP
|
|
* packet, change the s_state and advance the s_cur.
|
|
*/
|
|
if (cmp_psn(psn, lpsn) >= 0) {
|
|
qp->s_cur = qpriv->s_tid_cur + 1;
|
|
if (qp->s_cur >= qp->s_size)
|
|
qp->s_cur = 0;
|
|
qp->s_state = TID_OP(WRITE_REQ);
|
|
} else if (!cmp_psn(psn, spsn)) {
|
|
qp->s_cur = qpriv->s_tid_cur;
|
|
qp->s_state = TID_OP(WRITE_RESP);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* do_rc_ack - process an incoming RC ACK
|
|
* @qp: the QP the ACK came in on
|
|
* @psn: the packet sequence number of the ACK
|
|
* @opcode: the opcode of the request that resulted in the ACK
|
|
*
|
|
* This is called from rc_rcv_resp() to process an incoming RC ACK
|
|
* for the given QP.
|
|
* May be called at interrupt level, with the QP s_lock held.
|
|
* Returns 1 if OK, 0 if current operation should be aborted (NAK).
|
|
*/
|
|
int do_rc_ack(struct rvt_qp *qp, u32 aeth, u32 psn, int opcode,
|
|
u64 val, struct hfi1_ctxtdata *rcd)
|
|
{
|
|
struct hfi1_ibport *ibp;
|
|
enum ib_wc_status status;
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
struct rvt_swqe *wqe;
|
|
int ret = 0;
|
|
u32 ack_psn;
|
|
int diff;
|
|
struct rvt_dev_info *rdi;
|
|
|
|
lockdep_assert_held(&qp->s_lock);
|
|
/*
|
|
* Note that NAKs implicitly ACK outstanding SEND and RDMA write
|
|
* requests and implicitly NAK RDMA read and atomic requests issued
|
|
* before the NAK'ed request. The MSN won't include the NAK'ed
|
|
* request but will include an ACK'ed request(s).
|
|
*/
|
|
ack_psn = psn;
|
|
if (aeth >> IB_AETH_NAK_SHIFT)
|
|
ack_psn--;
|
|
wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
|
|
ibp = rcd_to_iport(rcd);
|
|
|
|
/*
|
|
* The MSN might be for a later WQE than the PSN indicates so
|
|
* only complete WQEs that the PSN finishes.
|
|
*/
|
|
while ((diff = delta_psn(ack_psn, wqe->lpsn)) >= 0) {
|
|
/*
|
|
* RDMA_READ_RESPONSE_ONLY is a special case since
|
|
* we want to generate completion events for everything
|
|
* before the RDMA read, copy the data, then generate
|
|
* the completion for the read.
|
|
*/
|
|
if (wqe->wr.opcode == IB_WR_RDMA_READ &&
|
|
opcode == OP(RDMA_READ_RESPONSE_ONLY) &&
|
|
diff == 0) {
|
|
ret = 1;
|
|
goto bail_stop;
|
|
}
|
|
/*
|
|
* If this request is a RDMA read or atomic, and the ACK is
|
|
* for a later operation, this ACK NAKs the RDMA read or
|
|
* atomic. In other words, only a RDMA_READ_LAST or ONLY
|
|
* can ACK a RDMA read and likewise for atomic ops. Note
|
|
* that the NAK case can only happen if relaxed ordering is
|
|
* used and requests are sent after an RDMA read or atomic
|
|
* is sent but before the response is received.
|
|
*/
|
|
if ((wqe->wr.opcode == IB_WR_RDMA_READ &&
|
|
(opcode != OP(RDMA_READ_RESPONSE_LAST) || diff != 0)) ||
|
|
(wqe->wr.opcode == IB_WR_TID_RDMA_READ &&
|
|
(opcode != TID_OP(READ_RESP) || diff != 0)) ||
|
|
((wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP ||
|
|
wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) &&
|
|
(opcode != OP(ATOMIC_ACKNOWLEDGE) || diff != 0)) ||
|
|
(wqe->wr.opcode == IB_WR_TID_RDMA_WRITE &&
|
|
(delta_psn(psn, qp->s_last_psn) != 1))) {
|
|
set_restart_qp(qp, rcd);
|
|
/*
|
|
* No need to process the ACK/NAK since we are
|
|
* restarting an earlier request.
|
|
*/
|
|
goto bail_stop;
|
|
}
|
|
if (wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP ||
|
|
wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) {
|
|
u64 *vaddr = wqe->sg_list[0].vaddr;
|
|
*vaddr = val;
|
|
}
|
|
if (wqe->wr.opcode == IB_WR_OPFN)
|
|
opfn_conn_reply(qp, val);
|
|
|
|
if (qp->s_num_rd_atomic &&
|
|
(wqe->wr.opcode == IB_WR_RDMA_READ ||
|
|
wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP ||
|
|
wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD)) {
|
|
qp->s_num_rd_atomic--;
|
|
/* Restart sending task if fence is complete */
|
|
if ((qp->s_flags & RVT_S_WAIT_FENCE) &&
|
|
!qp->s_num_rd_atomic) {
|
|
qp->s_flags &= ~(RVT_S_WAIT_FENCE |
|
|
RVT_S_WAIT_ACK);
|
|
hfi1_schedule_send(qp);
|
|
} else if (qp->s_flags & RVT_S_WAIT_RDMAR) {
|
|
qp->s_flags &= ~(RVT_S_WAIT_RDMAR |
|
|
RVT_S_WAIT_ACK);
|
|
hfi1_schedule_send(qp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* TID RDMA WRITE requests will be completed by the TID RDMA
|
|
* ACK packet handler (see tid_rdma.c).
|
|
*/
|
|
if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE)
|
|
break;
|
|
|
|
wqe = do_rc_completion(qp, wqe, ibp);
|
|
if (qp->s_acked == qp->s_tail)
|
|
break;
|
|
}
|
|
|
|
trace_hfi1_rc_ack_do(qp, aeth, psn, wqe);
|
|
trace_hfi1_sender_do_rc_ack(qp);
|
|
switch (aeth >> IB_AETH_NAK_SHIFT) {
|
|
case 0: /* ACK */
|
|
this_cpu_inc(*ibp->rvp.rc_acks);
|
|
if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
|
|
if (wqe_to_tid_req(wqe)->ack_pending)
|
|
rvt_mod_retry_timer_ext(qp,
|
|
qpriv->timeout_shift);
|
|
else
|
|
rvt_stop_rc_timers(qp);
|
|
} else if (qp->s_acked != qp->s_tail) {
|
|
struct rvt_swqe *__w = NULL;
|
|
|
|
if (qpriv->s_tid_cur != HFI1_QP_WQE_INVALID)
|
|
__w = rvt_get_swqe_ptr(qp, qpriv->s_tid_cur);
|
|
|
|
/*
|
|
* Stop timers if we've received all of the TID RDMA
|
|
* WRITE * responses.
|
|
*/
|
|
if (__w && __w->wr.opcode == IB_WR_TID_RDMA_WRITE &&
|
|
opcode == TID_OP(WRITE_RESP)) {
|
|
/*
|
|
* Normally, the loop above would correctly
|
|
* process all WQEs from s_acked onward and
|
|
* either complete them or check for correct
|
|
* PSN sequencing.
|
|
* However, for TID RDMA, due to pipelining,
|
|
* the response may not be for the request at
|
|
* s_acked so the above look would just be
|
|
* skipped. This does not allow for checking
|
|
* the PSN sequencing. It has to be done
|
|
* separately.
|
|
*/
|
|
if (cmp_psn(psn, qp->s_last_psn + 1)) {
|
|
set_restart_qp(qp, rcd);
|
|
goto bail_stop;
|
|
}
|
|
/*
|
|
* If the psn is being resent, stop the
|
|
* resending.
|
|
*/
|
|
if (qp->s_cur != qp->s_tail &&
|
|
cmp_psn(qp->s_psn, psn) <= 0)
|
|
update_qp_retry_state(qp, psn,
|
|
__w->psn,
|
|
__w->lpsn);
|
|
else if (--qpriv->pending_tid_w_resp)
|
|
rvt_mod_retry_timer(qp);
|
|
else
|
|
rvt_stop_rc_timers(qp);
|
|
} else {
|
|
/*
|
|
* We are expecting more ACKs so
|
|
* mod the retry timer.
|
|
*/
|
|
rvt_mod_retry_timer(qp);
|
|
/*
|
|
* We can stop re-sending the earlier packets
|
|
* and continue with the next packet the
|
|
* receiver wants.
|
|
*/
|
|
if (cmp_psn(qp->s_psn, psn) <= 0)
|
|
reset_psn(qp, psn + 1);
|
|
}
|
|
} else {
|
|
/* No more acks - kill all timers */
|
|
rvt_stop_rc_timers(qp);
|
|
if (cmp_psn(qp->s_psn, psn) <= 0) {
|
|
qp->s_state = OP(SEND_LAST);
|
|
qp->s_psn = psn + 1;
|
|
}
|
|
}
|
|
if (qp->s_flags & RVT_S_WAIT_ACK) {
|
|
qp->s_flags &= ~RVT_S_WAIT_ACK;
|
|
hfi1_schedule_send(qp);
|
|
}
|
|
rvt_get_credit(qp, aeth);
|
|
qp->s_rnr_retry = qp->s_rnr_retry_cnt;
|
|
qp->s_retry = qp->s_retry_cnt;
|
|
/*
|
|
* If the current request is a TID RDMA WRITE request and the
|
|
* response is not a TID RDMA WRITE RESP packet, s_last_psn
|
|
* can't be advanced.
|
|
*/
|
|
if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE &&
|
|
opcode != TID_OP(WRITE_RESP) &&
|
|
cmp_psn(psn, wqe->psn) >= 0)
|
|
return 1;
|
|
update_last_psn(qp, psn);
|
|
return 1;
|
|
|
|
case 1: /* RNR NAK */
|
|
ibp->rvp.n_rnr_naks++;
|
|
if (qp->s_acked == qp->s_tail)
|
|
goto bail_stop;
|
|
if (qp->s_flags & RVT_S_WAIT_RNR)
|
|
goto bail_stop;
|
|
rdi = ib_to_rvt(qp->ibqp.device);
|
|
if (!(rdi->post_parms[wqe->wr.opcode].flags &
|
|
RVT_OPERATION_IGN_RNR_CNT)) {
|
|
if (qp->s_rnr_retry == 0) {
|
|
status = IB_WC_RNR_RETRY_EXC_ERR;
|
|
goto class_b;
|
|
}
|
|
if (qp->s_rnr_retry_cnt < 7 && qp->s_rnr_retry_cnt > 0)
|
|
qp->s_rnr_retry--;
|
|
}
|
|
|
|
/*
|
|
* The last valid PSN is the previous PSN. For TID RDMA WRITE
|
|
* request, s_last_psn should be incremented only when a TID
|
|
* RDMA WRITE RESP is received to avoid skipping lost TID RDMA
|
|
* WRITE RESP packets.
|
|
*/
|
|
if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) {
|
|
reset_psn(qp, qp->s_last_psn + 1);
|
|
} else {
|
|
update_last_psn(qp, psn - 1);
|
|
reset_psn(qp, psn);
|
|
}
|
|
|
|
ibp->rvp.n_rc_resends += delta_psn(qp->s_psn, psn);
|
|
qp->s_flags &= ~(RVT_S_WAIT_SSN_CREDIT | RVT_S_WAIT_ACK);
|
|
rvt_stop_rc_timers(qp);
|
|
rvt_add_rnr_timer(qp, aeth);
|
|
return 0;
|
|
|
|
case 3: /* NAK */
|
|
if (qp->s_acked == qp->s_tail)
|
|
goto bail_stop;
|
|
/* The last valid PSN is the previous PSN. */
|
|
update_last_psn(qp, psn - 1);
|
|
switch ((aeth >> IB_AETH_CREDIT_SHIFT) &
|
|
IB_AETH_CREDIT_MASK) {
|
|
case 0: /* PSN sequence error */
|
|
ibp->rvp.n_seq_naks++;
|
|
/*
|
|
* Back up to the responder's expected PSN.
|
|
* Note that we might get a NAK in the middle of an
|
|
* RDMA READ response which terminates the RDMA
|
|
* READ.
|
|
*/
|
|
hfi1_restart_rc(qp, psn, 0);
|
|
hfi1_schedule_send(qp);
|
|
break;
|
|
|
|
case 1: /* Invalid Request */
|
|
status = IB_WC_REM_INV_REQ_ERR;
|
|
ibp->rvp.n_other_naks++;
|
|
goto class_b;
|
|
|
|
case 2: /* Remote Access Error */
|
|
status = IB_WC_REM_ACCESS_ERR;
|
|
ibp->rvp.n_other_naks++;
|
|
goto class_b;
|
|
|
|
case 3: /* Remote Operation Error */
|
|
status = IB_WC_REM_OP_ERR;
|
|
ibp->rvp.n_other_naks++;
|
|
class_b:
|
|
if (qp->s_last == qp->s_acked) {
|
|
if (wqe->wr.opcode == IB_WR_TID_RDMA_READ)
|
|
hfi1_kern_read_tid_flow_free(qp);
|
|
|
|
hfi1_trdma_send_complete(qp, wqe, status);
|
|
rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
/* Ignore other reserved NAK error codes */
|
|
goto reserved;
|
|
}
|
|
qp->s_retry = qp->s_retry_cnt;
|
|
qp->s_rnr_retry = qp->s_rnr_retry_cnt;
|
|
goto bail_stop;
|
|
|
|
default: /* 2: reserved */
|
|
reserved:
|
|
/* Ignore reserved NAK codes. */
|
|
goto bail_stop;
|
|
}
|
|
/* cannot be reached */
|
|
bail_stop:
|
|
rvt_stop_rc_timers(qp);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* We have seen an out of sequence RDMA read middle or last packet.
|
|
* This ACKs SENDs and RDMA writes up to the first RDMA read or atomic SWQE.
|
|
*/
|
|
static void rdma_seq_err(struct rvt_qp *qp, struct hfi1_ibport *ibp, u32 psn,
|
|
struct hfi1_ctxtdata *rcd)
|
|
{
|
|
struct rvt_swqe *wqe;
|
|
|
|
lockdep_assert_held(&qp->s_lock);
|
|
/* Remove QP from retry timer */
|
|
rvt_stop_rc_timers(qp);
|
|
|
|
wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
|
|
|
|
while (cmp_psn(psn, wqe->lpsn) > 0) {
|
|
if (wqe->wr.opcode == IB_WR_RDMA_READ ||
|
|
wqe->wr.opcode == IB_WR_TID_RDMA_READ ||
|
|
wqe->wr.opcode == IB_WR_TID_RDMA_WRITE ||
|
|
wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP ||
|
|
wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD)
|
|
break;
|
|
wqe = do_rc_completion(qp, wqe, ibp);
|
|
}
|
|
|
|
ibp->rvp.n_rdma_seq++;
|
|
qp->r_flags |= RVT_R_RDMAR_SEQ;
|
|
hfi1_restart_rc(qp, qp->s_last_psn + 1, 0);
|
|
if (list_empty(&qp->rspwait)) {
|
|
qp->r_flags |= RVT_R_RSP_SEND;
|
|
rvt_get_qp(qp);
|
|
list_add_tail(&qp->rspwait, &rcd->qp_wait_list);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* rc_rcv_resp - process an incoming RC response packet
|
|
* @packet: data packet information
|
|
*
|
|
* This is called from hfi1_rc_rcv() to process an incoming RC response
|
|
* packet for the given QP.
|
|
* Called at interrupt level.
|
|
*/
|
|
static void rc_rcv_resp(struct hfi1_packet *packet)
|
|
{
|
|
struct hfi1_ctxtdata *rcd = packet->rcd;
|
|
void *data = packet->payload;
|
|
u32 tlen = packet->tlen;
|
|
struct rvt_qp *qp = packet->qp;
|
|
struct hfi1_ibport *ibp;
|
|
struct ib_other_headers *ohdr = packet->ohdr;
|
|
struct rvt_swqe *wqe;
|
|
enum ib_wc_status status;
|
|
unsigned long flags;
|
|
int diff;
|
|
u64 val;
|
|
u32 aeth;
|
|
u32 psn = ib_bth_get_psn(packet->ohdr);
|
|
u32 pmtu = qp->pmtu;
|
|
u16 hdrsize = packet->hlen;
|
|
u8 opcode = packet->opcode;
|
|
u8 pad = packet->pad;
|
|
u8 extra_bytes = pad + packet->extra_byte + (SIZE_OF_CRC << 2);
|
|
|
|
spin_lock_irqsave(&qp->s_lock, flags);
|
|
trace_hfi1_ack(qp, psn);
|
|
|
|
/* Ignore invalid responses. */
|
|
if (cmp_psn(psn, READ_ONCE(qp->s_next_psn)) >= 0)
|
|
goto ack_done;
|
|
|
|
/* Ignore duplicate responses. */
|
|
diff = cmp_psn(psn, qp->s_last_psn);
|
|
if (unlikely(diff <= 0)) {
|
|
/* Update credits for "ghost" ACKs */
|
|
if (diff == 0 && opcode == OP(ACKNOWLEDGE)) {
|
|
aeth = be32_to_cpu(ohdr->u.aeth);
|
|
if ((aeth >> IB_AETH_NAK_SHIFT) == 0)
|
|
rvt_get_credit(qp, aeth);
|
|
}
|
|
goto ack_done;
|
|
}
|
|
|
|
/*
|
|
* Skip everything other than the PSN we expect, if we are waiting
|
|
* for a reply to a restarted RDMA read or atomic op.
|
|
*/
|
|
if (qp->r_flags & RVT_R_RDMAR_SEQ) {
|
|
if (cmp_psn(psn, qp->s_last_psn + 1) != 0)
|
|
goto ack_done;
|
|
qp->r_flags &= ~RVT_R_RDMAR_SEQ;
|
|
}
|
|
|
|
if (unlikely(qp->s_acked == qp->s_tail))
|
|
goto ack_done;
|
|
wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
|
|
status = IB_WC_SUCCESS;
|
|
|
|
switch (opcode) {
|
|
case OP(ACKNOWLEDGE):
|
|
case OP(ATOMIC_ACKNOWLEDGE):
|
|
case OP(RDMA_READ_RESPONSE_FIRST):
|
|
aeth = be32_to_cpu(ohdr->u.aeth);
|
|
if (opcode == OP(ATOMIC_ACKNOWLEDGE))
|
|
val = ib_u64_get(&ohdr->u.at.atomic_ack_eth);
|
|
else
|
|
val = 0;
|
|
if (!do_rc_ack(qp, aeth, psn, opcode, val, rcd) ||
|
|
opcode != OP(RDMA_READ_RESPONSE_FIRST))
|
|
goto ack_done;
|
|
wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
|
|
if (unlikely(wqe->wr.opcode != IB_WR_RDMA_READ))
|
|
goto ack_op_err;
|
|
/*
|
|
* If this is a response to a resent RDMA read, we
|
|
* have to be careful to copy the data to the right
|
|
* location.
|
|
*/
|
|
qp->s_rdma_read_len = restart_sge(&qp->s_rdma_read_sge,
|
|
wqe, psn, pmtu);
|
|
goto read_middle;
|
|
|
|
case OP(RDMA_READ_RESPONSE_MIDDLE):
|
|
/* no AETH, no ACK */
|
|
if (unlikely(cmp_psn(psn, qp->s_last_psn + 1)))
|
|
goto ack_seq_err;
|
|
if (unlikely(wqe->wr.opcode != IB_WR_RDMA_READ))
|
|
goto ack_op_err;
|
|
read_middle:
|
|
if (unlikely(tlen != (hdrsize + pmtu + extra_bytes)))
|
|
goto ack_len_err;
|
|
if (unlikely(pmtu >= qp->s_rdma_read_len))
|
|
goto ack_len_err;
|
|
|
|
/*
|
|
* We got a response so update the timeout.
|
|
* 4.096 usec. * (1 << qp->timeout)
|
|
*/
|
|
rvt_mod_retry_timer(qp);
|
|
if (qp->s_flags & RVT_S_WAIT_ACK) {
|
|
qp->s_flags &= ~RVT_S_WAIT_ACK;
|
|
hfi1_schedule_send(qp);
|
|
}
|
|
|
|
if (opcode == OP(RDMA_READ_RESPONSE_MIDDLE))
|
|
qp->s_retry = qp->s_retry_cnt;
|
|
|
|
/*
|
|
* Update the RDMA receive state but do the copy w/o
|
|
* holding the locks and blocking interrupts.
|
|
*/
|
|
qp->s_rdma_read_len -= pmtu;
|
|
update_last_psn(qp, psn);
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
rvt_copy_sge(qp, &qp->s_rdma_read_sge,
|
|
data, pmtu, false, false);
|
|
goto bail;
|
|
|
|
case OP(RDMA_READ_RESPONSE_ONLY):
|
|
aeth = be32_to_cpu(ohdr->u.aeth);
|
|
if (!do_rc_ack(qp, aeth, psn, opcode, 0, rcd))
|
|
goto ack_done;
|
|
/*
|
|
* Check that the data size is >= 0 && <= pmtu.
|
|
* Remember to account for ICRC (4).
|
|
*/
|
|
if (unlikely(tlen < (hdrsize + extra_bytes)))
|
|
goto ack_len_err;
|
|
/*
|
|
* If this is a response to a resent RDMA read, we
|
|
* have to be careful to copy the data to the right
|
|
* location.
|
|
*/
|
|
wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
|
|
qp->s_rdma_read_len = restart_sge(&qp->s_rdma_read_sge,
|
|
wqe, psn, pmtu);
|
|
goto read_last;
|
|
|
|
case OP(RDMA_READ_RESPONSE_LAST):
|
|
/* ACKs READ req. */
|
|
if (unlikely(cmp_psn(psn, qp->s_last_psn + 1)))
|
|
goto ack_seq_err;
|
|
if (unlikely(wqe->wr.opcode != IB_WR_RDMA_READ))
|
|
goto ack_op_err;
|
|
/*
|
|
* Check that the data size is >= 1 && <= pmtu.
|
|
* Remember to account for ICRC (4).
|
|
*/
|
|
if (unlikely(tlen <= (hdrsize + extra_bytes)))
|
|
goto ack_len_err;
|
|
read_last:
|
|
tlen -= hdrsize + extra_bytes;
|
|
if (unlikely(tlen != qp->s_rdma_read_len))
|
|
goto ack_len_err;
|
|
aeth = be32_to_cpu(ohdr->u.aeth);
|
|
rvt_copy_sge(qp, &qp->s_rdma_read_sge,
|
|
data, tlen, false, false);
|
|
WARN_ON(qp->s_rdma_read_sge.num_sge);
|
|
(void)do_rc_ack(qp, aeth, psn,
|
|
OP(RDMA_READ_RESPONSE_LAST), 0, rcd);
|
|
goto ack_done;
|
|
}
|
|
|
|
ack_op_err:
|
|
status = IB_WC_LOC_QP_OP_ERR;
|
|
goto ack_err;
|
|
|
|
ack_seq_err:
|
|
ibp = rcd_to_iport(rcd);
|
|
rdma_seq_err(qp, ibp, psn, rcd);
|
|
goto ack_done;
|
|
|
|
ack_len_err:
|
|
status = IB_WC_LOC_LEN_ERR;
|
|
ack_err:
|
|
if (qp->s_last == qp->s_acked) {
|
|
rvt_send_complete(qp, wqe, status);
|
|
rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
|
|
}
|
|
ack_done:
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
bail:
|
|
return;
|
|
}
|
|
|
|
static inline void rc_cancel_ack(struct rvt_qp *qp)
|
|
{
|
|
qp->r_adefered = 0;
|
|
if (list_empty(&qp->rspwait))
|
|
return;
|
|
list_del_init(&qp->rspwait);
|
|
qp->r_flags &= ~RVT_R_RSP_NAK;
|
|
rvt_put_qp(qp);
|
|
}
|
|
|
|
/**
|
|
* rc_rcv_error - process an incoming duplicate or error RC packet
|
|
* @ohdr: the other headers for this packet
|
|
* @data: the packet data
|
|
* @qp: the QP for this packet
|
|
* @opcode: the opcode for this packet
|
|
* @psn: the packet sequence number for this packet
|
|
* @diff: the difference between the PSN and the expected PSN
|
|
* @rcd: the receive context
|
|
*
|
|
* This is called from hfi1_rc_rcv() to process an unexpected
|
|
* incoming RC packet for the given QP.
|
|
* Called at interrupt level.
|
|
* Return 1 if no more processing is needed; otherwise return 0 to
|
|
* schedule a response to be sent.
|
|
*/
|
|
static noinline int rc_rcv_error(struct ib_other_headers *ohdr, void *data,
|
|
struct rvt_qp *qp, u32 opcode, u32 psn,
|
|
int diff, struct hfi1_ctxtdata *rcd)
|
|
{
|
|
struct hfi1_ibport *ibp = rcd_to_iport(rcd);
|
|
struct rvt_ack_entry *e;
|
|
unsigned long flags;
|
|
u8 prev;
|
|
u8 mra; /* most recent ACK */
|
|
bool old_req;
|
|
|
|
trace_hfi1_rcv_error(qp, psn);
|
|
if (diff > 0) {
|
|
/*
|
|
* Packet sequence error.
|
|
* A NAK will ACK earlier sends and RDMA writes.
|
|
* Don't queue the NAK if we already sent one.
|
|
*/
|
|
if (!qp->r_nak_state) {
|
|
ibp->rvp.n_rc_seqnak++;
|
|
qp->r_nak_state = IB_NAK_PSN_ERROR;
|
|
/* Use the expected PSN. */
|
|
qp->r_ack_psn = qp->r_psn;
|
|
/*
|
|
* Wait to send the sequence NAK until all packets
|
|
* in the receive queue have been processed.
|
|
* Otherwise, we end up propagating congestion.
|
|
*/
|
|
rc_defered_ack(rcd, qp);
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Handle a duplicate request. Don't re-execute SEND, RDMA
|
|
* write or atomic op. Don't NAK errors, just silently drop
|
|
* the duplicate request. Note that r_sge, r_len, and
|
|
* r_rcv_len may be in use so don't modify them.
|
|
*
|
|
* We are supposed to ACK the earliest duplicate PSN but we
|
|
* can coalesce an outstanding duplicate ACK. We have to
|
|
* send the earliest so that RDMA reads can be restarted at
|
|
* the requester's expected PSN.
|
|
*
|
|
* First, find where this duplicate PSN falls within the
|
|
* ACKs previously sent.
|
|
* old_req is true if there is an older response that is scheduled
|
|
* to be sent before sending this one.
|
|
*/
|
|
e = NULL;
|
|
old_req = true;
|
|
ibp->rvp.n_rc_dupreq++;
|
|
|
|
spin_lock_irqsave(&qp->s_lock, flags);
|
|
|
|
e = find_prev_entry(qp, psn, &prev, &mra, &old_req);
|
|
|
|
switch (opcode) {
|
|
case OP(RDMA_READ_REQUEST): {
|
|
struct ib_reth *reth;
|
|
u32 offset;
|
|
u32 len;
|
|
|
|
/*
|
|
* If we didn't find the RDMA read request in the ack queue,
|
|
* we can ignore this request.
|
|
*/
|
|
if (!e || e->opcode != OP(RDMA_READ_REQUEST))
|
|
goto unlock_done;
|
|
/* RETH comes after BTH */
|
|
reth = &ohdr->u.rc.reth;
|
|
/*
|
|
* Address range must be a subset of the original
|
|
* request and start on pmtu boundaries.
|
|
* We reuse the old ack_queue slot since the requester
|
|
* should not back up and request an earlier PSN for the
|
|
* same request.
|
|
*/
|
|
offset = delta_psn(psn, e->psn) * qp->pmtu;
|
|
len = be32_to_cpu(reth->length);
|
|
if (unlikely(offset + len != e->rdma_sge.sge_length))
|
|
goto unlock_done;
|
|
release_rdma_sge_mr(e);
|
|
if (len != 0) {
|
|
u32 rkey = be32_to_cpu(reth->rkey);
|
|
u64 vaddr = get_ib_reth_vaddr(reth);
|
|
int ok;
|
|
|
|
ok = rvt_rkey_ok(qp, &e->rdma_sge, len, vaddr, rkey,
|
|
IB_ACCESS_REMOTE_READ);
|
|
if (unlikely(!ok))
|
|
goto unlock_done;
|
|
} else {
|
|
e->rdma_sge.vaddr = NULL;
|
|
e->rdma_sge.length = 0;
|
|
e->rdma_sge.sge_length = 0;
|
|
}
|
|
e->psn = psn;
|
|
if (old_req)
|
|
goto unlock_done;
|
|
if (qp->s_acked_ack_queue == qp->s_tail_ack_queue)
|
|
qp->s_acked_ack_queue = prev;
|
|
qp->s_tail_ack_queue = prev;
|
|
break;
|
|
}
|
|
|
|
case OP(COMPARE_SWAP):
|
|
case OP(FETCH_ADD): {
|
|
/*
|
|
* If we didn't find the atomic request in the ack queue
|
|
* or the send engine is already backed up to send an
|
|
* earlier entry, we can ignore this request.
|
|
*/
|
|
if (!e || e->opcode != (u8)opcode || old_req)
|
|
goto unlock_done;
|
|
if (qp->s_tail_ack_queue == qp->s_acked_ack_queue)
|
|
qp->s_acked_ack_queue = prev;
|
|
qp->s_tail_ack_queue = prev;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
/*
|
|
* Ignore this operation if it doesn't request an ACK
|
|
* or an earlier RDMA read or atomic is going to be resent.
|
|
*/
|
|
if (!(psn & IB_BTH_REQ_ACK) || old_req)
|
|
goto unlock_done;
|
|
/*
|
|
* Resend the most recent ACK if this request is
|
|
* after all the previous RDMA reads and atomics.
|
|
*/
|
|
if (mra == qp->r_head_ack_queue) {
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
qp->r_nak_state = 0;
|
|
qp->r_ack_psn = qp->r_psn - 1;
|
|
goto send_ack;
|
|
}
|
|
|
|
/*
|
|
* Resend the RDMA read or atomic op which
|
|
* ACKs this duplicate request.
|
|
*/
|
|
if (qp->s_tail_ack_queue == qp->s_acked_ack_queue)
|
|
qp->s_acked_ack_queue = mra;
|
|
qp->s_tail_ack_queue = mra;
|
|
break;
|
|
}
|
|
qp->s_ack_state = OP(ACKNOWLEDGE);
|
|
qp->s_flags |= RVT_S_RESP_PENDING;
|
|
qp->r_nak_state = 0;
|
|
hfi1_schedule_send(qp);
|
|
|
|
unlock_done:
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
done:
|
|
return 1;
|
|
|
|
send_ack:
|
|
return 0;
|
|
}
|
|
|
|
static void log_cca_event(struct hfi1_pportdata *ppd, u8 sl, u32 rlid,
|
|
u32 lqpn, u32 rqpn, u8 svc_type)
|
|
{
|
|
struct opa_hfi1_cong_log_event_internal *cc_event;
|
|
unsigned long flags;
|
|
|
|
if (sl >= OPA_MAX_SLS)
|
|
return;
|
|
|
|
spin_lock_irqsave(&ppd->cc_log_lock, flags);
|
|
|
|
ppd->threshold_cong_event_map[sl / 8] |= 1 << (sl % 8);
|
|
ppd->threshold_event_counter++;
|
|
|
|
cc_event = &ppd->cc_events[ppd->cc_log_idx++];
|
|
if (ppd->cc_log_idx == OPA_CONG_LOG_ELEMS)
|
|
ppd->cc_log_idx = 0;
|
|
cc_event->lqpn = lqpn & RVT_QPN_MASK;
|
|
cc_event->rqpn = rqpn & RVT_QPN_MASK;
|
|
cc_event->sl = sl;
|
|
cc_event->svc_type = svc_type;
|
|
cc_event->rlid = rlid;
|
|
/* keep timestamp in units of 1.024 usec */
|
|
cc_event->timestamp = ktime_get_ns() / 1024;
|
|
|
|
spin_unlock_irqrestore(&ppd->cc_log_lock, flags);
|
|
}
|
|
|
|
void process_becn(struct hfi1_pportdata *ppd, u8 sl, u32 rlid, u32 lqpn,
|
|
u32 rqpn, u8 svc_type)
|
|
{
|
|
struct cca_timer *cca_timer;
|
|
u16 ccti, ccti_incr, ccti_timer, ccti_limit;
|
|
u8 trigger_threshold;
|
|
struct cc_state *cc_state;
|
|
unsigned long flags;
|
|
|
|
if (sl >= OPA_MAX_SLS)
|
|
return;
|
|
|
|
cc_state = get_cc_state(ppd);
|
|
|
|
if (!cc_state)
|
|
return;
|
|
|
|
/*
|
|
* 1) increase CCTI (for this SL)
|
|
* 2) select IPG (i.e., call set_link_ipg())
|
|
* 3) start timer
|
|
*/
|
|
ccti_limit = cc_state->cct.ccti_limit;
|
|
ccti_incr = cc_state->cong_setting.entries[sl].ccti_increase;
|
|
ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
|
|
trigger_threshold =
|
|
cc_state->cong_setting.entries[sl].trigger_threshold;
|
|
|
|
spin_lock_irqsave(&ppd->cca_timer_lock, flags);
|
|
|
|
cca_timer = &ppd->cca_timer[sl];
|
|
if (cca_timer->ccti < ccti_limit) {
|
|
if (cca_timer->ccti + ccti_incr <= ccti_limit)
|
|
cca_timer->ccti += ccti_incr;
|
|
else
|
|
cca_timer->ccti = ccti_limit;
|
|
set_link_ipg(ppd);
|
|
}
|
|
|
|
ccti = cca_timer->ccti;
|
|
|
|
if (!hrtimer_active(&cca_timer->hrtimer)) {
|
|
/* ccti_timer is in units of 1.024 usec */
|
|
unsigned long nsec = 1024 * ccti_timer;
|
|
|
|
hrtimer_start(&cca_timer->hrtimer, ns_to_ktime(nsec),
|
|
HRTIMER_MODE_REL_PINNED);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
|
|
|
|
if ((trigger_threshold != 0) && (ccti >= trigger_threshold))
|
|
log_cca_event(ppd, sl, rlid, lqpn, rqpn, svc_type);
|
|
}
|
|
|
|
/**
|
|
* hfi1_rc_rcv - process an incoming RC packet
|
|
* @packet: data packet information
|
|
*
|
|
* This is called from qp_rcv() to process an incoming RC packet
|
|
* for the given QP.
|
|
* May be called at interrupt level.
|
|
*/
|
|
void hfi1_rc_rcv(struct hfi1_packet *packet)
|
|
{
|
|
struct hfi1_ctxtdata *rcd = packet->rcd;
|
|
void *data = packet->payload;
|
|
u32 tlen = packet->tlen;
|
|
struct rvt_qp *qp = packet->qp;
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
struct hfi1_ibport *ibp = rcd_to_iport(rcd);
|
|
struct ib_other_headers *ohdr = packet->ohdr;
|
|
u32 opcode = packet->opcode;
|
|
u32 hdrsize = packet->hlen;
|
|
u32 psn = ib_bth_get_psn(packet->ohdr);
|
|
u32 pad = packet->pad;
|
|
struct ib_wc wc;
|
|
u32 pmtu = qp->pmtu;
|
|
int diff;
|
|
struct ib_reth *reth;
|
|
unsigned long flags;
|
|
int ret;
|
|
bool copy_last = false, fecn;
|
|
u32 rkey;
|
|
u8 extra_bytes = pad + packet->extra_byte + (SIZE_OF_CRC << 2);
|
|
|
|
lockdep_assert_held(&qp->r_lock);
|
|
|
|
if (hfi1_ruc_check_hdr(ibp, packet))
|
|
return;
|
|
|
|
fecn = process_ecn(qp, packet);
|
|
opfn_trigger_conn_request(qp, be32_to_cpu(ohdr->bth[1]));
|
|
|
|
/*
|
|
* Process responses (ACKs) before anything else. Note that the
|
|
* packet sequence number will be for something in the send work
|
|
* queue rather than the expected receive packet sequence number.
|
|
* In other words, this QP is the requester.
|
|
*/
|
|
if (opcode >= OP(RDMA_READ_RESPONSE_FIRST) &&
|
|
opcode <= OP(ATOMIC_ACKNOWLEDGE)) {
|
|
rc_rcv_resp(packet);
|
|
return;
|
|
}
|
|
|
|
/* Compute 24 bits worth of difference. */
|
|
diff = delta_psn(psn, qp->r_psn);
|
|
if (unlikely(diff)) {
|
|
if (rc_rcv_error(ohdr, data, qp, opcode, psn, diff, rcd))
|
|
return;
|
|
goto send_ack;
|
|
}
|
|
|
|
/* Check for opcode sequence errors. */
|
|
switch (qp->r_state) {
|
|
case OP(SEND_FIRST):
|
|
case OP(SEND_MIDDLE):
|
|
if (opcode == OP(SEND_MIDDLE) ||
|
|
opcode == OP(SEND_LAST) ||
|
|
opcode == OP(SEND_LAST_WITH_IMMEDIATE) ||
|
|
opcode == OP(SEND_LAST_WITH_INVALIDATE))
|
|
break;
|
|
goto nack_inv;
|
|
|
|
case OP(RDMA_WRITE_FIRST):
|
|
case OP(RDMA_WRITE_MIDDLE):
|
|
if (opcode == OP(RDMA_WRITE_MIDDLE) ||
|
|
opcode == OP(RDMA_WRITE_LAST) ||
|
|
opcode == OP(RDMA_WRITE_LAST_WITH_IMMEDIATE))
|
|
break;
|
|
goto nack_inv;
|
|
|
|
default:
|
|
if (opcode == OP(SEND_MIDDLE) ||
|
|
opcode == OP(SEND_LAST) ||
|
|
opcode == OP(SEND_LAST_WITH_IMMEDIATE) ||
|
|
opcode == OP(SEND_LAST_WITH_INVALIDATE) ||
|
|
opcode == OP(RDMA_WRITE_MIDDLE) ||
|
|
opcode == OP(RDMA_WRITE_LAST) ||
|
|
opcode == OP(RDMA_WRITE_LAST_WITH_IMMEDIATE))
|
|
goto nack_inv;
|
|
/*
|
|
* Note that it is up to the requester to not send a new
|
|
* RDMA read or atomic operation before receiving an ACK
|
|
* for the previous operation.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
|
|
rvt_comm_est(qp);
|
|
|
|
/* OK, process the packet. */
|
|
switch (opcode) {
|
|
case OP(SEND_FIRST):
|
|
ret = rvt_get_rwqe(qp, false);
|
|
if (ret < 0)
|
|
goto nack_op_err;
|
|
if (!ret)
|
|
goto rnr_nak;
|
|
qp->r_rcv_len = 0;
|
|
fallthrough;
|
|
case OP(SEND_MIDDLE):
|
|
case OP(RDMA_WRITE_MIDDLE):
|
|
send_middle:
|
|
/* Check for invalid length PMTU or posted rwqe len. */
|
|
/*
|
|
* There will be no padding for 9B packet but 16B packets
|
|
* will come in with some padding since we always add
|
|
* CRC and LT bytes which will need to be flit aligned
|
|
*/
|
|
if (unlikely(tlen != (hdrsize + pmtu + extra_bytes)))
|
|
goto nack_inv;
|
|
qp->r_rcv_len += pmtu;
|
|
if (unlikely(qp->r_rcv_len > qp->r_len))
|
|
goto nack_inv;
|
|
rvt_copy_sge(qp, &qp->r_sge, data, pmtu, true, false);
|
|
break;
|
|
|
|
case OP(RDMA_WRITE_LAST_WITH_IMMEDIATE):
|
|
/* consume RWQE */
|
|
ret = rvt_get_rwqe(qp, true);
|
|
if (ret < 0)
|
|
goto nack_op_err;
|
|
if (!ret)
|
|
goto rnr_nak;
|
|
goto send_last_imm;
|
|
|
|
case OP(SEND_ONLY):
|
|
case OP(SEND_ONLY_WITH_IMMEDIATE):
|
|
case OP(SEND_ONLY_WITH_INVALIDATE):
|
|
ret = rvt_get_rwqe(qp, false);
|
|
if (ret < 0)
|
|
goto nack_op_err;
|
|
if (!ret)
|
|
goto rnr_nak;
|
|
qp->r_rcv_len = 0;
|
|
if (opcode == OP(SEND_ONLY))
|
|
goto no_immediate_data;
|
|
if (opcode == OP(SEND_ONLY_WITH_INVALIDATE))
|
|
goto send_last_inv;
|
|
fallthrough; /* for SEND_ONLY_WITH_IMMEDIATE */
|
|
case OP(SEND_LAST_WITH_IMMEDIATE):
|
|
send_last_imm:
|
|
wc.ex.imm_data = ohdr->u.imm_data;
|
|
wc.wc_flags = IB_WC_WITH_IMM;
|
|
goto send_last;
|
|
case OP(SEND_LAST_WITH_INVALIDATE):
|
|
send_last_inv:
|
|
rkey = be32_to_cpu(ohdr->u.ieth);
|
|
if (rvt_invalidate_rkey(qp, rkey))
|
|
goto no_immediate_data;
|
|
wc.ex.invalidate_rkey = rkey;
|
|
wc.wc_flags = IB_WC_WITH_INVALIDATE;
|
|
goto send_last;
|
|
case OP(RDMA_WRITE_LAST):
|
|
copy_last = rvt_is_user_qp(qp);
|
|
fallthrough;
|
|
case OP(SEND_LAST):
|
|
no_immediate_data:
|
|
wc.wc_flags = 0;
|
|
wc.ex.imm_data = 0;
|
|
send_last:
|
|
/* Check for invalid length. */
|
|
/* LAST len should be >= 1 */
|
|
if (unlikely(tlen < (hdrsize + extra_bytes)))
|
|
goto nack_inv;
|
|
/* Don't count the CRC(and padding and LT byte for 16B). */
|
|
tlen -= (hdrsize + extra_bytes);
|
|
wc.byte_len = tlen + qp->r_rcv_len;
|
|
if (unlikely(wc.byte_len > qp->r_len))
|
|
goto nack_inv;
|
|
rvt_copy_sge(qp, &qp->r_sge, data, tlen, true, copy_last);
|
|
rvt_put_ss(&qp->r_sge);
|
|
qp->r_msn++;
|
|
if (!__test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
|
|
break;
|
|
wc.wr_id = qp->r_wr_id;
|
|
wc.status = IB_WC_SUCCESS;
|
|
if (opcode == OP(RDMA_WRITE_LAST_WITH_IMMEDIATE) ||
|
|
opcode == OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE))
|
|
wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
|
|
else
|
|
wc.opcode = IB_WC_RECV;
|
|
wc.qp = &qp->ibqp;
|
|
wc.src_qp = qp->remote_qpn;
|
|
wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX;
|
|
/*
|
|
* It seems that IB mandates the presence of an SL in a
|
|
* work completion only for the UD transport (see section
|
|
* 11.4.2 of IBTA Vol. 1).
|
|
*
|
|
* However, the way the SL is chosen below is consistent
|
|
* with the way that IB/qib works and is trying avoid
|
|
* introducing incompatibilities.
|
|
*
|
|
* See also OPA Vol. 1, section 9.7.6, and table 9-17.
|
|
*/
|
|
wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr);
|
|
/* zero fields that are N/A */
|
|
wc.vendor_err = 0;
|
|
wc.pkey_index = 0;
|
|
wc.dlid_path_bits = 0;
|
|
wc.port_num = 0;
|
|
/* Signal completion event if the solicited bit is set. */
|
|
rvt_recv_cq(qp, &wc, ib_bth_is_solicited(ohdr));
|
|
break;
|
|
|
|
case OP(RDMA_WRITE_ONLY):
|
|
copy_last = rvt_is_user_qp(qp);
|
|
fallthrough;
|
|
case OP(RDMA_WRITE_FIRST):
|
|
case OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE):
|
|
if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
|
|
goto nack_inv;
|
|
/* consume RWQE */
|
|
reth = &ohdr->u.rc.reth;
|
|
qp->r_len = be32_to_cpu(reth->length);
|
|
qp->r_rcv_len = 0;
|
|
qp->r_sge.sg_list = NULL;
|
|
if (qp->r_len != 0) {
|
|
u32 rkey = be32_to_cpu(reth->rkey);
|
|
u64 vaddr = get_ib_reth_vaddr(reth);
|
|
int ok;
|
|
|
|
/* Check rkey & NAK */
|
|
ok = rvt_rkey_ok(qp, &qp->r_sge.sge, qp->r_len, vaddr,
|
|
rkey, IB_ACCESS_REMOTE_WRITE);
|
|
if (unlikely(!ok))
|
|
goto nack_acc;
|
|
qp->r_sge.num_sge = 1;
|
|
} else {
|
|
qp->r_sge.num_sge = 0;
|
|
qp->r_sge.sge.mr = NULL;
|
|
qp->r_sge.sge.vaddr = NULL;
|
|
qp->r_sge.sge.length = 0;
|
|
qp->r_sge.sge.sge_length = 0;
|
|
}
|
|
if (opcode == OP(RDMA_WRITE_FIRST))
|
|
goto send_middle;
|
|
else if (opcode == OP(RDMA_WRITE_ONLY))
|
|
goto no_immediate_data;
|
|
ret = rvt_get_rwqe(qp, true);
|
|
if (ret < 0)
|
|
goto nack_op_err;
|
|
if (!ret) {
|
|
/* peer will send again */
|
|
rvt_put_ss(&qp->r_sge);
|
|
goto rnr_nak;
|
|
}
|
|
wc.ex.imm_data = ohdr->u.rc.imm_data;
|
|
wc.wc_flags = IB_WC_WITH_IMM;
|
|
goto send_last;
|
|
|
|
case OP(RDMA_READ_REQUEST): {
|
|
struct rvt_ack_entry *e;
|
|
u32 len;
|
|
u8 next;
|
|
|
|
if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
|
|
goto nack_inv;
|
|
next = qp->r_head_ack_queue + 1;
|
|
/* s_ack_queue is size rvt_size_atomic()+1 so use > not >= */
|
|
if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
|
|
next = 0;
|
|
spin_lock_irqsave(&qp->s_lock, flags);
|
|
if (unlikely(next == qp->s_acked_ack_queue)) {
|
|
if (!qp->s_ack_queue[next].sent)
|
|
goto nack_inv_unlck;
|
|
update_ack_queue(qp, next);
|
|
}
|
|
e = &qp->s_ack_queue[qp->r_head_ack_queue];
|
|
release_rdma_sge_mr(e);
|
|
reth = &ohdr->u.rc.reth;
|
|
len = be32_to_cpu(reth->length);
|
|
if (len) {
|
|
u32 rkey = be32_to_cpu(reth->rkey);
|
|
u64 vaddr = get_ib_reth_vaddr(reth);
|
|
int ok;
|
|
|
|
/* Check rkey & NAK */
|
|
ok = rvt_rkey_ok(qp, &e->rdma_sge, len, vaddr,
|
|
rkey, IB_ACCESS_REMOTE_READ);
|
|
if (unlikely(!ok))
|
|
goto nack_acc_unlck;
|
|
/*
|
|
* Update the next expected PSN. We add 1 later
|
|
* below, so only add the remainder here.
|
|
*/
|
|
qp->r_psn += rvt_div_mtu(qp, len - 1);
|
|
} else {
|
|
e->rdma_sge.mr = NULL;
|
|
e->rdma_sge.vaddr = NULL;
|
|
e->rdma_sge.length = 0;
|
|
e->rdma_sge.sge_length = 0;
|
|
}
|
|
e->opcode = opcode;
|
|
e->sent = 0;
|
|
e->psn = psn;
|
|
e->lpsn = qp->r_psn;
|
|
/*
|
|
* We need to increment the MSN here instead of when we
|
|
* finish sending the result since a duplicate request would
|
|
* increment it more than once.
|
|
*/
|
|
qp->r_msn++;
|
|
qp->r_psn++;
|
|
qp->r_state = opcode;
|
|
qp->r_nak_state = 0;
|
|
qp->r_head_ack_queue = next;
|
|
qpriv->r_tid_alloc = qp->r_head_ack_queue;
|
|
|
|
/* Schedule the send engine. */
|
|
qp->s_flags |= RVT_S_RESP_PENDING;
|
|
if (fecn)
|
|
qp->s_flags |= RVT_S_ECN;
|
|
hfi1_schedule_send(qp);
|
|
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
return;
|
|
}
|
|
|
|
case OP(COMPARE_SWAP):
|
|
case OP(FETCH_ADD): {
|
|
struct ib_atomic_eth *ateth = &ohdr->u.atomic_eth;
|
|
u64 vaddr = get_ib_ateth_vaddr(ateth);
|
|
bool opfn = opcode == OP(COMPARE_SWAP) &&
|
|
vaddr == HFI1_VERBS_E_ATOMIC_VADDR;
|
|
struct rvt_ack_entry *e;
|
|
atomic64_t *maddr;
|
|
u64 sdata;
|
|
u32 rkey;
|
|
u8 next;
|
|
|
|
if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC) &&
|
|
!opfn))
|
|
goto nack_inv;
|
|
next = qp->r_head_ack_queue + 1;
|
|
if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
|
|
next = 0;
|
|
spin_lock_irqsave(&qp->s_lock, flags);
|
|
if (unlikely(next == qp->s_acked_ack_queue)) {
|
|
if (!qp->s_ack_queue[next].sent)
|
|
goto nack_inv_unlck;
|
|
update_ack_queue(qp, next);
|
|
}
|
|
e = &qp->s_ack_queue[qp->r_head_ack_queue];
|
|
release_rdma_sge_mr(e);
|
|
/* Process OPFN special virtual address */
|
|
if (opfn) {
|
|
opfn_conn_response(qp, e, ateth);
|
|
goto ack;
|
|
}
|
|
if (unlikely(vaddr & (sizeof(u64) - 1)))
|
|
goto nack_inv_unlck;
|
|
rkey = be32_to_cpu(ateth->rkey);
|
|
/* Check rkey & NAK */
|
|
if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
|
|
vaddr, rkey,
|
|
IB_ACCESS_REMOTE_ATOMIC)))
|
|
goto nack_acc_unlck;
|
|
/* Perform atomic OP and save result. */
|
|
maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
|
|
sdata = get_ib_ateth_swap(ateth);
|
|
e->atomic_data = (opcode == OP(FETCH_ADD)) ?
|
|
(u64)atomic64_add_return(sdata, maddr) - sdata :
|
|
(u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
|
|
get_ib_ateth_compare(ateth),
|
|
sdata);
|
|
rvt_put_mr(qp->r_sge.sge.mr);
|
|
qp->r_sge.num_sge = 0;
|
|
ack:
|
|
e->opcode = opcode;
|
|
e->sent = 0;
|
|
e->psn = psn;
|
|
e->lpsn = psn;
|
|
qp->r_msn++;
|
|
qp->r_psn++;
|
|
qp->r_state = opcode;
|
|
qp->r_nak_state = 0;
|
|
qp->r_head_ack_queue = next;
|
|
qpriv->r_tid_alloc = qp->r_head_ack_queue;
|
|
|
|
/* Schedule the send engine. */
|
|
qp->s_flags |= RVT_S_RESP_PENDING;
|
|
if (fecn)
|
|
qp->s_flags |= RVT_S_ECN;
|
|
hfi1_schedule_send(qp);
|
|
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
return;
|
|
}
|
|
|
|
default:
|
|
/* NAK unknown opcodes. */
|
|
goto nack_inv;
|
|
}
|
|
qp->r_psn++;
|
|
qp->r_state = opcode;
|
|
qp->r_ack_psn = psn;
|
|
qp->r_nak_state = 0;
|
|
/* Send an ACK if requested or required. */
|
|
if (psn & IB_BTH_REQ_ACK || fecn) {
|
|
if (packet->numpkt == 0 || fecn ||
|
|
qp->r_adefered >= HFI1_PSN_CREDIT) {
|
|
rc_cancel_ack(qp);
|
|
goto send_ack;
|
|
}
|
|
qp->r_adefered++;
|
|
rc_defered_ack(rcd, qp);
|
|
}
|
|
return;
|
|
|
|
rnr_nak:
|
|
qp->r_nak_state = qp->r_min_rnr_timer | IB_RNR_NAK;
|
|
qp->r_ack_psn = qp->r_psn;
|
|
/* Queue RNR NAK for later */
|
|
rc_defered_ack(rcd, qp);
|
|
return;
|
|
|
|
nack_op_err:
|
|
rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
|
|
qp->r_nak_state = IB_NAK_REMOTE_OPERATIONAL_ERROR;
|
|
qp->r_ack_psn = qp->r_psn;
|
|
/* Queue NAK for later */
|
|
rc_defered_ack(rcd, qp);
|
|
return;
|
|
|
|
nack_inv_unlck:
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
nack_inv:
|
|
rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
|
|
qp->r_nak_state = IB_NAK_INVALID_REQUEST;
|
|
qp->r_ack_psn = qp->r_psn;
|
|
/* Queue NAK for later */
|
|
rc_defered_ack(rcd, qp);
|
|
return;
|
|
|
|
nack_acc_unlck:
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
nack_acc:
|
|
rvt_rc_error(qp, IB_WC_LOC_PROT_ERR);
|
|
qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
|
|
qp->r_ack_psn = qp->r_psn;
|
|
send_ack:
|
|
hfi1_send_rc_ack(packet, fecn);
|
|
}
|
|
|
|
void hfi1_rc_hdrerr(
|
|
struct hfi1_ctxtdata *rcd,
|
|
struct hfi1_packet *packet,
|
|
struct rvt_qp *qp)
|
|
{
|
|
struct hfi1_ibport *ibp = rcd_to_iport(rcd);
|
|
int diff;
|
|
u32 opcode;
|
|
u32 psn;
|
|
|
|
if (hfi1_ruc_check_hdr(ibp, packet))
|
|
return;
|
|
|
|
psn = ib_bth_get_psn(packet->ohdr);
|
|
opcode = ib_bth_get_opcode(packet->ohdr);
|
|
|
|
/* Only deal with RDMA Writes for now */
|
|
if (opcode < IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST) {
|
|
diff = delta_psn(psn, qp->r_psn);
|
|
if (!qp->r_nak_state && diff >= 0) {
|
|
ibp->rvp.n_rc_seqnak++;
|
|
qp->r_nak_state = IB_NAK_PSN_ERROR;
|
|
/* Use the expected PSN. */
|
|
qp->r_ack_psn = qp->r_psn;
|
|
/*
|
|
* Wait to send the sequence
|
|
* NAK until all packets
|
|
* in the receive queue have
|
|
* been processed.
|
|
* Otherwise, we end up
|
|
* propagating congestion.
|
|
*/
|
|
rc_defered_ack(rcd, qp);
|
|
} /* Out of sequence NAK */
|
|
} /* QP Request NAKs */
|
|
}
|