406 lines
9.3 KiB
C
406 lines
9.3 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2022 Intel Corporation
|
|
*/
|
|
|
|
#include "xe_pm.h"
|
|
|
|
#include <linux/pm_runtime.h>
|
|
|
|
#include <drm/drm_managed.h>
|
|
#include <drm/ttm/ttm_placement.h>
|
|
|
|
#include "xe_bo.h"
|
|
#include "xe_bo_evict.h"
|
|
#include "xe_device.h"
|
|
#include "xe_device_sysfs.h"
|
|
#include "xe_display.h"
|
|
#include "xe_ggtt.h"
|
|
#include "xe_gt.h"
|
|
#include "xe_guc.h"
|
|
#include "xe_irq.h"
|
|
#include "xe_pcode.h"
|
|
#include "xe_wa.h"
|
|
|
|
/**
|
|
* DOC: Xe Power Management
|
|
*
|
|
* Xe PM shall be guided by the simplicity.
|
|
* Use the simplest hook options whenever possible.
|
|
* Let's not reinvent the runtime_pm references and hooks.
|
|
* Shall have a clear separation of display and gt underneath this component.
|
|
*
|
|
* What's next:
|
|
*
|
|
* For now s2idle and s3 are only working in integrated devices. The next step
|
|
* is to iterate through all VRAM's BO backing them up into the system memory
|
|
* before allowing the system suspend.
|
|
*
|
|
* Also runtime_pm needs to be here from the beginning.
|
|
*
|
|
* RC6/RPS are also critical PM features. Let's start with GuCRC and GuC SLPC
|
|
* and no wait boost. Frequency optimizations should come on a next stage.
|
|
*/
|
|
|
|
/**
|
|
* xe_pm_suspend - Helper for System suspend, i.e. S0->S3 / S0->S2idle
|
|
* @xe: xe device instance
|
|
*
|
|
* Return: 0 on success
|
|
*/
|
|
int xe_pm_suspend(struct xe_device *xe)
|
|
{
|
|
struct xe_gt *gt;
|
|
u8 id;
|
|
int err;
|
|
|
|
for_each_gt(gt, xe, id)
|
|
xe_gt_suspend_prepare(gt);
|
|
|
|
/* FIXME: Super racey... */
|
|
err = xe_bo_evict_all(xe);
|
|
if (err)
|
|
return err;
|
|
|
|
xe_display_pm_suspend(xe);
|
|
|
|
for_each_gt(gt, xe, id) {
|
|
err = xe_gt_suspend(gt);
|
|
if (err) {
|
|
xe_display_pm_resume(xe);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
xe_irq_suspend(xe);
|
|
|
|
xe_display_pm_suspend_late(xe);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* xe_pm_resume - Helper for System resume S3->S0 / S2idle->S0
|
|
* @xe: xe device instance
|
|
*
|
|
* Return: 0 on success
|
|
*/
|
|
int xe_pm_resume(struct xe_device *xe)
|
|
{
|
|
struct xe_tile *tile;
|
|
struct xe_gt *gt;
|
|
u8 id;
|
|
int err;
|
|
|
|
for_each_tile(tile, xe, id)
|
|
xe_wa_apply_tile_workarounds(tile);
|
|
|
|
for_each_gt(gt, xe, id) {
|
|
err = xe_pcode_init(gt);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
xe_display_pm_resume_early(xe);
|
|
|
|
/*
|
|
* This only restores pinned memory which is the memory required for the
|
|
* GT(s) to resume.
|
|
*/
|
|
err = xe_bo_restore_kernel(xe);
|
|
if (err)
|
|
return err;
|
|
|
|
xe_irq_resume(xe);
|
|
|
|
xe_display_pm_resume(xe);
|
|
|
|
for_each_gt(gt, xe, id)
|
|
xe_gt_resume(gt);
|
|
|
|
err = xe_bo_restore_user(xe);
|
|
if (err)
|
|
return err;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool xe_pm_pci_d3cold_capable(struct pci_dev *pdev)
|
|
{
|
|
struct pci_dev *root_pdev;
|
|
|
|
root_pdev = pcie_find_root_port(pdev);
|
|
if (!root_pdev)
|
|
return false;
|
|
|
|
/* D3Cold requires PME capability and _PR3 power resource */
|
|
if (!pci_pme_capable(root_pdev, PCI_D3cold) || !pci_pr3_present(root_pdev))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void xe_pm_runtime_init(struct xe_device *xe)
|
|
{
|
|
struct device *dev = xe->drm.dev;
|
|
|
|
/*
|
|
* Disable the system suspend direct complete optimization.
|
|
* We need to ensure that the regular device suspend/resume functions
|
|
* are called since our runtime_pm cannot guarantee local memory
|
|
* eviction for d3cold.
|
|
* TODO: Check HDA audio dependencies claimed by i915, and then enforce
|
|
* this option to integrated graphics as well.
|
|
*/
|
|
if (IS_DGFX(xe))
|
|
dev_pm_set_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE);
|
|
|
|
pm_runtime_use_autosuspend(dev);
|
|
pm_runtime_set_autosuspend_delay(dev, 1000);
|
|
pm_runtime_set_active(dev);
|
|
pm_runtime_allow(dev);
|
|
pm_runtime_mark_last_busy(dev);
|
|
pm_runtime_put(dev);
|
|
}
|
|
|
|
void xe_pm_init(struct xe_device *xe)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
|
|
|
|
/* For now suspend/resume is only allowed with GuC */
|
|
if (!xe_device_uc_enabled(xe))
|
|
return;
|
|
|
|
drmm_mutex_init(&xe->drm, &xe->d3cold.lock);
|
|
|
|
xe->d3cold.capable = xe_pm_pci_d3cold_capable(pdev);
|
|
|
|
if (xe->d3cold.capable) {
|
|
xe_device_sysfs_init(xe);
|
|
xe_pm_set_vram_threshold(xe, DEFAULT_VRAM_THRESHOLD);
|
|
}
|
|
|
|
xe_pm_runtime_init(xe);
|
|
}
|
|
|
|
void xe_pm_runtime_fini(struct xe_device *xe)
|
|
{
|
|
struct device *dev = xe->drm.dev;
|
|
|
|
pm_runtime_get_sync(dev);
|
|
pm_runtime_forbid(dev);
|
|
}
|
|
|
|
static void xe_pm_write_callback_task(struct xe_device *xe,
|
|
struct task_struct *task)
|
|
{
|
|
WRITE_ONCE(xe->pm_callback_task, task);
|
|
|
|
/*
|
|
* Just in case it's somehow possible for our writes to be reordered to
|
|
* the extent that something else re-uses the task written in
|
|
* pm_callback_task. For example after returning from the callback, but
|
|
* before the reordered write that resets pm_callback_task back to NULL.
|
|
*/
|
|
smp_mb(); /* pairs with xe_pm_read_callback_task */
|
|
}
|
|
|
|
struct task_struct *xe_pm_read_callback_task(struct xe_device *xe)
|
|
{
|
|
smp_mb(); /* pairs with xe_pm_write_callback_task */
|
|
|
|
return READ_ONCE(xe->pm_callback_task);
|
|
}
|
|
|
|
int xe_pm_runtime_suspend(struct xe_device *xe)
|
|
{
|
|
struct xe_gt *gt;
|
|
u8 id;
|
|
int err = 0;
|
|
|
|
if (xe->d3cold.allowed && xe_device_mem_access_ongoing(xe))
|
|
return -EBUSY;
|
|
|
|
/* Disable access_ongoing asserts and prevent recursive pm calls */
|
|
xe_pm_write_callback_task(xe, current);
|
|
|
|
/*
|
|
* The actual xe_device_mem_access_put() is always async underneath, so
|
|
* exactly where that is called should makes no difference to us. However
|
|
* we still need to be very careful with the locks that this callback
|
|
* acquires and the locks that are acquired and held by any callers of
|
|
* xe_device_mem_access_get(). We already have the matching annotation
|
|
* on that side, but we also need it here. For example lockdep should be
|
|
* able to tell us if the following scenario is in theory possible:
|
|
*
|
|
* CPU0 | CPU1 (kworker)
|
|
* lock(A) |
|
|
* | xe_pm_runtime_suspend()
|
|
* | lock(A)
|
|
* xe_device_mem_access_get() |
|
|
*
|
|
* This will clearly deadlock since rpm core needs to wait for
|
|
* xe_pm_runtime_suspend() to complete, but here we are holding lock(A)
|
|
* on CPU0 which prevents CPU1 making forward progress. With the
|
|
* annotation here and in xe_device_mem_access_get() lockdep will see
|
|
* the potential lock inversion and give us a nice splat.
|
|
*/
|
|
lock_map_acquire(&xe_device_mem_access_lockdep_map);
|
|
|
|
if (xe->d3cold.allowed) {
|
|
err = xe_bo_evict_all(xe);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
for_each_gt(gt, xe, id) {
|
|
err = xe_gt_suspend(gt);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
xe_irq_suspend(xe);
|
|
out:
|
|
lock_map_release(&xe_device_mem_access_lockdep_map);
|
|
xe_pm_write_callback_task(xe, NULL);
|
|
return err;
|
|
}
|
|
|
|
int xe_pm_runtime_resume(struct xe_device *xe)
|
|
{
|
|
struct xe_gt *gt;
|
|
u8 id;
|
|
int err = 0;
|
|
|
|
/* Disable access_ongoing asserts and prevent recursive pm calls */
|
|
xe_pm_write_callback_task(xe, current);
|
|
|
|
lock_map_acquire(&xe_device_mem_access_lockdep_map);
|
|
|
|
/*
|
|
* It can be possible that xe has allowed d3cold but other pcie devices
|
|
* in gfx card soc would have blocked d3cold, therefore card has not
|
|
* really lost power. Detecting primary Gt power is sufficient.
|
|
*/
|
|
gt = xe_device_get_gt(xe, 0);
|
|
xe->d3cold.power_lost = xe_guc_in_reset(>->uc.guc);
|
|
|
|
if (xe->d3cold.allowed && xe->d3cold.power_lost) {
|
|
for_each_gt(gt, xe, id) {
|
|
err = xe_pcode_init(gt);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* This only restores pinned memory which is the memory
|
|
* required for the GT(s) to resume.
|
|
*/
|
|
err = xe_bo_restore_kernel(xe);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
xe_irq_resume(xe);
|
|
|
|
for_each_gt(gt, xe, id)
|
|
xe_gt_resume(gt);
|
|
|
|
if (xe->d3cold.allowed && xe->d3cold.power_lost) {
|
|
err = xe_bo_restore_user(xe);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
out:
|
|
lock_map_release(&xe_device_mem_access_lockdep_map);
|
|
xe_pm_write_callback_task(xe, NULL);
|
|
return err;
|
|
}
|
|
|
|
int xe_pm_runtime_get(struct xe_device *xe)
|
|
{
|
|
return pm_runtime_get_sync(xe->drm.dev);
|
|
}
|
|
|
|
int xe_pm_runtime_put(struct xe_device *xe)
|
|
{
|
|
pm_runtime_mark_last_busy(xe->drm.dev);
|
|
return pm_runtime_put(xe->drm.dev);
|
|
}
|
|
|
|
int xe_pm_runtime_get_if_active(struct xe_device *xe)
|
|
{
|
|
return pm_runtime_get_if_active(xe->drm.dev, true);
|
|
}
|
|
|
|
void xe_pm_assert_unbounded_bridge(struct xe_device *xe)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
|
|
struct pci_dev *bridge = pci_upstream_bridge(pdev);
|
|
|
|
if (!bridge)
|
|
return;
|
|
|
|
if (!bridge->driver) {
|
|
drm_warn(&xe->drm, "unbounded parent pci bridge, device won't support any PM support.\n");
|
|
device_set_pm_not_required(&pdev->dev);
|
|
}
|
|
}
|
|
|
|
int xe_pm_set_vram_threshold(struct xe_device *xe, u32 threshold)
|
|
{
|
|
struct ttm_resource_manager *man;
|
|
u32 vram_total_mb = 0;
|
|
int i;
|
|
|
|
for (i = XE_PL_VRAM0; i <= XE_PL_VRAM1; ++i) {
|
|
man = ttm_manager_type(&xe->ttm, i);
|
|
if (man)
|
|
vram_total_mb += DIV_ROUND_UP_ULL(man->size, 1024 * 1024);
|
|
}
|
|
|
|
drm_dbg(&xe->drm, "Total vram %u mb\n", vram_total_mb);
|
|
|
|
if (threshold > vram_total_mb)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&xe->d3cold.lock);
|
|
xe->d3cold.vram_threshold = threshold;
|
|
mutex_unlock(&xe->d3cold.lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void xe_pm_d3cold_allowed_toggle(struct xe_device *xe)
|
|
{
|
|
struct ttm_resource_manager *man;
|
|
u32 total_vram_used_mb = 0;
|
|
u64 vram_used;
|
|
int i;
|
|
|
|
if (!xe->d3cold.capable) {
|
|
xe->d3cold.allowed = false;
|
|
return;
|
|
}
|
|
|
|
for (i = XE_PL_VRAM0; i <= XE_PL_VRAM1; ++i) {
|
|
man = ttm_manager_type(&xe->ttm, i);
|
|
if (man) {
|
|
vram_used = ttm_resource_manager_usage(man);
|
|
total_vram_used_mb += DIV_ROUND_UP_ULL(vram_used, 1024 * 1024);
|
|
}
|
|
}
|
|
|
|
mutex_lock(&xe->d3cold.lock);
|
|
|
|
if (total_vram_used_mb < xe->d3cold.vram_threshold)
|
|
xe->d3cold.allowed = true;
|
|
else
|
|
xe->d3cold.allowed = false;
|
|
|
|
mutex_unlock(&xe->d3cold.lock);
|
|
|
|
drm_dbg(&xe->drm,
|
|
"d3cold: allowed=%s\n", str_yes_no(xe->d3cold.allowed));
|
|
}
|