mirror_ubuntu-kernels/drivers/dma/xilinx/xdma.c

1313 lines
34 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* DMA driver for Xilinx DMA/Bridge Subsystem
*
* Copyright (C) 2017-2020 Xilinx, Inc. All rights reserved.
* Copyright (C) 2022, Advanced Micro Devices, Inc.
*/
/*
* The DMA/Bridge Subsystem for PCI Express allows for the movement of data
* between Host memory and the DMA subsystem. It does this by operating on
* 'descriptors' that contain information about the source, destination and
* amount of data to transfer. These direct memory transfers can be both in
* the Host to Card (H2C) and Card to Host (C2H) transfers. The DMA can be
* configured to have a single AXI4 Master interface shared by all channels
* or one AXI4-Stream interface for each channel enabled. Memory transfers are
* specified on a per-channel basis in descriptor linked lists, which the DMA
* fetches from host memory and processes. Events such as descriptor completion
* and errors are signaled using interrupts. The core also provides up to 16
* user interrupt wires that generate interrupts to the host.
*/
#include <linux/mod_devicetable.h>
#include <linux/bitfield.h>
#include <linux/dmapool.h>
#include <linux/regmap.h>
#include <linux/dmaengine.h>
#include <linux/dma/amd_xdma.h>
#include <linux/platform_device.h>
#include <linux/platform_data/amd_xdma.h>
#include <linux/dma-mapping.h>
#include <linux/pci.h>
#include "../virt-dma.h"
#include "xdma-regs.h"
/* mmio regmap config for all XDMA registers */
static const struct regmap_config xdma_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.max_register = XDMA_REG_SPACE_LEN,
};
/**
* struct xdma_desc_block - Descriptor block
* @virt_addr: Virtual address of block start
* @dma_addr: DMA address of block start
*/
struct xdma_desc_block {
void *virt_addr;
dma_addr_t dma_addr;
};
/**
* struct xdma_chan - Driver specific DMA channel structure
* @vchan: Virtual channel
* @xdev_hdl: Pointer to DMA device structure
* @base: Offset of channel registers
* @desc_pool: Descriptor pool
* @busy: Busy flag of the channel
* @dir: Transferring direction of the channel
* @cfg: Transferring config of the channel
* @irq: IRQ assigned to the channel
*/
struct xdma_chan {
struct virt_dma_chan vchan;
void *xdev_hdl;
u32 base;
struct dma_pool *desc_pool;
bool busy;
enum dma_transfer_direction dir;
struct dma_slave_config cfg;
u32 irq;
};
/**
* struct xdma_desc - DMA desc structure
* @vdesc: Virtual DMA descriptor
* @chan: DMA channel pointer
* @dir: Transferring direction of the request
* @desc_blocks: Hardware descriptor blocks
* @dblk_num: Number of hardware descriptor blocks
* @desc_num: Number of hardware descriptors
* @completed_desc_num: Completed hardware descriptors
* @cyclic: Cyclic transfer vs. scatter-gather
* @interleaved_dma: Interleaved DMA transfer
* @periods: Number of periods in the cyclic transfer
* @period_size: Size of a period in bytes in cyclic transfers
* @frames_left: Number of frames left in interleaved DMA transfer
* @error: tx error flag
*/
struct xdma_desc {
struct virt_dma_desc vdesc;
struct xdma_chan *chan;
enum dma_transfer_direction dir;
struct xdma_desc_block *desc_blocks;
u32 dblk_num;
u32 desc_num;
u32 completed_desc_num;
bool cyclic;
bool interleaved_dma;
u32 periods;
u32 period_size;
u32 frames_left;
bool error;
};
#define XDMA_DEV_STATUS_REG_DMA BIT(0)
#define XDMA_DEV_STATUS_INIT_MSIX BIT(1)
/**
* struct xdma_device - DMA device structure
* @pdev: Platform device pointer
* @dma_dev: DMA device structure
* @rmap: MMIO regmap for DMA registers
* @h2c_chans: Host to Card channels
* @c2h_chans: Card to Host channels
* @h2c_chan_num: Number of H2C channels
* @c2h_chan_num: Number of C2H channels
* @irq_start: Start IRQ assigned to device
* @irq_num: Number of IRQ assigned to device
* @status: Initialization status
*/
struct xdma_device {
struct platform_device *pdev;
struct dma_device dma_dev;
struct regmap *rmap;
struct xdma_chan *h2c_chans;
struct xdma_chan *c2h_chans;
u32 h2c_chan_num;
u32 c2h_chan_num;
u32 irq_start;
u32 irq_num;
u32 status;
};
#define xdma_err(xdev, fmt, args...) \
dev_err(&(xdev)->pdev->dev, fmt, ##args)
#define XDMA_CHAN_NUM(_xd) ({ \
typeof(_xd) (xd) = (_xd); \
((xd)->h2c_chan_num + (xd)->c2h_chan_num); })
/* Get the last desc in a desc block */
static inline void *xdma_blk_last_desc(struct xdma_desc_block *block)
{
return block->virt_addr + (XDMA_DESC_ADJACENT - 1) * XDMA_DESC_SIZE;
}
/**
* xdma_link_sg_desc_blocks - Link SG descriptor blocks for DMA transfer
* @sw_desc: Tx descriptor pointer
*/
static void xdma_link_sg_desc_blocks(struct xdma_desc *sw_desc)
{
struct xdma_desc_block *block;
u32 last_blk_desc, desc_control;
struct xdma_hw_desc *desc;
int i;
desc_control = XDMA_DESC_CONTROL(XDMA_DESC_ADJACENT, 0);
for (i = 1; i < sw_desc->dblk_num; i++) {
block = &sw_desc->desc_blocks[i - 1];
desc = xdma_blk_last_desc(block);
if (!(i & XDMA_DESC_BLOCK_MASK)) {
desc->control = cpu_to_le32(XDMA_DESC_CONTROL_LAST);
continue;
}
desc->control = cpu_to_le32(desc_control);
desc->next_desc = cpu_to_le64(block[1].dma_addr);
}
/* update the last block */
last_blk_desc = (sw_desc->desc_num - 1) & XDMA_DESC_ADJACENT_MASK;
if (((sw_desc->dblk_num - 1) & XDMA_DESC_BLOCK_MASK) > 0) {
block = &sw_desc->desc_blocks[sw_desc->dblk_num - 2];
desc = xdma_blk_last_desc(block);
desc_control = XDMA_DESC_CONTROL(last_blk_desc + 1, 0);
desc->control = cpu_to_le32(desc_control);
}
block = &sw_desc->desc_blocks[sw_desc->dblk_num - 1];
desc = block->virt_addr + last_blk_desc * XDMA_DESC_SIZE;
desc->control = cpu_to_le32(XDMA_DESC_CONTROL_LAST);
}
/**
* xdma_link_cyclic_desc_blocks - Link cyclic descriptor blocks for DMA transfer
* @sw_desc: Tx descriptor pointer
*/
static void xdma_link_cyclic_desc_blocks(struct xdma_desc *sw_desc)
{
struct xdma_desc_block *block;
struct xdma_hw_desc *desc;
int i;
block = sw_desc->desc_blocks;
for (i = 0; i < sw_desc->desc_num - 1; i++) {
desc = block->virt_addr + i * XDMA_DESC_SIZE;
desc->next_desc = cpu_to_le64(block->dma_addr + ((i + 1) * XDMA_DESC_SIZE));
}
desc = block->virt_addr + i * XDMA_DESC_SIZE;
desc->next_desc = cpu_to_le64(block->dma_addr);
}
static inline struct xdma_chan *to_xdma_chan(struct dma_chan *chan)
{
return container_of(chan, struct xdma_chan, vchan.chan);
}
static inline struct xdma_desc *to_xdma_desc(struct virt_dma_desc *vdesc)
{
return container_of(vdesc, struct xdma_desc, vdesc);
}
/**
* xdma_channel_init - Initialize DMA channel registers
* @chan: DMA channel pointer
*/
static int xdma_channel_init(struct xdma_chan *chan)
{
struct xdma_device *xdev = chan->xdev_hdl;
int ret;
ret = regmap_write(xdev->rmap, chan->base + XDMA_CHAN_CONTROL_W1C,
CHAN_CTRL_NON_INCR_ADDR);
if (ret)
return ret;
ret = regmap_write(xdev->rmap, chan->base + XDMA_CHAN_INTR_ENABLE,
CHAN_IM_ALL);
if (ret)
return ret;
return 0;
}
/**
* xdma_free_desc - Free descriptor
* @vdesc: Virtual DMA descriptor
*/
static void xdma_free_desc(struct virt_dma_desc *vdesc)
{
struct xdma_desc *sw_desc;
int i;
sw_desc = to_xdma_desc(vdesc);
for (i = 0; i < sw_desc->dblk_num; i++) {
if (!sw_desc->desc_blocks[i].virt_addr)
break;
dma_pool_free(sw_desc->chan->desc_pool,
sw_desc->desc_blocks[i].virt_addr,
sw_desc->desc_blocks[i].dma_addr);
}
kfree(sw_desc->desc_blocks);
kfree(sw_desc);
}
/**
* xdma_alloc_desc - Allocate descriptor
* @chan: DMA channel pointer
* @desc_num: Number of hardware descriptors
* @cyclic: Whether this is a cyclic transfer
*/
static struct xdma_desc *
xdma_alloc_desc(struct xdma_chan *chan, u32 desc_num, bool cyclic)
{
struct xdma_desc *sw_desc;
struct xdma_hw_desc *desc;
dma_addr_t dma_addr;
u32 dblk_num;
u32 control;
void *addr;
int i, j;
sw_desc = kzalloc(sizeof(*sw_desc), GFP_NOWAIT);
if (!sw_desc)
return NULL;
sw_desc->chan = chan;
sw_desc->desc_num = desc_num;
sw_desc->cyclic = cyclic;
sw_desc->error = false;
dblk_num = DIV_ROUND_UP(desc_num, XDMA_DESC_ADJACENT);
sw_desc->desc_blocks = kcalloc(dblk_num, sizeof(*sw_desc->desc_blocks),
GFP_NOWAIT);
if (!sw_desc->desc_blocks)
goto failed;
if (cyclic)
control = XDMA_DESC_CONTROL_CYCLIC;
else
control = XDMA_DESC_CONTROL(1, 0);
sw_desc->dblk_num = dblk_num;
for (i = 0; i < sw_desc->dblk_num; i++) {
addr = dma_pool_alloc(chan->desc_pool, GFP_NOWAIT, &dma_addr);
if (!addr)
goto failed;
sw_desc->desc_blocks[i].virt_addr = addr;
sw_desc->desc_blocks[i].dma_addr = dma_addr;
for (j = 0, desc = addr; j < XDMA_DESC_ADJACENT; j++)
desc[j].control = cpu_to_le32(control);
}
if (cyclic)
xdma_link_cyclic_desc_blocks(sw_desc);
else
xdma_link_sg_desc_blocks(sw_desc);
return sw_desc;
failed:
xdma_free_desc(&sw_desc->vdesc);
return NULL;
}
/**
* xdma_xfer_start - Start DMA transfer
* @xchan: DMA channel pointer
*/
static int xdma_xfer_start(struct xdma_chan *xchan)
{
struct virt_dma_desc *vd = vchan_next_desc(&xchan->vchan);
struct xdma_device *xdev = xchan->xdev_hdl;
struct xdma_desc_block *block;
u32 val, completed_blocks;
struct xdma_desc *desc;
int ret;
/*
* check if there is not any submitted descriptor or channel is busy.
* vchan lock should be held where this function is called.
*/
if (!vd || xchan->busy)
return -EINVAL;
/* clear run stop bit to get ready for transfer */
ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL_W1C,
CHAN_CTRL_RUN_STOP);
if (ret)
return ret;
desc = to_xdma_desc(vd);
if (desc->dir != xchan->dir) {
xdma_err(xdev, "incorrect request direction");
return -EINVAL;
}
/* set DMA engine to the first descriptor block */
completed_blocks = desc->completed_desc_num / XDMA_DESC_ADJACENT;
block = &desc->desc_blocks[completed_blocks];
val = lower_32_bits(block->dma_addr);
ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_LO, val);
if (ret)
return ret;
val = upper_32_bits(block->dma_addr);
ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_HI, val);
if (ret)
return ret;
if (completed_blocks + 1 == desc->dblk_num)
val = (desc->desc_num - 1) & XDMA_DESC_ADJACENT_MASK;
else
val = XDMA_DESC_ADJACENT - 1;
ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_ADJ, val);
if (ret)
return ret;
/* kick off DMA transfer */
ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL,
CHAN_CTRL_START);
if (ret)
return ret;
xchan->busy = true;
return 0;
}
/**
* xdma_xfer_stop - Stop DMA transfer
* @xchan: DMA channel pointer
*/
static int xdma_xfer_stop(struct xdma_chan *xchan)
{
int ret;
u32 val;
struct xdma_device *xdev = xchan->xdev_hdl;
/* clear run stop bit to prevent any further auto-triggering */
ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL_W1C,
CHAN_CTRL_RUN_STOP);
if (ret)
return ret;
/* Clear the channel status register */
ret = regmap_read(xdev->rmap, xchan->base + XDMA_CHAN_STATUS_RC, &val);
if (ret)
return ret;
return 0;
}
/**
* xdma_alloc_channels - Detect and allocate DMA channels
* @xdev: DMA device pointer
* @dir: Channel direction
*/
static int xdma_alloc_channels(struct xdma_device *xdev,
enum dma_transfer_direction dir)
{
struct xdma_platdata *pdata = dev_get_platdata(&xdev->pdev->dev);
struct xdma_chan **chans, *xchan;
u32 base, identifier, target;
u32 *chan_num;
int i, j, ret;
if (dir == DMA_MEM_TO_DEV) {
base = XDMA_CHAN_H2C_OFFSET;
target = XDMA_CHAN_H2C_TARGET;
chans = &xdev->h2c_chans;
chan_num = &xdev->h2c_chan_num;
} else if (dir == DMA_DEV_TO_MEM) {
base = XDMA_CHAN_C2H_OFFSET;
target = XDMA_CHAN_C2H_TARGET;
chans = &xdev->c2h_chans;
chan_num = &xdev->c2h_chan_num;
} else {
xdma_err(xdev, "invalid direction specified");
return -EINVAL;
}
/* detect number of available DMA channels */
for (i = 0, *chan_num = 0; i < pdata->max_dma_channels; i++) {
ret = regmap_read(xdev->rmap, base + i * XDMA_CHAN_STRIDE,
&identifier);
if (ret)
return ret;
/* check if it is available DMA channel */
if (XDMA_CHAN_CHECK_TARGET(identifier, target))
(*chan_num)++;
}
if (!*chan_num) {
xdma_err(xdev, "does not probe any channel");
return -EINVAL;
}
*chans = devm_kcalloc(&xdev->pdev->dev, *chan_num, sizeof(**chans),
GFP_KERNEL);
if (!*chans)
return -ENOMEM;
for (i = 0, j = 0; i < pdata->max_dma_channels; i++) {
ret = regmap_read(xdev->rmap, base + i * XDMA_CHAN_STRIDE,
&identifier);
if (ret)
return ret;
if (!XDMA_CHAN_CHECK_TARGET(identifier, target))
continue;
if (j == *chan_num) {
xdma_err(xdev, "invalid channel number");
return -EIO;
}
/* init channel structure and hardware */
xchan = &(*chans)[j];
xchan->xdev_hdl = xdev;
xchan->base = base + i * XDMA_CHAN_STRIDE;
xchan->dir = dir;
ret = xdma_channel_init(xchan);
if (ret)
return ret;
xchan->vchan.desc_free = xdma_free_desc;
vchan_init(&xchan->vchan, &xdev->dma_dev);
j++;
}
dev_info(&xdev->pdev->dev, "configured %d %s channels", j,
(dir == DMA_MEM_TO_DEV) ? "H2C" : "C2H");
return 0;
}
/**
* xdma_issue_pending - Issue pending transactions
* @chan: DMA channel pointer
*/
static void xdma_issue_pending(struct dma_chan *chan)
{
struct xdma_chan *xdma_chan = to_xdma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&xdma_chan->vchan.lock, flags);
if (vchan_issue_pending(&xdma_chan->vchan))
xdma_xfer_start(xdma_chan);
spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags);
}
/**
* xdma_terminate_all - Terminate all transactions
* @chan: DMA channel pointer
*/
static int xdma_terminate_all(struct dma_chan *chan)
{
struct xdma_chan *xdma_chan = to_xdma_chan(chan);
struct virt_dma_desc *vd;
unsigned long flags;
LIST_HEAD(head);
xdma_xfer_stop(xdma_chan);
spin_lock_irqsave(&xdma_chan->vchan.lock, flags);
xdma_chan->busy = false;
vd = vchan_next_desc(&xdma_chan->vchan);
if (vd) {
list_del(&vd->node);
dma_cookie_complete(&vd->tx);
vchan_terminate_vdesc(vd);
}
vchan_get_all_descriptors(&xdma_chan->vchan, &head);
list_splice_tail(&head, &xdma_chan->vchan.desc_terminated);
spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags);
return 0;
}
/**
* xdma_synchronize - Synchronize terminated transactions
* @chan: DMA channel pointer
*/
static void xdma_synchronize(struct dma_chan *chan)
{
struct xdma_chan *xdma_chan = to_xdma_chan(chan);
vchan_synchronize(&xdma_chan->vchan);
}
/**
* xdma_fill_descs - Fill hardware descriptors with contiguous memory block addresses
* @sw_desc: tx descriptor state container
* @src_addr: Value for a ->src_addr field of a first descriptor
* @dst_addr: Value for a ->dst_addr field of a first descriptor
* @size: Total size of a contiguous memory block
* @filled_descs_num: Number of filled hardware descriptors for corresponding sw_desc
*/
static inline u32 xdma_fill_descs(struct xdma_desc *sw_desc, u64 src_addr,
u64 dst_addr, u32 size, u32 filled_descs_num)
{
u32 left = size, len, desc_num = filled_descs_num;
struct xdma_desc_block *dblk;
struct xdma_hw_desc *desc;
dblk = sw_desc->desc_blocks + (desc_num / XDMA_DESC_ADJACENT);
desc = dblk->virt_addr;
desc += desc_num & XDMA_DESC_ADJACENT_MASK;
do {
len = min_t(u32, left, XDMA_DESC_BLEN_MAX);
/* set hardware descriptor */
desc->bytes = cpu_to_le32(len);
desc->src_addr = cpu_to_le64(src_addr);
desc->dst_addr = cpu_to_le64(dst_addr);
if (!(++desc_num & XDMA_DESC_ADJACENT_MASK))
desc = (++dblk)->virt_addr;
else
desc++;
src_addr += len;
dst_addr += len;
left -= len;
} while (left);
return desc_num - filled_descs_num;
}
/**
* xdma_prep_device_sg - prepare a descriptor for a DMA transaction
* @chan: DMA channel pointer
* @sgl: Transfer scatter gather list
* @sg_len: Length of scatter gather list
* @dir: Transfer direction
* @flags: transfer ack flags
* @context: APP words of the descriptor
*/
static struct dma_async_tx_descriptor *
xdma_prep_device_sg(struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction dir,
unsigned long flags, void *context)
{
struct xdma_chan *xdma_chan = to_xdma_chan(chan);
struct dma_async_tx_descriptor *tx_desc;
struct xdma_desc *sw_desc;
u32 desc_num = 0, i;
u64 addr, dev_addr, *src, *dst;
struct scatterlist *sg;
for_each_sg(sgl, sg, sg_len, i)
desc_num += DIV_ROUND_UP(sg_dma_len(sg), XDMA_DESC_BLEN_MAX);
sw_desc = xdma_alloc_desc(xdma_chan, desc_num, false);
if (!sw_desc)
return NULL;
sw_desc->dir = dir;
sw_desc->cyclic = false;
sw_desc->interleaved_dma = false;
if (dir == DMA_MEM_TO_DEV) {
dev_addr = xdma_chan->cfg.dst_addr;
src = &addr;
dst = &dev_addr;
} else {
dev_addr = xdma_chan->cfg.src_addr;
src = &dev_addr;
dst = &addr;
}
desc_num = 0;
for_each_sg(sgl, sg, sg_len, i) {
addr = sg_dma_address(sg);
desc_num += xdma_fill_descs(sw_desc, *src, *dst, sg_dma_len(sg), desc_num);
dev_addr += sg_dma_len(sg);
}
tx_desc = vchan_tx_prep(&xdma_chan->vchan, &sw_desc->vdesc, flags);
if (!tx_desc)
goto failed;
return tx_desc;
failed:
xdma_free_desc(&sw_desc->vdesc);
return NULL;
}
/**
* xdma_prep_dma_cyclic - prepare for cyclic DMA transactions
* @chan: DMA channel pointer
* @address: Device DMA address to access
* @size: Total length to transfer
* @period_size: Period size to use for each transfer
* @dir: Transfer direction
* @flags: Transfer ack flags
*/
static struct dma_async_tx_descriptor *
xdma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t address,
size_t size, size_t period_size,
enum dma_transfer_direction dir,
unsigned long flags)
{
struct xdma_chan *xdma_chan = to_xdma_chan(chan);
struct xdma_device *xdev = xdma_chan->xdev_hdl;
unsigned int periods = size / period_size;
struct dma_async_tx_descriptor *tx_desc;
struct xdma_desc *sw_desc;
u64 addr, dev_addr, *src, *dst;
u32 desc_num;
unsigned int i;
/*
* Simplify the whole logic by preventing an abnormally high number of
* periods and periods size.
*/
if (period_size > XDMA_DESC_BLEN_MAX) {
xdma_err(xdev, "period size limited to %lu bytes\n", XDMA_DESC_BLEN_MAX);
return NULL;
}
if (periods > XDMA_DESC_ADJACENT) {
xdma_err(xdev, "number of periods limited to %u\n", XDMA_DESC_ADJACENT);
return NULL;
}
sw_desc = xdma_alloc_desc(xdma_chan, periods, true);
if (!sw_desc)
return NULL;
sw_desc->periods = periods;
sw_desc->period_size = period_size;
sw_desc->dir = dir;
sw_desc->interleaved_dma = false;
addr = address;
if (dir == DMA_MEM_TO_DEV) {
dev_addr = xdma_chan->cfg.dst_addr;
src = &addr;
dst = &dev_addr;
} else {
dev_addr = xdma_chan->cfg.src_addr;
src = &dev_addr;
dst = &addr;
}
desc_num = 0;
for (i = 0; i < periods; i++) {
desc_num += xdma_fill_descs(sw_desc, *src, *dst, period_size, desc_num);
addr += i * period_size;
}
tx_desc = vchan_tx_prep(&xdma_chan->vchan, &sw_desc->vdesc, flags);
if (!tx_desc)
goto failed;
return tx_desc;
failed:
xdma_free_desc(&sw_desc->vdesc);
return NULL;
}
/**
* xdma_prep_interleaved_dma - Prepare virtual descriptor for interleaved DMA transfers
* @chan: DMA channel
* @xt: DMA transfer template
* @flags: tx flags
*/
static struct dma_async_tx_descriptor *
xdma_prep_interleaved_dma(struct dma_chan *chan,
struct dma_interleaved_template *xt,
unsigned long flags)
{
int i;
u32 desc_num = 0, period_size = 0;
struct dma_async_tx_descriptor *tx_desc;
struct xdma_chan *xchan = to_xdma_chan(chan);
struct xdma_desc *sw_desc;
u64 src_addr, dst_addr;
for (i = 0; i < xt->frame_size; ++i)
desc_num += DIV_ROUND_UP(xt->sgl[i].size, XDMA_DESC_BLEN_MAX);
sw_desc = xdma_alloc_desc(xchan, desc_num, false);
if (!sw_desc)
return NULL;
sw_desc->dir = xt->dir;
sw_desc->interleaved_dma = true;
sw_desc->cyclic = flags & DMA_PREP_REPEAT;
sw_desc->frames_left = xt->numf;
sw_desc->periods = xt->numf;
desc_num = 0;
src_addr = xt->src_start;
dst_addr = xt->dst_start;
for (i = 0; i < xt->frame_size; ++i) {
desc_num += xdma_fill_descs(sw_desc, src_addr, dst_addr, xt->sgl[i].size, desc_num);
src_addr += dmaengine_get_src_icg(xt, &xt->sgl[i]) + (xt->src_inc ?
xt->sgl[i].size : 0);
dst_addr += dmaengine_get_dst_icg(xt, &xt->sgl[i]) + (xt->dst_inc ?
xt->sgl[i].size : 0);
period_size += xt->sgl[i].size;
}
sw_desc->period_size = period_size;
tx_desc = vchan_tx_prep(&xchan->vchan, &sw_desc->vdesc, flags);
if (tx_desc)
return tx_desc;
xdma_free_desc(&sw_desc->vdesc);
return NULL;
}
/**
* xdma_device_config - Configure the DMA channel
* @chan: DMA channel
* @cfg: channel configuration
*/
static int xdma_device_config(struct dma_chan *chan,
struct dma_slave_config *cfg)
{
struct xdma_chan *xdma_chan = to_xdma_chan(chan);
memcpy(&xdma_chan->cfg, cfg, sizeof(*cfg));
return 0;
}
/**
* xdma_free_chan_resources - Free channel resources
* @chan: DMA channel
*/
static void xdma_free_chan_resources(struct dma_chan *chan)
{
struct xdma_chan *xdma_chan = to_xdma_chan(chan);
vchan_free_chan_resources(&xdma_chan->vchan);
dma_pool_destroy(xdma_chan->desc_pool);
xdma_chan->desc_pool = NULL;
}
/**
* xdma_alloc_chan_resources - Allocate channel resources
* @chan: DMA channel
*/
static int xdma_alloc_chan_resources(struct dma_chan *chan)
{
struct xdma_chan *xdma_chan = to_xdma_chan(chan);
struct xdma_device *xdev = xdma_chan->xdev_hdl;
struct device *dev = xdev->dma_dev.dev;
while (dev && !dev_is_pci(dev))
dev = dev->parent;
if (!dev) {
xdma_err(xdev, "unable to find pci device");
return -EINVAL;
}
xdma_chan->desc_pool = dma_pool_create(dma_chan_name(chan), dev, XDMA_DESC_BLOCK_SIZE,
XDMA_DESC_BLOCK_ALIGN, XDMA_DESC_BLOCK_BOUNDARY);
if (!xdma_chan->desc_pool) {
xdma_err(xdev, "unable to allocate descriptor pool");
return -ENOMEM;
}
return 0;
}
static enum dma_status xdma_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
struct dma_tx_state *state)
{
struct xdma_chan *xdma_chan = to_xdma_chan(chan);
struct xdma_desc *desc = NULL;
struct virt_dma_desc *vd;
enum dma_status ret;
unsigned long flags;
unsigned int period_idx;
u32 residue = 0;
ret = dma_cookie_status(chan, cookie, state);
if (ret == DMA_COMPLETE)
return ret;
spin_lock_irqsave(&xdma_chan->vchan.lock, flags);
vd = vchan_find_desc(&xdma_chan->vchan, cookie);
if (!vd)
goto out;
desc = to_xdma_desc(vd);
if (desc->error) {
ret = DMA_ERROR;
} else if (desc->cyclic) {
period_idx = desc->completed_desc_num % desc->periods;
residue = (desc->periods - period_idx) * desc->period_size;
dma_set_residue(state, residue);
}
out:
spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags);
return ret;
}
/**
* xdma_channel_isr - XDMA channel interrupt handler
* @irq: IRQ number
* @dev_id: Pointer to the DMA channel structure
*/
static irqreturn_t xdma_channel_isr(int irq, void *dev_id)
{
struct xdma_chan *xchan = dev_id;
u32 complete_desc_num = 0;
struct xdma_device *xdev = xchan->xdev_hdl;
struct virt_dma_desc *vd, *next_vd;
struct xdma_desc *desc;
int ret;
u32 st;
bool repeat_tx;
spin_lock(&xchan->vchan.lock);
/* get submitted request */
vd = vchan_next_desc(&xchan->vchan);
if (!vd)
goto out;
/* Clear-on-read the status register */
ret = regmap_read(xdev->rmap, xchan->base + XDMA_CHAN_STATUS_RC, &st);
if (ret)
goto out;
desc = to_xdma_desc(vd);
st &= XDMA_CHAN_STATUS_MASK;
if ((st & XDMA_CHAN_ERROR_MASK) ||
!(st & (CHAN_CTRL_IE_DESC_COMPLETED | CHAN_CTRL_IE_DESC_STOPPED))) {
desc->error = true;
xdma_err(xdev, "channel error, status register value: 0x%x", st);
goto out;
}
ret = regmap_read(xdev->rmap, xchan->base + XDMA_CHAN_COMPLETED_DESC,
&complete_desc_num);
if (ret)
goto out;
if (desc->interleaved_dma) {
xchan->busy = false;
desc->completed_desc_num += complete_desc_num;
if (complete_desc_num == XDMA_DESC_BLOCK_NUM * XDMA_DESC_ADJACENT) {
xdma_xfer_start(xchan);
goto out;
}
/* last desc of any frame */
desc->frames_left--;
if (desc->frames_left)
goto out;
/* last desc of the last frame */
repeat_tx = vd->tx.flags & DMA_PREP_REPEAT;
next_vd = list_first_entry_or_null(&vd->node, struct virt_dma_desc, node);
if (next_vd)
repeat_tx = repeat_tx && !(next_vd->tx.flags & DMA_PREP_LOAD_EOT);
if (repeat_tx) {
desc->frames_left = desc->periods;
desc->completed_desc_num = 0;
vchan_cyclic_callback(vd);
} else {
list_del(&vd->node);
vchan_cookie_complete(vd);
}
/* start (or continue) the tx of a first desc on the vc.desc_issued list, if any */
xdma_xfer_start(xchan);
} else if (!desc->cyclic) {
xchan->busy = false;
desc->completed_desc_num += complete_desc_num;
/* if all data blocks are transferred, remove and complete the request */
if (desc->completed_desc_num == desc->desc_num) {
list_del(&vd->node);
vchan_cookie_complete(vd);
goto out;
}
if (desc->completed_desc_num > desc->desc_num ||
complete_desc_num != XDMA_DESC_BLOCK_NUM * XDMA_DESC_ADJACENT)
goto out;
/* transfer the rest of data */
xdma_xfer_start(xchan);
} else {
desc->completed_desc_num = complete_desc_num;
vchan_cyclic_callback(vd);
}
out:
spin_unlock(&xchan->vchan.lock);
return IRQ_HANDLED;
}
/**
* xdma_irq_fini - Uninitialize IRQ
* @xdev: DMA device pointer
*/
static void xdma_irq_fini(struct xdma_device *xdev)
{
int i;
/* disable interrupt */
regmap_write(xdev->rmap, XDMA_IRQ_CHAN_INT_EN_W1C, ~0);
/* free irq handler */
for (i = 0; i < xdev->h2c_chan_num; i++)
free_irq(xdev->h2c_chans[i].irq, &xdev->h2c_chans[i]);
for (i = 0; i < xdev->c2h_chan_num; i++)
free_irq(xdev->c2h_chans[i].irq, &xdev->c2h_chans[i]);
}
/**
* xdma_set_vector_reg - configure hardware IRQ registers
* @xdev: DMA device pointer
* @vec_tbl_start: Start of IRQ registers
* @irq_start: Start of IRQ
* @irq_num: Number of IRQ
*/
static int xdma_set_vector_reg(struct xdma_device *xdev, u32 vec_tbl_start,
u32 irq_start, u32 irq_num)
{
u32 shift, i, val = 0;
int ret;
/* Each IRQ register is 32 bit and contains 4 IRQs */
while (irq_num > 0) {
for (i = 0; i < 4; i++) {
shift = XDMA_IRQ_VEC_SHIFT * i;
val |= irq_start << shift;
irq_start++;
irq_num--;
if (!irq_num)
break;
}
/* write IRQ register */
ret = regmap_write(xdev->rmap, vec_tbl_start, val);
if (ret)
return ret;
vec_tbl_start += sizeof(u32);
val = 0;
}
return 0;
}
/**
* xdma_irq_init - initialize IRQs
* @xdev: DMA device pointer
*/
static int xdma_irq_init(struct xdma_device *xdev)
{
u32 irq = xdev->irq_start;
u32 user_irq_start;
int i, j, ret;
/* return failure if there are not enough IRQs */
if (xdev->irq_num < XDMA_CHAN_NUM(xdev)) {
xdma_err(xdev, "not enough irq");
return -EINVAL;
}
/* setup H2C interrupt handler */
for (i = 0; i < xdev->h2c_chan_num; i++) {
ret = request_irq(irq, xdma_channel_isr, 0,
"xdma-h2c-channel", &xdev->h2c_chans[i]);
if (ret) {
xdma_err(xdev, "H2C channel%d request irq%d failed: %d",
i, irq, ret);
goto failed_init_h2c;
}
xdev->h2c_chans[i].irq = irq;
irq++;
}
/* setup C2H interrupt handler */
for (j = 0; j < xdev->c2h_chan_num; j++) {
ret = request_irq(irq, xdma_channel_isr, 0,
"xdma-c2h-channel", &xdev->c2h_chans[j]);
if (ret) {
xdma_err(xdev, "C2H channel%d request irq%d failed: %d",
j, irq, ret);
goto failed_init_c2h;
}
xdev->c2h_chans[j].irq = irq;
irq++;
}
/* config hardware IRQ registers */
ret = xdma_set_vector_reg(xdev, XDMA_IRQ_CHAN_VEC_NUM, 0,
XDMA_CHAN_NUM(xdev));
if (ret) {
xdma_err(xdev, "failed to set channel vectors: %d", ret);
goto failed_init_c2h;
}
/* config user IRQ registers if needed */
user_irq_start = XDMA_CHAN_NUM(xdev);
if (xdev->irq_num > user_irq_start) {
ret = xdma_set_vector_reg(xdev, XDMA_IRQ_USER_VEC_NUM,
user_irq_start,
xdev->irq_num - user_irq_start);
if (ret) {
xdma_err(xdev, "failed to set user vectors: %d", ret);
goto failed_init_c2h;
}
}
/* enable interrupt */
ret = regmap_write(xdev->rmap, XDMA_IRQ_CHAN_INT_EN_W1S, ~0);
if (ret)
goto failed_init_c2h;
return 0;
failed_init_c2h:
while (j--)
free_irq(xdev->c2h_chans[j].irq, &xdev->c2h_chans[j]);
failed_init_h2c:
while (i--)
free_irq(xdev->h2c_chans[i].irq, &xdev->h2c_chans[i]);
return ret;
}
static bool xdma_filter_fn(struct dma_chan *chan, void *param)
{
struct xdma_chan *xdma_chan = to_xdma_chan(chan);
struct xdma_chan_info *chan_info = param;
return chan_info->dir == xdma_chan->dir;
}
/**
* xdma_disable_user_irq - Disable user interrupt
* @pdev: Pointer to the platform_device structure
* @irq_num: System IRQ number
*/
void xdma_disable_user_irq(struct platform_device *pdev, u32 irq_num)
{
struct xdma_device *xdev = platform_get_drvdata(pdev);
u32 index;
index = irq_num - xdev->irq_start;
if (index < XDMA_CHAN_NUM(xdev) || index >= xdev->irq_num) {
xdma_err(xdev, "invalid user irq number");
return;
}
index -= XDMA_CHAN_NUM(xdev);
regmap_write(xdev->rmap, XDMA_IRQ_USER_INT_EN_W1C, 1 << index);
}
EXPORT_SYMBOL(xdma_disable_user_irq);
/**
* xdma_enable_user_irq - Enable user logic interrupt
* @pdev: Pointer to the platform_device structure
* @irq_num: System IRQ number
*/
int xdma_enable_user_irq(struct platform_device *pdev, u32 irq_num)
{
struct xdma_device *xdev = platform_get_drvdata(pdev);
u32 index;
int ret;
index = irq_num - xdev->irq_start;
if (index < XDMA_CHAN_NUM(xdev) || index >= xdev->irq_num) {
xdma_err(xdev, "invalid user irq number");
return -EINVAL;
}
index -= XDMA_CHAN_NUM(xdev);
ret = regmap_write(xdev->rmap, XDMA_IRQ_USER_INT_EN_W1S, 1 << index);
if (ret)
return ret;
return 0;
}
EXPORT_SYMBOL(xdma_enable_user_irq);
/**
* xdma_get_user_irq - Get system IRQ number
* @pdev: Pointer to the platform_device structure
* @user_irq_index: User logic IRQ wire index
*
* Return: The system IRQ number allocated for the given wire index.
*/
int xdma_get_user_irq(struct platform_device *pdev, u32 user_irq_index)
{
struct xdma_device *xdev = platform_get_drvdata(pdev);
if (XDMA_CHAN_NUM(xdev) + user_irq_index >= xdev->irq_num) {
xdma_err(xdev, "invalid user irq index");
return -EINVAL;
}
return xdev->irq_start + XDMA_CHAN_NUM(xdev) + user_irq_index;
}
EXPORT_SYMBOL(xdma_get_user_irq);
/**
* xdma_remove - Driver remove function
* @pdev: Pointer to the platform_device structure
*/
static void xdma_remove(struct platform_device *pdev)
{
struct xdma_device *xdev = platform_get_drvdata(pdev);
if (xdev->status & XDMA_DEV_STATUS_INIT_MSIX)
xdma_irq_fini(xdev);
if (xdev->status & XDMA_DEV_STATUS_REG_DMA)
dma_async_device_unregister(&xdev->dma_dev);
}
/**
* xdma_probe - Driver probe function
* @pdev: Pointer to the platform_device structure
*/
static int xdma_probe(struct platform_device *pdev)
{
struct xdma_platdata *pdata = dev_get_platdata(&pdev->dev);
struct xdma_device *xdev;
void __iomem *reg_base;
struct resource *res;
int ret = -ENODEV;
if (pdata->max_dma_channels > XDMA_MAX_CHANNELS) {
dev_err(&pdev->dev, "invalid max dma channels %d",
pdata->max_dma_channels);
return -EINVAL;
}
xdev = devm_kzalloc(&pdev->dev, sizeof(*xdev), GFP_KERNEL);
if (!xdev)
return -ENOMEM;
platform_set_drvdata(pdev, xdev);
xdev->pdev = pdev;
res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!res) {
xdma_err(xdev, "failed to get irq resource");
goto failed;
}
xdev->irq_start = res->start;
xdev->irq_num = resource_size(res);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
xdma_err(xdev, "failed to get io resource");
goto failed;
}
reg_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(reg_base)) {
xdma_err(xdev, "ioremap failed");
goto failed;
}
xdev->rmap = devm_regmap_init_mmio(&pdev->dev, reg_base,
&xdma_regmap_config);
if (!xdev->rmap) {
xdma_err(xdev, "config regmap failed: %d", ret);
goto failed;
}
INIT_LIST_HEAD(&xdev->dma_dev.channels);
ret = xdma_alloc_channels(xdev, DMA_MEM_TO_DEV);
if (ret) {
xdma_err(xdev, "config H2C channels failed: %d", ret);
goto failed;
}
ret = xdma_alloc_channels(xdev, DMA_DEV_TO_MEM);
if (ret) {
xdma_err(xdev, "config C2H channels failed: %d", ret);
goto failed;
}
dma_cap_set(DMA_SLAVE, xdev->dma_dev.cap_mask);
dma_cap_set(DMA_PRIVATE, xdev->dma_dev.cap_mask);
dma_cap_set(DMA_CYCLIC, xdev->dma_dev.cap_mask);
dma_cap_set(DMA_INTERLEAVE, xdev->dma_dev.cap_mask);
dma_cap_set(DMA_REPEAT, xdev->dma_dev.cap_mask);
dma_cap_set(DMA_LOAD_EOT, xdev->dma_dev.cap_mask);
xdev->dma_dev.dev = &pdev->dev;
xdev->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
xdev->dma_dev.device_free_chan_resources = xdma_free_chan_resources;
xdev->dma_dev.device_alloc_chan_resources = xdma_alloc_chan_resources;
xdev->dma_dev.device_tx_status = xdma_tx_status;
xdev->dma_dev.device_prep_slave_sg = xdma_prep_device_sg;
xdev->dma_dev.device_config = xdma_device_config;
xdev->dma_dev.device_issue_pending = xdma_issue_pending;
xdev->dma_dev.device_terminate_all = xdma_terminate_all;
xdev->dma_dev.device_synchronize = xdma_synchronize;
xdev->dma_dev.filter.map = pdata->device_map;
xdev->dma_dev.filter.mapcnt = pdata->device_map_cnt;
xdev->dma_dev.filter.fn = xdma_filter_fn;
xdev->dma_dev.device_prep_dma_cyclic = xdma_prep_dma_cyclic;
xdev->dma_dev.device_prep_interleaved_dma = xdma_prep_interleaved_dma;
ret = dma_async_device_register(&xdev->dma_dev);
if (ret) {
xdma_err(xdev, "failed to register Xilinx XDMA: %d", ret);
goto failed;
}
xdev->status |= XDMA_DEV_STATUS_REG_DMA;
ret = xdma_irq_init(xdev);
if (ret) {
xdma_err(xdev, "failed to init msix: %d", ret);
goto failed;
}
xdev->status |= XDMA_DEV_STATUS_INIT_MSIX;
return 0;
failed:
xdma_remove(pdev);
return ret;
}
static const struct platform_device_id xdma_id_table[] = {
{ "xdma", 0},
{ },
};
static struct platform_driver xdma_driver = {
.driver = {
.name = "xdma",
},
.id_table = xdma_id_table,
.probe = xdma_probe,
.remove_new = xdma_remove,
};
module_platform_driver(xdma_driver);
MODULE_DESCRIPTION("AMD XDMA driver");
MODULE_AUTHOR("XRT Team <runtimeca39d@amd.com>");
MODULE_LICENSE("GPL");