632 lines
15 KiB
C
632 lines
15 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* AMD Encrypted Register State Support
|
|
*
|
|
* Author: Joerg Roedel <jroedel@suse.de>
|
|
*/
|
|
|
|
/*
|
|
* misc.h needs to be first because it knows how to include the other kernel
|
|
* headers in the pre-decompression code in a way that does not break
|
|
* compilation.
|
|
*/
|
|
#include "misc.h"
|
|
|
|
#include <asm/pgtable_types.h>
|
|
#include <asm/sev.h>
|
|
#include <asm/trapnr.h>
|
|
#include <asm/trap_pf.h>
|
|
#include <asm/msr-index.h>
|
|
#include <asm/fpu/xcr.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/svm.h>
|
|
#include <asm/cpuid.h>
|
|
|
|
#include "error.h"
|
|
#include "../msr.h"
|
|
|
|
static struct ghcb boot_ghcb_page __aligned(PAGE_SIZE);
|
|
struct ghcb *boot_ghcb;
|
|
|
|
/*
|
|
* Copy a version of this function here - insn-eval.c can't be used in
|
|
* pre-decompression code.
|
|
*/
|
|
static bool insn_has_rep_prefix(struct insn *insn)
|
|
{
|
|
insn_byte_t p;
|
|
int i;
|
|
|
|
insn_get_prefixes(insn);
|
|
|
|
for_each_insn_prefix(insn, i, p) {
|
|
if (p == 0xf2 || p == 0xf3)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Only a dummy for insn_get_seg_base() - Early boot-code is 64bit only and
|
|
* doesn't use segments.
|
|
*/
|
|
static unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
|
|
{
|
|
return 0UL;
|
|
}
|
|
|
|
static inline u64 sev_es_rd_ghcb_msr(void)
|
|
{
|
|
struct msr m;
|
|
|
|
boot_rdmsr(MSR_AMD64_SEV_ES_GHCB, &m);
|
|
|
|
return m.q;
|
|
}
|
|
|
|
static inline void sev_es_wr_ghcb_msr(u64 val)
|
|
{
|
|
struct msr m;
|
|
|
|
m.q = val;
|
|
boot_wrmsr(MSR_AMD64_SEV_ES_GHCB, &m);
|
|
}
|
|
|
|
static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
|
|
{
|
|
char buffer[MAX_INSN_SIZE];
|
|
int ret;
|
|
|
|
memcpy(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
|
|
|
|
ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
|
|
if (ret < 0)
|
|
return ES_DECODE_FAILED;
|
|
|
|
return ES_OK;
|
|
}
|
|
|
|
static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
|
|
void *dst, char *buf, size_t size)
|
|
{
|
|
memcpy(dst, buf, size);
|
|
|
|
return ES_OK;
|
|
}
|
|
|
|
static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
|
|
void *src, char *buf, size_t size)
|
|
{
|
|
memcpy(buf, src, size);
|
|
|
|
return ES_OK;
|
|
}
|
|
|
|
static enum es_result vc_ioio_check(struct es_em_ctxt *ctxt, u16 port, size_t size)
|
|
{
|
|
return ES_OK;
|
|
}
|
|
|
|
static bool fault_in_kernel_space(unsigned long address)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
#undef __init
|
|
#define __init
|
|
|
|
#undef __head
|
|
#define __head
|
|
|
|
#define __BOOT_COMPRESSED
|
|
|
|
/* Basic instruction decoding support needed */
|
|
#include "../../lib/inat.c"
|
|
#include "../../lib/insn.c"
|
|
|
|
/* Include code for early handlers */
|
|
#include "../../kernel/sev-shared.c"
|
|
|
|
bool sev_snp_enabled(void)
|
|
{
|
|
return sev_status & MSR_AMD64_SEV_SNP_ENABLED;
|
|
}
|
|
|
|
static void __page_state_change(unsigned long paddr, enum psc_op op)
|
|
{
|
|
u64 val;
|
|
|
|
if (!sev_snp_enabled())
|
|
return;
|
|
|
|
/*
|
|
* If private -> shared then invalidate the page before requesting the
|
|
* state change in the RMP table.
|
|
*/
|
|
if (op == SNP_PAGE_STATE_SHARED && pvalidate(paddr, RMP_PG_SIZE_4K, 0))
|
|
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE);
|
|
|
|
/* Issue VMGEXIT to change the page state in RMP table. */
|
|
sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, op));
|
|
VMGEXIT();
|
|
|
|
/* Read the response of the VMGEXIT. */
|
|
val = sev_es_rd_ghcb_msr();
|
|
if ((GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP) || GHCB_MSR_PSC_RESP_VAL(val))
|
|
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
|
|
|
|
/*
|
|
* Now that page state is changed in the RMP table, validate it so that it is
|
|
* consistent with the RMP entry.
|
|
*/
|
|
if (op == SNP_PAGE_STATE_PRIVATE && pvalidate(paddr, RMP_PG_SIZE_4K, 1))
|
|
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE);
|
|
}
|
|
|
|
void snp_set_page_private(unsigned long paddr)
|
|
{
|
|
__page_state_change(paddr, SNP_PAGE_STATE_PRIVATE);
|
|
}
|
|
|
|
void snp_set_page_shared(unsigned long paddr)
|
|
{
|
|
__page_state_change(paddr, SNP_PAGE_STATE_SHARED);
|
|
}
|
|
|
|
static bool early_setup_ghcb(void)
|
|
{
|
|
if (set_page_decrypted((unsigned long)&boot_ghcb_page))
|
|
return false;
|
|
|
|
/* Page is now mapped decrypted, clear it */
|
|
memset(&boot_ghcb_page, 0, sizeof(boot_ghcb_page));
|
|
|
|
boot_ghcb = &boot_ghcb_page;
|
|
|
|
/* Initialize lookup tables for the instruction decoder */
|
|
inat_init_tables();
|
|
|
|
/* SNP guest requires the GHCB GPA must be registered */
|
|
if (sev_snp_enabled())
|
|
snp_register_ghcb_early(__pa(&boot_ghcb_page));
|
|
|
|
return true;
|
|
}
|
|
|
|
static phys_addr_t __snp_accept_memory(struct snp_psc_desc *desc,
|
|
phys_addr_t pa, phys_addr_t pa_end)
|
|
{
|
|
struct psc_hdr *hdr;
|
|
struct psc_entry *e;
|
|
unsigned int i;
|
|
|
|
hdr = &desc->hdr;
|
|
memset(hdr, 0, sizeof(*hdr));
|
|
|
|
e = desc->entries;
|
|
|
|
i = 0;
|
|
while (pa < pa_end && i < VMGEXIT_PSC_MAX_ENTRY) {
|
|
hdr->end_entry = i;
|
|
|
|
e->gfn = pa >> PAGE_SHIFT;
|
|
e->operation = SNP_PAGE_STATE_PRIVATE;
|
|
if (IS_ALIGNED(pa, PMD_SIZE) && (pa_end - pa) >= PMD_SIZE) {
|
|
e->pagesize = RMP_PG_SIZE_2M;
|
|
pa += PMD_SIZE;
|
|
} else {
|
|
e->pagesize = RMP_PG_SIZE_4K;
|
|
pa += PAGE_SIZE;
|
|
}
|
|
|
|
e++;
|
|
i++;
|
|
}
|
|
|
|
if (vmgexit_psc(boot_ghcb, desc))
|
|
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
|
|
|
|
pvalidate_pages(desc);
|
|
|
|
return pa;
|
|
}
|
|
|
|
void snp_accept_memory(phys_addr_t start, phys_addr_t end)
|
|
{
|
|
struct snp_psc_desc desc = {};
|
|
unsigned int i;
|
|
phys_addr_t pa;
|
|
|
|
if (!boot_ghcb && !early_setup_ghcb())
|
|
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
|
|
|
|
pa = start;
|
|
while (pa < end)
|
|
pa = __snp_accept_memory(&desc, pa, end);
|
|
}
|
|
|
|
void sev_es_shutdown_ghcb(void)
|
|
{
|
|
if (!boot_ghcb)
|
|
return;
|
|
|
|
if (!sev_es_check_cpu_features())
|
|
error("SEV-ES CPU Features missing.");
|
|
|
|
/*
|
|
* GHCB Page must be flushed from the cache and mapped encrypted again.
|
|
* Otherwise the running kernel will see strange cache effects when
|
|
* trying to use that page.
|
|
*/
|
|
if (set_page_encrypted((unsigned long)&boot_ghcb_page))
|
|
error("Can't map GHCB page encrypted");
|
|
|
|
/*
|
|
* GHCB page is mapped encrypted again and flushed from the cache.
|
|
* Mark it non-present now to catch bugs when #VC exceptions trigger
|
|
* after this point.
|
|
*/
|
|
if (set_page_non_present((unsigned long)&boot_ghcb_page))
|
|
error("Can't unmap GHCB page");
|
|
}
|
|
|
|
static void __noreturn sev_es_ghcb_terminate(struct ghcb *ghcb, unsigned int set,
|
|
unsigned int reason, u64 exit_info_2)
|
|
{
|
|
u64 exit_info_1 = SVM_VMGEXIT_TERM_REASON(set, reason);
|
|
|
|
vc_ghcb_invalidate(ghcb);
|
|
ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_TERM_REQUEST);
|
|
ghcb_set_sw_exit_info_1(ghcb, exit_info_1);
|
|
ghcb_set_sw_exit_info_2(ghcb, exit_info_2);
|
|
|
|
sev_es_wr_ghcb_msr(__pa(ghcb));
|
|
VMGEXIT();
|
|
|
|
while (true)
|
|
asm volatile("hlt\n" : : : "memory");
|
|
}
|
|
|
|
bool sev_es_check_ghcb_fault(unsigned long address)
|
|
{
|
|
/* Check whether the fault was on the GHCB page */
|
|
return ((address & PAGE_MASK) == (unsigned long)&boot_ghcb_page);
|
|
}
|
|
|
|
void do_boot_stage2_vc(struct pt_regs *regs, unsigned long exit_code)
|
|
{
|
|
struct es_em_ctxt ctxt;
|
|
enum es_result result;
|
|
|
|
if (!boot_ghcb && !early_setup_ghcb())
|
|
sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
|
|
|
|
vc_ghcb_invalidate(boot_ghcb);
|
|
result = vc_init_em_ctxt(&ctxt, regs, exit_code);
|
|
if (result != ES_OK)
|
|
goto finish;
|
|
|
|
switch (exit_code) {
|
|
case SVM_EXIT_RDTSC:
|
|
case SVM_EXIT_RDTSCP:
|
|
result = vc_handle_rdtsc(boot_ghcb, &ctxt, exit_code);
|
|
break;
|
|
case SVM_EXIT_IOIO:
|
|
result = vc_handle_ioio(boot_ghcb, &ctxt);
|
|
break;
|
|
case SVM_EXIT_CPUID:
|
|
result = vc_handle_cpuid(boot_ghcb, &ctxt);
|
|
break;
|
|
default:
|
|
result = ES_UNSUPPORTED;
|
|
break;
|
|
}
|
|
|
|
finish:
|
|
if (result == ES_OK)
|
|
vc_finish_insn(&ctxt);
|
|
else if (result != ES_RETRY)
|
|
sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
|
|
}
|
|
|
|
static void enforce_vmpl0(void)
|
|
{
|
|
u64 attrs;
|
|
int err;
|
|
|
|
/*
|
|
* RMPADJUST modifies RMP permissions of a lesser-privileged (numerically
|
|
* higher) privilege level. Here, clear the VMPL1 permission mask of the
|
|
* GHCB page. If the guest is not running at VMPL0, this will fail.
|
|
*
|
|
* If the guest is running at VMPL0, it will succeed. Even if that operation
|
|
* modifies permission bits, it is still ok to do so currently because Linux
|
|
* SNP guests are supported only on VMPL0 so VMPL1 or higher permission masks
|
|
* changing is a don't-care.
|
|
*/
|
|
attrs = 1;
|
|
if (rmpadjust((unsigned long)&boot_ghcb_page, RMP_PG_SIZE_4K, attrs))
|
|
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_NOT_VMPL0);
|
|
}
|
|
|
|
/*
|
|
* SNP_FEATURES_IMPL_REQ is the mask of SNP features that will need
|
|
* guest side implementation for proper functioning of the guest. If any
|
|
* of these features are enabled in the hypervisor but are lacking guest
|
|
* side implementation, the behavior of the guest will be undefined. The
|
|
* guest could fail in non-obvious way making it difficult to debug.
|
|
*
|
|
* As the behavior of reserved feature bits is unknown to be on the
|
|
* safe side add them to the required features mask.
|
|
*/
|
|
#define SNP_FEATURES_IMPL_REQ (MSR_AMD64_SNP_VTOM | \
|
|
MSR_AMD64_SNP_REFLECT_VC | \
|
|
MSR_AMD64_SNP_RESTRICTED_INJ | \
|
|
MSR_AMD64_SNP_ALT_INJ | \
|
|
MSR_AMD64_SNP_DEBUG_SWAP | \
|
|
MSR_AMD64_SNP_VMPL_SSS | \
|
|
MSR_AMD64_SNP_SECURE_TSC | \
|
|
MSR_AMD64_SNP_VMGEXIT_PARAM | \
|
|
MSR_AMD64_SNP_VMSA_REG_PROTECTION | \
|
|
MSR_AMD64_SNP_RESERVED_BIT13 | \
|
|
MSR_AMD64_SNP_RESERVED_BIT15 | \
|
|
MSR_AMD64_SNP_RESERVED_MASK)
|
|
|
|
/*
|
|
* SNP_FEATURES_PRESENT is the mask of SNP features that are implemented
|
|
* by the guest kernel. As and when a new feature is implemented in the
|
|
* guest kernel, a corresponding bit should be added to the mask.
|
|
*/
|
|
#define SNP_FEATURES_PRESENT MSR_AMD64_SNP_DEBUG_SWAP
|
|
|
|
u64 snp_get_unsupported_features(u64 status)
|
|
{
|
|
if (!(status & MSR_AMD64_SEV_SNP_ENABLED))
|
|
return 0;
|
|
|
|
return status & SNP_FEATURES_IMPL_REQ & ~SNP_FEATURES_PRESENT;
|
|
}
|
|
|
|
void snp_check_features(void)
|
|
{
|
|
u64 unsupported;
|
|
|
|
/*
|
|
* Terminate the boot if hypervisor has enabled any feature lacking
|
|
* guest side implementation. Pass on the unsupported features mask through
|
|
* EXIT_INFO_2 of the GHCB protocol so that those features can be reported
|
|
* as part of the guest boot failure.
|
|
*/
|
|
unsupported = snp_get_unsupported_features(sev_status);
|
|
if (unsupported) {
|
|
if (ghcb_version < 2 || (!boot_ghcb && !early_setup_ghcb()))
|
|
sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
|
|
|
|
sev_es_ghcb_terminate(boot_ghcb, SEV_TERM_SET_GEN,
|
|
GHCB_SNP_UNSUPPORTED, unsupported);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* sev_check_cpu_support - Check for SEV support in the CPU capabilities
|
|
*
|
|
* Returns < 0 if SEV is not supported, otherwise the position of the
|
|
* encryption bit in the page table descriptors.
|
|
*/
|
|
static int sev_check_cpu_support(void)
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
|
|
/* Check for the SME/SEV support leaf */
|
|
eax = 0x80000000;
|
|
ecx = 0;
|
|
native_cpuid(&eax, &ebx, &ecx, &edx);
|
|
if (eax < 0x8000001f)
|
|
return -ENODEV;
|
|
|
|
/*
|
|
* Check for the SME/SEV feature:
|
|
* CPUID Fn8000_001F[EAX]
|
|
* - Bit 0 - Secure Memory Encryption support
|
|
* - Bit 1 - Secure Encrypted Virtualization support
|
|
* CPUID Fn8000_001F[EBX]
|
|
* - Bits 5:0 - Pagetable bit position used to indicate encryption
|
|
*/
|
|
eax = 0x8000001f;
|
|
ecx = 0;
|
|
native_cpuid(&eax, &ebx, &ecx, &edx);
|
|
/* Check whether SEV is supported */
|
|
if (!(eax & BIT(1)))
|
|
return -ENODEV;
|
|
|
|
return ebx & 0x3f;
|
|
}
|
|
|
|
void sev_enable(struct boot_params *bp)
|
|
{
|
|
struct msr m;
|
|
int bitpos;
|
|
bool snp;
|
|
|
|
/*
|
|
* bp->cc_blob_address should only be set by boot/compressed kernel.
|
|
* Initialize it to 0 to ensure that uninitialized values from
|
|
* buggy bootloaders aren't propagated.
|
|
*/
|
|
if (bp)
|
|
bp->cc_blob_address = 0;
|
|
|
|
/*
|
|
* Do an initial SEV capability check before snp_init() which
|
|
* loads the CPUID page and the same checks afterwards are done
|
|
* without the hypervisor and are trustworthy.
|
|
*
|
|
* If the HV fakes SEV support, the guest will crash'n'burn
|
|
* which is good enough.
|
|
*/
|
|
|
|
if (sev_check_cpu_support() < 0)
|
|
return;
|
|
|
|
/*
|
|
* Setup/preliminary detection of SNP. This will be sanity-checked
|
|
* against CPUID/MSR values later.
|
|
*/
|
|
snp = snp_init(bp);
|
|
|
|
/* Now repeat the checks with the SNP CPUID table. */
|
|
|
|
bitpos = sev_check_cpu_support();
|
|
if (bitpos < 0) {
|
|
if (snp)
|
|
error("SEV-SNP support indicated by CC blob, but not CPUID.");
|
|
return;
|
|
}
|
|
|
|
/* Set the SME mask if this is an SEV guest. */
|
|
boot_rdmsr(MSR_AMD64_SEV, &m);
|
|
sev_status = m.q;
|
|
if (!(sev_status & MSR_AMD64_SEV_ENABLED))
|
|
return;
|
|
|
|
/* Negotiate the GHCB protocol version. */
|
|
if (sev_status & MSR_AMD64_SEV_ES_ENABLED) {
|
|
if (!sev_es_negotiate_protocol())
|
|
sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_PROT_UNSUPPORTED);
|
|
}
|
|
|
|
/*
|
|
* SNP is supported in v2 of the GHCB spec which mandates support for HV
|
|
* features.
|
|
*/
|
|
if (sev_status & MSR_AMD64_SEV_SNP_ENABLED) {
|
|
if (!(get_hv_features() & GHCB_HV_FT_SNP))
|
|
sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
|
|
|
|
enforce_vmpl0();
|
|
}
|
|
|
|
if (snp && !(sev_status & MSR_AMD64_SEV_SNP_ENABLED))
|
|
error("SEV-SNP supported indicated by CC blob, but not SEV status MSR.");
|
|
|
|
sme_me_mask = BIT_ULL(bitpos);
|
|
}
|
|
|
|
/*
|
|
* sev_get_status - Retrieve the SEV status mask
|
|
*
|
|
* Returns 0 if the CPU is not SEV capable, otherwise the value of the
|
|
* AMD64_SEV MSR.
|
|
*/
|
|
u64 sev_get_status(void)
|
|
{
|
|
struct msr m;
|
|
|
|
if (sev_check_cpu_support() < 0)
|
|
return 0;
|
|
|
|
boot_rdmsr(MSR_AMD64_SEV, &m);
|
|
return m.q;
|
|
}
|
|
|
|
/* Search for Confidential Computing blob in the EFI config table. */
|
|
static struct cc_blob_sev_info *find_cc_blob_efi(struct boot_params *bp)
|
|
{
|
|
unsigned long cfg_table_pa;
|
|
unsigned int cfg_table_len;
|
|
int ret;
|
|
|
|
ret = efi_get_conf_table(bp, &cfg_table_pa, &cfg_table_len);
|
|
if (ret)
|
|
return NULL;
|
|
|
|
return (struct cc_blob_sev_info *)efi_find_vendor_table(bp, cfg_table_pa,
|
|
cfg_table_len,
|
|
EFI_CC_BLOB_GUID);
|
|
}
|
|
|
|
/*
|
|
* Initial set up of SNP relies on information provided by the
|
|
* Confidential Computing blob, which can be passed to the boot kernel
|
|
* by firmware/bootloader in the following ways:
|
|
*
|
|
* - via an entry in the EFI config table
|
|
* - via a setup_data structure, as defined by the Linux Boot Protocol
|
|
*
|
|
* Scan for the blob in that order.
|
|
*/
|
|
static struct cc_blob_sev_info *find_cc_blob(struct boot_params *bp)
|
|
{
|
|
struct cc_blob_sev_info *cc_info;
|
|
|
|
cc_info = find_cc_blob_efi(bp);
|
|
if (cc_info)
|
|
goto found_cc_info;
|
|
|
|
cc_info = find_cc_blob_setup_data(bp);
|
|
if (!cc_info)
|
|
return NULL;
|
|
|
|
found_cc_info:
|
|
if (cc_info->magic != CC_BLOB_SEV_HDR_MAGIC)
|
|
sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
|
|
|
|
return cc_info;
|
|
}
|
|
|
|
/*
|
|
* Indicate SNP based on presence of SNP-specific CC blob. Subsequent checks
|
|
* will verify the SNP CPUID/MSR bits.
|
|
*/
|
|
bool snp_init(struct boot_params *bp)
|
|
{
|
|
struct cc_blob_sev_info *cc_info;
|
|
|
|
if (!bp)
|
|
return false;
|
|
|
|
cc_info = find_cc_blob(bp);
|
|
if (!cc_info)
|
|
return false;
|
|
|
|
/*
|
|
* If a SNP-specific Confidential Computing blob is present, then
|
|
* firmware/bootloader have indicated SNP support. Verifying this
|
|
* involves CPUID checks which will be more reliable if the SNP
|
|
* CPUID table is used. See comments over snp_setup_cpuid_table() for
|
|
* more details.
|
|
*/
|
|
setup_cpuid_table(cc_info);
|
|
|
|
/*
|
|
* Pass run-time kernel a pointer to CC info via boot_params so EFI
|
|
* config table doesn't need to be searched again during early startup
|
|
* phase.
|
|
*/
|
|
bp->cc_blob_address = (u32)(unsigned long)cc_info;
|
|
|
|
return true;
|
|
}
|
|
|
|
void sev_prep_identity_maps(unsigned long top_level_pgt)
|
|
{
|
|
/*
|
|
* The Confidential Computing blob is used very early in uncompressed
|
|
* kernel to find the in-memory CPUID table to handle CPUID
|
|
* instructions. Make sure an identity-mapping exists so it can be
|
|
* accessed after switchover.
|
|
*/
|
|
if (sev_snp_enabled()) {
|
|
unsigned long cc_info_pa = boot_params_ptr->cc_blob_address;
|
|
struct cc_blob_sev_info *cc_info;
|
|
|
|
kernel_add_identity_map(cc_info_pa, cc_info_pa + sizeof(*cc_info));
|
|
|
|
cc_info = (struct cc_blob_sev_info *)cc_info_pa;
|
|
kernel_add_identity_map(cc_info->cpuid_phys, cc_info->cpuid_phys + cc_info->cpuid_len);
|
|
}
|
|
|
|
sev_verify_cbit(top_level_pgt);
|
|
}
|