768 lines
20 KiB
C
768 lines
20 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2019 Western Digital Corporation or its affiliates.
|
|
* Copyright (c) 2022 Ventana Micro Systems Inc.
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/kvm_host.h>
|
|
|
|
#include <asm/cpufeature.h>
|
|
|
|
#define INSN_OPCODE_MASK 0x007c
|
|
#define INSN_OPCODE_SHIFT 2
|
|
#define INSN_OPCODE_SYSTEM 28
|
|
|
|
#define INSN_MASK_WFI 0xffffffff
|
|
#define INSN_MATCH_WFI 0x10500073
|
|
|
|
#define INSN_MATCH_CSRRW 0x1073
|
|
#define INSN_MASK_CSRRW 0x707f
|
|
#define INSN_MATCH_CSRRS 0x2073
|
|
#define INSN_MASK_CSRRS 0x707f
|
|
#define INSN_MATCH_CSRRC 0x3073
|
|
#define INSN_MASK_CSRRC 0x707f
|
|
#define INSN_MATCH_CSRRWI 0x5073
|
|
#define INSN_MASK_CSRRWI 0x707f
|
|
#define INSN_MATCH_CSRRSI 0x6073
|
|
#define INSN_MASK_CSRRSI 0x707f
|
|
#define INSN_MATCH_CSRRCI 0x7073
|
|
#define INSN_MASK_CSRRCI 0x707f
|
|
|
|
#define INSN_MATCH_LB 0x3
|
|
#define INSN_MASK_LB 0x707f
|
|
#define INSN_MATCH_LH 0x1003
|
|
#define INSN_MASK_LH 0x707f
|
|
#define INSN_MATCH_LW 0x2003
|
|
#define INSN_MASK_LW 0x707f
|
|
#define INSN_MATCH_LD 0x3003
|
|
#define INSN_MASK_LD 0x707f
|
|
#define INSN_MATCH_LBU 0x4003
|
|
#define INSN_MASK_LBU 0x707f
|
|
#define INSN_MATCH_LHU 0x5003
|
|
#define INSN_MASK_LHU 0x707f
|
|
#define INSN_MATCH_LWU 0x6003
|
|
#define INSN_MASK_LWU 0x707f
|
|
#define INSN_MATCH_SB 0x23
|
|
#define INSN_MASK_SB 0x707f
|
|
#define INSN_MATCH_SH 0x1023
|
|
#define INSN_MASK_SH 0x707f
|
|
#define INSN_MATCH_SW 0x2023
|
|
#define INSN_MASK_SW 0x707f
|
|
#define INSN_MATCH_SD 0x3023
|
|
#define INSN_MASK_SD 0x707f
|
|
|
|
#define INSN_MATCH_C_LD 0x6000
|
|
#define INSN_MASK_C_LD 0xe003
|
|
#define INSN_MATCH_C_SD 0xe000
|
|
#define INSN_MASK_C_SD 0xe003
|
|
#define INSN_MATCH_C_LW 0x4000
|
|
#define INSN_MASK_C_LW 0xe003
|
|
#define INSN_MATCH_C_SW 0xc000
|
|
#define INSN_MASK_C_SW 0xe003
|
|
#define INSN_MATCH_C_LDSP 0x6002
|
|
#define INSN_MASK_C_LDSP 0xe003
|
|
#define INSN_MATCH_C_SDSP 0xe002
|
|
#define INSN_MASK_C_SDSP 0xe003
|
|
#define INSN_MATCH_C_LWSP 0x4002
|
|
#define INSN_MASK_C_LWSP 0xe003
|
|
#define INSN_MATCH_C_SWSP 0xc002
|
|
#define INSN_MASK_C_SWSP 0xe003
|
|
|
|
#define INSN_16BIT_MASK 0x3
|
|
|
|
#define INSN_IS_16BIT(insn) (((insn) & INSN_16BIT_MASK) != INSN_16BIT_MASK)
|
|
|
|
#define INSN_LEN(insn) (INSN_IS_16BIT(insn) ? 2 : 4)
|
|
|
|
#ifdef CONFIG_64BIT
|
|
#define LOG_REGBYTES 3
|
|
#else
|
|
#define LOG_REGBYTES 2
|
|
#endif
|
|
#define REGBYTES (1 << LOG_REGBYTES)
|
|
|
|
#define SH_RD 7
|
|
#define SH_RS1 15
|
|
#define SH_RS2 20
|
|
#define SH_RS2C 2
|
|
#define MASK_RX 0x1f
|
|
|
|
#define RV_X(x, s, n) (((x) >> (s)) & ((1 << (n)) - 1))
|
|
#define RVC_LW_IMM(x) ((RV_X(x, 6, 1) << 2) | \
|
|
(RV_X(x, 10, 3) << 3) | \
|
|
(RV_X(x, 5, 1) << 6))
|
|
#define RVC_LD_IMM(x) ((RV_X(x, 10, 3) << 3) | \
|
|
(RV_X(x, 5, 2) << 6))
|
|
#define RVC_LWSP_IMM(x) ((RV_X(x, 4, 3) << 2) | \
|
|
(RV_X(x, 12, 1) << 5) | \
|
|
(RV_X(x, 2, 2) << 6))
|
|
#define RVC_LDSP_IMM(x) ((RV_X(x, 5, 2) << 3) | \
|
|
(RV_X(x, 12, 1) << 5) | \
|
|
(RV_X(x, 2, 3) << 6))
|
|
#define RVC_SWSP_IMM(x) ((RV_X(x, 9, 4) << 2) | \
|
|
(RV_X(x, 7, 2) << 6))
|
|
#define RVC_SDSP_IMM(x) ((RV_X(x, 10, 3) << 3) | \
|
|
(RV_X(x, 7, 3) << 6))
|
|
#define RVC_RS1S(insn) (8 + RV_X(insn, SH_RD, 3))
|
|
#define RVC_RS2S(insn) (8 + RV_X(insn, SH_RS2C, 3))
|
|
#define RVC_RS2(insn) RV_X(insn, SH_RS2C, 5)
|
|
|
|
#define SHIFT_RIGHT(x, y) \
|
|
((y) < 0 ? ((x) << -(y)) : ((x) >> (y)))
|
|
|
|
#define REG_MASK \
|
|
((1 << (5 + LOG_REGBYTES)) - (1 << LOG_REGBYTES))
|
|
|
|
#define REG_OFFSET(insn, pos) \
|
|
(SHIFT_RIGHT((insn), (pos) - LOG_REGBYTES) & REG_MASK)
|
|
|
|
#define REG_PTR(insn, pos, regs) \
|
|
((ulong *)((ulong)(regs) + REG_OFFSET(insn, pos)))
|
|
|
|
#define GET_FUNCT3(insn) (((insn) >> 12) & 7)
|
|
|
|
#define GET_RS1(insn, regs) (*REG_PTR(insn, SH_RS1, regs))
|
|
#define GET_RS2(insn, regs) (*REG_PTR(insn, SH_RS2, regs))
|
|
#define GET_RS1S(insn, regs) (*REG_PTR(RVC_RS1S(insn), 0, regs))
|
|
#define GET_RS2S(insn, regs) (*REG_PTR(RVC_RS2S(insn), 0, regs))
|
|
#define GET_RS2C(insn, regs) (*REG_PTR(insn, SH_RS2C, regs))
|
|
#define GET_SP(regs) (*REG_PTR(2, 0, regs))
|
|
#define SET_RD(insn, regs, val) (*REG_PTR(insn, SH_RD, regs) = (val))
|
|
#define IMM_I(insn) ((s32)(insn) >> 20)
|
|
#define IMM_S(insn) (((s32)(insn) >> 25 << 5) | \
|
|
(s32)(((insn) >> 7) & 0x1f))
|
|
|
|
struct insn_func {
|
|
unsigned long mask;
|
|
unsigned long match;
|
|
/*
|
|
* Possible return values are as follows:
|
|
* 1) Returns < 0 for error case
|
|
* 2) Returns 0 for exit to user-space
|
|
* 3) Returns 1 to continue with next sepc
|
|
* 4) Returns 2 to continue with same sepc
|
|
* 5) Returns 3 to inject illegal instruction trap and continue
|
|
* 6) Returns 4 to inject virtual instruction trap and continue
|
|
*
|
|
* Use enum kvm_insn_return for return values
|
|
*/
|
|
int (*func)(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn);
|
|
};
|
|
|
|
static int truly_illegal_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
|
|
ulong insn)
|
|
{
|
|
struct kvm_cpu_trap utrap = { 0 };
|
|
|
|
/* Redirect trap to Guest VCPU */
|
|
utrap.sepc = vcpu->arch.guest_context.sepc;
|
|
utrap.scause = EXC_INST_ILLEGAL;
|
|
utrap.stval = insn;
|
|
utrap.htval = 0;
|
|
utrap.htinst = 0;
|
|
kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int truly_virtual_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
|
|
ulong insn)
|
|
{
|
|
struct kvm_cpu_trap utrap = { 0 };
|
|
|
|
/* Redirect trap to Guest VCPU */
|
|
utrap.sepc = vcpu->arch.guest_context.sepc;
|
|
utrap.scause = EXC_VIRTUAL_INST_FAULT;
|
|
utrap.stval = insn;
|
|
utrap.htval = 0;
|
|
utrap.htinst = 0;
|
|
kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* kvm_riscv_vcpu_wfi -- Emulate wait for interrupt (WFI) behaviour
|
|
*
|
|
* @vcpu: The VCPU pointer
|
|
*/
|
|
void kvm_riscv_vcpu_wfi(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!kvm_arch_vcpu_runnable(vcpu)) {
|
|
kvm_vcpu_srcu_read_unlock(vcpu);
|
|
kvm_vcpu_halt(vcpu);
|
|
kvm_vcpu_srcu_read_lock(vcpu);
|
|
}
|
|
}
|
|
|
|
static int wfi_insn(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn)
|
|
{
|
|
vcpu->stat.wfi_exit_stat++;
|
|
kvm_riscv_vcpu_wfi(vcpu);
|
|
return KVM_INSN_CONTINUE_NEXT_SEPC;
|
|
}
|
|
|
|
struct csr_func {
|
|
unsigned int base;
|
|
unsigned int count;
|
|
/*
|
|
* Possible return values are as same as "func" callback in
|
|
* "struct insn_func".
|
|
*/
|
|
int (*func)(struct kvm_vcpu *vcpu, unsigned int csr_num,
|
|
unsigned long *val, unsigned long new_val,
|
|
unsigned long wr_mask);
|
|
};
|
|
|
|
static int seed_csr_rmw(struct kvm_vcpu *vcpu, unsigned int csr_num,
|
|
unsigned long *val, unsigned long new_val,
|
|
unsigned long wr_mask)
|
|
{
|
|
if (!riscv_isa_extension_available(vcpu->arch.isa, ZKR))
|
|
return KVM_INSN_ILLEGAL_TRAP;
|
|
|
|
return KVM_INSN_EXIT_TO_USER_SPACE;
|
|
}
|
|
|
|
static const struct csr_func csr_funcs[] = {
|
|
KVM_RISCV_VCPU_AIA_CSR_FUNCS
|
|
KVM_RISCV_VCPU_HPMCOUNTER_CSR_FUNCS
|
|
{ .base = CSR_SEED, .count = 1, .func = seed_csr_rmw },
|
|
};
|
|
|
|
/**
|
|
* kvm_riscv_vcpu_csr_return -- Handle CSR read/write after user space
|
|
* emulation or in-kernel emulation
|
|
*
|
|
* @vcpu: The VCPU pointer
|
|
* @run: The VCPU run struct containing the CSR data
|
|
*
|
|
* Returns > 0 upon failure and 0 upon success
|
|
*/
|
|
int kvm_riscv_vcpu_csr_return(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
ulong insn;
|
|
|
|
if (vcpu->arch.csr_decode.return_handled)
|
|
return 0;
|
|
vcpu->arch.csr_decode.return_handled = 1;
|
|
|
|
/* Update destination register for CSR reads */
|
|
insn = vcpu->arch.csr_decode.insn;
|
|
if ((insn >> SH_RD) & MASK_RX)
|
|
SET_RD(insn, &vcpu->arch.guest_context,
|
|
run->riscv_csr.ret_value);
|
|
|
|
/* Move to next instruction */
|
|
vcpu->arch.guest_context.sepc += INSN_LEN(insn);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int csr_insn(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn)
|
|
{
|
|
int i, rc = KVM_INSN_ILLEGAL_TRAP;
|
|
unsigned int csr_num = insn >> SH_RS2;
|
|
unsigned int rs1_num = (insn >> SH_RS1) & MASK_RX;
|
|
ulong rs1_val = GET_RS1(insn, &vcpu->arch.guest_context);
|
|
const struct csr_func *tcfn, *cfn = NULL;
|
|
ulong val = 0, wr_mask = 0, new_val = 0;
|
|
|
|
/* Decode the CSR instruction */
|
|
switch (GET_FUNCT3(insn)) {
|
|
case GET_FUNCT3(INSN_MATCH_CSRRW):
|
|
wr_mask = -1UL;
|
|
new_val = rs1_val;
|
|
break;
|
|
case GET_FUNCT3(INSN_MATCH_CSRRS):
|
|
wr_mask = rs1_val;
|
|
new_val = -1UL;
|
|
break;
|
|
case GET_FUNCT3(INSN_MATCH_CSRRC):
|
|
wr_mask = rs1_val;
|
|
new_val = 0;
|
|
break;
|
|
case GET_FUNCT3(INSN_MATCH_CSRRWI):
|
|
wr_mask = -1UL;
|
|
new_val = rs1_num;
|
|
break;
|
|
case GET_FUNCT3(INSN_MATCH_CSRRSI):
|
|
wr_mask = rs1_num;
|
|
new_val = -1UL;
|
|
break;
|
|
case GET_FUNCT3(INSN_MATCH_CSRRCI):
|
|
wr_mask = rs1_num;
|
|
new_val = 0;
|
|
break;
|
|
default:
|
|
return rc;
|
|
}
|
|
|
|
/* Save instruction decode info */
|
|
vcpu->arch.csr_decode.insn = insn;
|
|
vcpu->arch.csr_decode.return_handled = 0;
|
|
|
|
/* Update CSR details in kvm_run struct */
|
|
run->riscv_csr.csr_num = csr_num;
|
|
run->riscv_csr.new_value = new_val;
|
|
run->riscv_csr.write_mask = wr_mask;
|
|
run->riscv_csr.ret_value = 0;
|
|
|
|
/* Find in-kernel CSR function */
|
|
for (i = 0; i < ARRAY_SIZE(csr_funcs); i++) {
|
|
tcfn = &csr_funcs[i];
|
|
if ((tcfn->base <= csr_num) &&
|
|
(csr_num < (tcfn->base + tcfn->count))) {
|
|
cfn = tcfn;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* First try in-kernel CSR emulation */
|
|
if (cfn && cfn->func) {
|
|
rc = cfn->func(vcpu, csr_num, &val, new_val, wr_mask);
|
|
if (rc > KVM_INSN_EXIT_TO_USER_SPACE) {
|
|
if (rc == KVM_INSN_CONTINUE_NEXT_SEPC) {
|
|
run->riscv_csr.ret_value = val;
|
|
vcpu->stat.csr_exit_kernel++;
|
|
kvm_riscv_vcpu_csr_return(vcpu, run);
|
|
rc = KVM_INSN_CONTINUE_SAME_SEPC;
|
|
}
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
/* Exit to user-space for CSR emulation */
|
|
if (rc <= KVM_INSN_EXIT_TO_USER_SPACE) {
|
|
vcpu->stat.csr_exit_user++;
|
|
run->exit_reason = KVM_EXIT_RISCV_CSR;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static const struct insn_func system_opcode_funcs[] = {
|
|
{
|
|
.mask = INSN_MASK_CSRRW,
|
|
.match = INSN_MATCH_CSRRW,
|
|
.func = csr_insn,
|
|
},
|
|
{
|
|
.mask = INSN_MASK_CSRRS,
|
|
.match = INSN_MATCH_CSRRS,
|
|
.func = csr_insn,
|
|
},
|
|
{
|
|
.mask = INSN_MASK_CSRRC,
|
|
.match = INSN_MATCH_CSRRC,
|
|
.func = csr_insn,
|
|
},
|
|
{
|
|
.mask = INSN_MASK_CSRRWI,
|
|
.match = INSN_MATCH_CSRRWI,
|
|
.func = csr_insn,
|
|
},
|
|
{
|
|
.mask = INSN_MASK_CSRRSI,
|
|
.match = INSN_MATCH_CSRRSI,
|
|
.func = csr_insn,
|
|
},
|
|
{
|
|
.mask = INSN_MASK_CSRRCI,
|
|
.match = INSN_MATCH_CSRRCI,
|
|
.func = csr_insn,
|
|
},
|
|
{
|
|
.mask = INSN_MASK_WFI,
|
|
.match = INSN_MATCH_WFI,
|
|
.func = wfi_insn,
|
|
},
|
|
};
|
|
|
|
static int system_opcode_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
|
|
ulong insn)
|
|
{
|
|
int i, rc = KVM_INSN_ILLEGAL_TRAP;
|
|
const struct insn_func *ifn;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(system_opcode_funcs); i++) {
|
|
ifn = &system_opcode_funcs[i];
|
|
if ((insn & ifn->mask) == ifn->match) {
|
|
rc = ifn->func(vcpu, run, insn);
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (rc) {
|
|
case KVM_INSN_ILLEGAL_TRAP:
|
|
return truly_illegal_insn(vcpu, run, insn);
|
|
case KVM_INSN_VIRTUAL_TRAP:
|
|
return truly_virtual_insn(vcpu, run, insn);
|
|
case KVM_INSN_CONTINUE_NEXT_SEPC:
|
|
vcpu->arch.guest_context.sepc += INSN_LEN(insn);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return (rc <= 0) ? rc : 1;
|
|
}
|
|
|
|
/**
|
|
* kvm_riscv_vcpu_virtual_insn -- Handle virtual instruction trap
|
|
*
|
|
* @vcpu: The VCPU pointer
|
|
* @run: The VCPU run struct containing the mmio data
|
|
* @trap: Trap details
|
|
*
|
|
* Returns > 0 to continue run-loop
|
|
* Returns 0 to exit run-loop and handle in user-space.
|
|
* Returns < 0 to report failure and exit run-loop
|
|
*/
|
|
int kvm_riscv_vcpu_virtual_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
|
|
struct kvm_cpu_trap *trap)
|
|
{
|
|
unsigned long insn = trap->stval;
|
|
struct kvm_cpu_trap utrap = { 0 };
|
|
struct kvm_cpu_context *ct;
|
|
|
|
if (unlikely(INSN_IS_16BIT(insn))) {
|
|
if (insn == 0) {
|
|
ct = &vcpu->arch.guest_context;
|
|
insn = kvm_riscv_vcpu_unpriv_read(vcpu, true,
|
|
ct->sepc,
|
|
&utrap);
|
|
if (utrap.scause) {
|
|
utrap.sepc = ct->sepc;
|
|
kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
|
|
return 1;
|
|
}
|
|
}
|
|
if (INSN_IS_16BIT(insn))
|
|
return truly_illegal_insn(vcpu, run, insn);
|
|
}
|
|
|
|
switch ((insn & INSN_OPCODE_MASK) >> INSN_OPCODE_SHIFT) {
|
|
case INSN_OPCODE_SYSTEM:
|
|
return system_opcode_insn(vcpu, run, insn);
|
|
default:
|
|
return truly_illegal_insn(vcpu, run, insn);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kvm_riscv_vcpu_mmio_load -- Emulate MMIO load instruction
|
|
*
|
|
* @vcpu: The VCPU pointer
|
|
* @run: The VCPU run struct containing the mmio data
|
|
* @fault_addr: Guest physical address to load
|
|
* @htinst: Transformed encoding of the load instruction
|
|
*
|
|
* Returns > 0 to continue run-loop
|
|
* Returns 0 to exit run-loop and handle in user-space.
|
|
* Returns < 0 to report failure and exit run-loop
|
|
*/
|
|
int kvm_riscv_vcpu_mmio_load(struct kvm_vcpu *vcpu, struct kvm_run *run,
|
|
unsigned long fault_addr,
|
|
unsigned long htinst)
|
|
{
|
|
u8 data_buf[8];
|
|
unsigned long insn;
|
|
int shift = 0, len = 0, insn_len = 0;
|
|
struct kvm_cpu_trap utrap = { 0 };
|
|
struct kvm_cpu_context *ct = &vcpu->arch.guest_context;
|
|
|
|
/* Determine trapped instruction */
|
|
if (htinst & 0x1) {
|
|
/*
|
|
* Bit[0] == 1 implies trapped instruction value is
|
|
* transformed instruction or custom instruction.
|
|
*/
|
|
insn = htinst | INSN_16BIT_MASK;
|
|
insn_len = (htinst & BIT(1)) ? INSN_LEN(insn) : 2;
|
|
} else {
|
|
/*
|
|
* Bit[0] == 0 implies trapped instruction value is
|
|
* zero or special value.
|
|
*/
|
|
insn = kvm_riscv_vcpu_unpriv_read(vcpu, true, ct->sepc,
|
|
&utrap);
|
|
if (utrap.scause) {
|
|
/* Redirect trap if we failed to read instruction */
|
|
utrap.sepc = ct->sepc;
|
|
kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
|
|
return 1;
|
|
}
|
|
insn_len = INSN_LEN(insn);
|
|
}
|
|
|
|
/* Decode length of MMIO and shift */
|
|
if ((insn & INSN_MASK_LW) == INSN_MATCH_LW) {
|
|
len = 4;
|
|
shift = 8 * (sizeof(ulong) - len);
|
|
} else if ((insn & INSN_MASK_LB) == INSN_MATCH_LB) {
|
|
len = 1;
|
|
shift = 8 * (sizeof(ulong) - len);
|
|
} else if ((insn & INSN_MASK_LBU) == INSN_MATCH_LBU) {
|
|
len = 1;
|
|
shift = 8 * (sizeof(ulong) - len);
|
|
#ifdef CONFIG_64BIT
|
|
} else if ((insn & INSN_MASK_LD) == INSN_MATCH_LD) {
|
|
len = 8;
|
|
shift = 8 * (sizeof(ulong) - len);
|
|
} else if ((insn & INSN_MASK_LWU) == INSN_MATCH_LWU) {
|
|
len = 4;
|
|
#endif
|
|
} else if ((insn & INSN_MASK_LH) == INSN_MATCH_LH) {
|
|
len = 2;
|
|
shift = 8 * (sizeof(ulong) - len);
|
|
} else if ((insn & INSN_MASK_LHU) == INSN_MATCH_LHU) {
|
|
len = 2;
|
|
#ifdef CONFIG_64BIT
|
|
} else if ((insn & INSN_MASK_C_LD) == INSN_MATCH_C_LD) {
|
|
len = 8;
|
|
shift = 8 * (sizeof(ulong) - len);
|
|
insn = RVC_RS2S(insn) << SH_RD;
|
|
} else if ((insn & INSN_MASK_C_LDSP) == INSN_MATCH_C_LDSP &&
|
|
((insn >> SH_RD) & 0x1f)) {
|
|
len = 8;
|
|
shift = 8 * (sizeof(ulong) - len);
|
|
#endif
|
|
} else if ((insn & INSN_MASK_C_LW) == INSN_MATCH_C_LW) {
|
|
len = 4;
|
|
shift = 8 * (sizeof(ulong) - len);
|
|
insn = RVC_RS2S(insn) << SH_RD;
|
|
} else if ((insn & INSN_MASK_C_LWSP) == INSN_MATCH_C_LWSP &&
|
|
((insn >> SH_RD) & 0x1f)) {
|
|
len = 4;
|
|
shift = 8 * (sizeof(ulong) - len);
|
|
} else {
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/* Fault address should be aligned to length of MMIO */
|
|
if (fault_addr & (len - 1))
|
|
return -EIO;
|
|
|
|
/* Save instruction decode info */
|
|
vcpu->arch.mmio_decode.insn = insn;
|
|
vcpu->arch.mmio_decode.insn_len = insn_len;
|
|
vcpu->arch.mmio_decode.shift = shift;
|
|
vcpu->arch.mmio_decode.len = len;
|
|
vcpu->arch.mmio_decode.return_handled = 0;
|
|
|
|
/* Update MMIO details in kvm_run struct */
|
|
run->mmio.is_write = false;
|
|
run->mmio.phys_addr = fault_addr;
|
|
run->mmio.len = len;
|
|
|
|
/* Try to handle MMIO access in the kernel */
|
|
if (!kvm_io_bus_read(vcpu, KVM_MMIO_BUS, fault_addr, len, data_buf)) {
|
|
/* Successfully handled MMIO access in the kernel so resume */
|
|
memcpy(run->mmio.data, data_buf, len);
|
|
vcpu->stat.mmio_exit_kernel++;
|
|
kvm_riscv_vcpu_mmio_return(vcpu, run);
|
|
return 1;
|
|
}
|
|
|
|
/* Exit to userspace for MMIO emulation */
|
|
vcpu->stat.mmio_exit_user++;
|
|
run->exit_reason = KVM_EXIT_MMIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_riscv_vcpu_mmio_store -- Emulate MMIO store instruction
|
|
*
|
|
* @vcpu: The VCPU pointer
|
|
* @run: The VCPU run struct containing the mmio data
|
|
* @fault_addr: Guest physical address to store
|
|
* @htinst: Transformed encoding of the store instruction
|
|
*
|
|
* Returns > 0 to continue run-loop
|
|
* Returns 0 to exit run-loop and handle in user-space.
|
|
* Returns < 0 to report failure and exit run-loop
|
|
*/
|
|
int kvm_riscv_vcpu_mmio_store(struct kvm_vcpu *vcpu, struct kvm_run *run,
|
|
unsigned long fault_addr,
|
|
unsigned long htinst)
|
|
{
|
|
u8 data8;
|
|
u16 data16;
|
|
u32 data32;
|
|
u64 data64;
|
|
ulong data;
|
|
unsigned long insn;
|
|
int len = 0, insn_len = 0;
|
|
struct kvm_cpu_trap utrap = { 0 };
|
|
struct kvm_cpu_context *ct = &vcpu->arch.guest_context;
|
|
|
|
/* Determine trapped instruction */
|
|
if (htinst & 0x1) {
|
|
/*
|
|
* Bit[0] == 1 implies trapped instruction value is
|
|
* transformed instruction or custom instruction.
|
|
*/
|
|
insn = htinst | INSN_16BIT_MASK;
|
|
insn_len = (htinst & BIT(1)) ? INSN_LEN(insn) : 2;
|
|
} else {
|
|
/*
|
|
* Bit[0] == 0 implies trapped instruction value is
|
|
* zero or special value.
|
|
*/
|
|
insn = kvm_riscv_vcpu_unpriv_read(vcpu, true, ct->sepc,
|
|
&utrap);
|
|
if (utrap.scause) {
|
|
/* Redirect trap if we failed to read instruction */
|
|
utrap.sepc = ct->sepc;
|
|
kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
|
|
return 1;
|
|
}
|
|
insn_len = INSN_LEN(insn);
|
|
}
|
|
|
|
data = GET_RS2(insn, &vcpu->arch.guest_context);
|
|
data8 = data16 = data32 = data64 = data;
|
|
|
|
if ((insn & INSN_MASK_SW) == INSN_MATCH_SW) {
|
|
len = 4;
|
|
} else if ((insn & INSN_MASK_SB) == INSN_MATCH_SB) {
|
|
len = 1;
|
|
#ifdef CONFIG_64BIT
|
|
} else if ((insn & INSN_MASK_SD) == INSN_MATCH_SD) {
|
|
len = 8;
|
|
#endif
|
|
} else if ((insn & INSN_MASK_SH) == INSN_MATCH_SH) {
|
|
len = 2;
|
|
#ifdef CONFIG_64BIT
|
|
} else if ((insn & INSN_MASK_C_SD) == INSN_MATCH_C_SD) {
|
|
len = 8;
|
|
data64 = GET_RS2S(insn, &vcpu->arch.guest_context);
|
|
} else if ((insn & INSN_MASK_C_SDSP) == INSN_MATCH_C_SDSP &&
|
|
((insn >> SH_RD) & 0x1f)) {
|
|
len = 8;
|
|
data64 = GET_RS2C(insn, &vcpu->arch.guest_context);
|
|
#endif
|
|
} else if ((insn & INSN_MASK_C_SW) == INSN_MATCH_C_SW) {
|
|
len = 4;
|
|
data32 = GET_RS2S(insn, &vcpu->arch.guest_context);
|
|
} else if ((insn & INSN_MASK_C_SWSP) == INSN_MATCH_C_SWSP &&
|
|
((insn >> SH_RD) & 0x1f)) {
|
|
len = 4;
|
|
data32 = GET_RS2C(insn, &vcpu->arch.guest_context);
|
|
} else {
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/* Fault address should be aligned to length of MMIO */
|
|
if (fault_addr & (len - 1))
|
|
return -EIO;
|
|
|
|
/* Save instruction decode info */
|
|
vcpu->arch.mmio_decode.insn = insn;
|
|
vcpu->arch.mmio_decode.insn_len = insn_len;
|
|
vcpu->arch.mmio_decode.shift = 0;
|
|
vcpu->arch.mmio_decode.len = len;
|
|
vcpu->arch.mmio_decode.return_handled = 0;
|
|
|
|
/* Copy data to kvm_run instance */
|
|
switch (len) {
|
|
case 1:
|
|
*((u8 *)run->mmio.data) = data8;
|
|
break;
|
|
case 2:
|
|
*((u16 *)run->mmio.data) = data16;
|
|
break;
|
|
case 4:
|
|
*((u32 *)run->mmio.data) = data32;
|
|
break;
|
|
case 8:
|
|
*((u64 *)run->mmio.data) = data64;
|
|
break;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/* Update MMIO details in kvm_run struct */
|
|
run->mmio.is_write = true;
|
|
run->mmio.phys_addr = fault_addr;
|
|
run->mmio.len = len;
|
|
|
|
/* Try to handle MMIO access in the kernel */
|
|
if (!kvm_io_bus_write(vcpu, KVM_MMIO_BUS,
|
|
fault_addr, len, run->mmio.data)) {
|
|
/* Successfully handled MMIO access in the kernel so resume */
|
|
vcpu->stat.mmio_exit_kernel++;
|
|
kvm_riscv_vcpu_mmio_return(vcpu, run);
|
|
return 1;
|
|
}
|
|
|
|
/* Exit to userspace for MMIO emulation */
|
|
vcpu->stat.mmio_exit_user++;
|
|
run->exit_reason = KVM_EXIT_MMIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_riscv_vcpu_mmio_return -- Handle MMIO loads after user space emulation
|
|
* or in-kernel IO emulation
|
|
*
|
|
* @vcpu: The VCPU pointer
|
|
* @run: The VCPU run struct containing the mmio data
|
|
*/
|
|
int kvm_riscv_vcpu_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
u8 data8;
|
|
u16 data16;
|
|
u32 data32;
|
|
u64 data64;
|
|
ulong insn;
|
|
int len, shift;
|
|
|
|
if (vcpu->arch.mmio_decode.return_handled)
|
|
return 0;
|
|
|
|
vcpu->arch.mmio_decode.return_handled = 1;
|
|
insn = vcpu->arch.mmio_decode.insn;
|
|
|
|
if (run->mmio.is_write)
|
|
goto done;
|
|
|
|
len = vcpu->arch.mmio_decode.len;
|
|
shift = vcpu->arch.mmio_decode.shift;
|
|
|
|
switch (len) {
|
|
case 1:
|
|
data8 = *((u8 *)run->mmio.data);
|
|
SET_RD(insn, &vcpu->arch.guest_context,
|
|
(ulong)data8 << shift >> shift);
|
|
break;
|
|
case 2:
|
|
data16 = *((u16 *)run->mmio.data);
|
|
SET_RD(insn, &vcpu->arch.guest_context,
|
|
(ulong)data16 << shift >> shift);
|
|
break;
|
|
case 4:
|
|
data32 = *((u32 *)run->mmio.data);
|
|
SET_RD(insn, &vcpu->arch.guest_context,
|
|
(ulong)data32 << shift >> shift);
|
|
break;
|
|
case 8:
|
|
data64 = *((u64 *)run->mmio.data);
|
|
SET_RD(insn, &vcpu->arch.guest_context,
|
|
(ulong)data64 << shift >> shift);
|
|
break;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
done:
|
|
/* Move to next instruction */
|
|
vcpu->arch.guest_context.sepc += vcpu->arch.mmio_decode.insn_len;
|
|
|
|
return 0;
|
|
}
|