mirror_ubuntu-kernels/arch/loongarch/kernel/setup.c

615 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020-2022 Loongson Technology Corporation Limited
*
* Derived from MIPS:
* Copyright (C) 1995 Linus Torvalds
* Copyright (C) 1995 Waldorf Electronics
* Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
* Copyright (C) 1996 Stoned Elipot
* Copyright (C) 1999 Silicon Graphics, Inc.
* Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
*/
#include <linux/init.h>
#include <linux/acpi.h>
#include <linux/cpu.h>
#include <linux/dmi.h>
#include <linux/efi.h>
#include <linux/export.h>
#include <linux/memblock.h>
#include <linux/initrd.h>
#include <linux/ioport.h>
#include <linux/kexec.h>
#include <linux/crash_dump.h>
#include <linux/root_dev.h>
#include <linux/console.h>
#include <linux/pfn.h>
#include <linux/platform_device.h>
#include <linux/sizes.h>
#include <linux/device.h>
#include <linux/dma-map-ops.h>
#include <linux/libfdt.h>
#include <linux/of_fdt.h>
#include <linux/of_address.h>
#include <linux/suspend.h>
#include <linux/swiotlb.h>
#include <asm/addrspace.h>
#include <asm/alternative.h>
#include <asm/bootinfo.h>
#include <asm/cache.h>
#include <asm/cpu.h>
#include <asm/dma.h>
#include <asm/efi.h>
#include <asm/loongson.h>
#include <asm/numa.h>
#include <asm/pgalloc.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/time.h>
#define SMBIOS_BIOSSIZE_OFFSET 0x09
#define SMBIOS_BIOSEXTERN_OFFSET 0x13
#define SMBIOS_FREQLOW_OFFSET 0x16
#define SMBIOS_FREQHIGH_OFFSET 0x17
#define SMBIOS_FREQLOW_MASK 0xFF
#define SMBIOS_CORE_PACKAGE_OFFSET 0x23
#define LOONGSON_EFI_ENABLE (1 << 3)
unsigned long fw_arg0, fw_arg1, fw_arg2;
DEFINE_PER_CPU(unsigned long, kernelsp);
struct cpuinfo_loongarch cpu_data[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(cpu_data);
struct loongson_board_info b_info;
static const char dmi_empty_string[] = " ";
/*
* Setup information
*
* These are initialized so they are in the .data section
*/
char init_command_line[COMMAND_LINE_SIZE] __initdata;
static int num_standard_resources;
static struct resource *standard_resources;
static struct resource code_resource = { .name = "Kernel code", };
static struct resource data_resource = { .name = "Kernel data", };
static struct resource bss_resource = { .name = "Kernel bss", };
const char *get_system_type(void)
{
return "generic-loongson-machine";
}
void __init arch_cpu_finalize_init(void)
{
alternative_instructions();
}
static const char *dmi_string_parse(const struct dmi_header *dm, u8 s)
{
const u8 *bp = ((u8 *) dm) + dm->length;
if (s) {
s--;
while (s > 0 && *bp) {
bp += strlen(bp) + 1;
s--;
}
if (*bp != 0) {
size_t len = strlen(bp)+1;
size_t cmp_len = len > 8 ? 8 : len;
if (!memcmp(bp, dmi_empty_string, cmp_len))
return dmi_empty_string;
return bp;
}
}
return "";
}
static void __init parse_cpu_table(const struct dmi_header *dm)
{
long freq_temp = 0;
char *dmi_data = (char *)dm;
freq_temp = ((*(dmi_data + SMBIOS_FREQHIGH_OFFSET) << 8) +
((*(dmi_data + SMBIOS_FREQLOW_OFFSET)) & SMBIOS_FREQLOW_MASK));
cpu_clock_freq = freq_temp * 1000000;
loongson_sysconf.cpuname = (void *)dmi_string_parse(dm, dmi_data[16]);
loongson_sysconf.cores_per_package = *(dmi_data + SMBIOS_CORE_PACKAGE_OFFSET);
pr_info("CpuClock = %llu\n", cpu_clock_freq);
}
static void __init parse_bios_table(const struct dmi_header *dm)
{
char *dmi_data = (char *)dm;
b_info.bios_size = (*(dmi_data + SMBIOS_BIOSSIZE_OFFSET) + 1) << 6;
}
static void __init find_tokens(const struct dmi_header *dm, void *dummy)
{
switch (dm->type) {
case 0x0: /* Extern BIOS */
parse_bios_table(dm);
break;
case 0x4: /* Calling interface */
parse_cpu_table(dm);
break;
}
}
static void __init smbios_parse(void)
{
b_info.bios_vendor = (void *)dmi_get_system_info(DMI_BIOS_VENDOR);
b_info.bios_version = (void *)dmi_get_system_info(DMI_BIOS_VERSION);
b_info.bios_release_date = (void *)dmi_get_system_info(DMI_BIOS_DATE);
b_info.board_vendor = (void *)dmi_get_system_info(DMI_BOARD_VENDOR);
b_info.board_name = (void *)dmi_get_system_info(DMI_BOARD_NAME);
dmi_walk(find_tokens, NULL);
}
#ifdef CONFIG_ARCH_WRITECOMBINE
bool wc_enabled = true;
#else
bool wc_enabled = false;
#endif
EXPORT_SYMBOL(wc_enabled);
static int __init setup_writecombine(char *p)
{
if (!strcmp(p, "on"))
wc_enabled = true;
else if (!strcmp(p, "off"))
wc_enabled = false;
else
pr_warn("Unknown writecombine setting \"%s\".\n", p);
return 0;
}
early_param("writecombine", setup_writecombine);
static int usermem __initdata;
static int __init early_parse_mem(char *p)
{
phys_addr_t start, size;
if (!p) {
pr_err("mem parameter is empty, do nothing\n");
return -EINVAL;
}
/*
* If a user specifies memory size, we
* blow away any automatically generated
* size.
*/
if (usermem == 0) {
usermem = 1;
memblock_remove(memblock_start_of_DRAM(),
memblock_end_of_DRAM() - memblock_start_of_DRAM());
}
start = 0;
size = memparse(p, &p);
if (*p == '@')
start = memparse(p + 1, &p);
else {
pr_err("Invalid format!\n");
return -EINVAL;
}
if (!IS_ENABLED(CONFIG_NUMA))
memblock_add(start, size);
else
memblock_add_node(start, size, pa_to_nid(start), MEMBLOCK_NONE);
return 0;
}
early_param("mem", early_parse_mem);
static void __init arch_reserve_vmcore(void)
{
#ifdef CONFIG_PROC_VMCORE
u64 i;
phys_addr_t start, end;
if (!is_kdump_kernel())
return;
if (!elfcorehdr_size) {
for_each_mem_range(i, &start, &end) {
if (elfcorehdr_addr >= start && elfcorehdr_addr < end) {
/*
* Reserve from the elf core header to the end of
* the memory segment, that should all be kdump
* reserved memory.
*/
elfcorehdr_size = end - elfcorehdr_addr;
break;
}
}
}
if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
pr_warn("elfcorehdr is overlapped\n");
return;
}
memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n",
elfcorehdr_size >> 10, elfcorehdr_addr);
#endif
}
static void __init arch_reserve_crashkernel(void)
{
int ret;
unsigned long long low_size = 0;
unsigned long long crash_base, crash_size;
char *cmdline = boot_command_line;
bool high = false;
if (!IS_ENABLED(CONFIG_KEXEC_CORE))
return;
ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
&crash_size, &crash_base, &low_size, &high);
if (ret)
return;
reserve_crashkernel_generic(cmdline, crash_size, crash_base, low_size, high);
}
static void __init fdt_setup(void)
{
#ifdef CONFIG_OF_EARLY_FLATTREE
void *fdt_pointer;
/* ACPI-based systems do not require parsing fdt */
if (acpi_os_get_root_pointer())
return;
/* Prefer to use built-in dtb, checking its legality first. */
if (!fdt_check_header(__dtb_start))
fdt_pointer = __dtb_start;
else
fdt_pointer = efi_fdt_pointer(); /* Fallback to firmware dtb */
if (!fdt_pointer || fdt_check_header(fdt_pointer))
return;
early_init_dt_scan(fdt_pointer);
early_init_fdt_reserve_self();
max_low_pfn = PFN_PHYS(memblock_end_of_DRAM());
#endif
}
static void __init bootcmdline_init(char **cmdline_p)
{
/*
* If CONFIG_CMDLINE_FORCE is enabled then initializing the command line
* is trivial - we simply use the built-in command line unconditionally &
* unmodified.
*/
if (IS_ENABLED(CONFIG_CMDLINE_FORCE)) {
strscpy(boot_command_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
goto out;
}
#ifdef CONFIG_OF_FLATTREE
/*
* If CONFIG_CMDLINE_BOOTLOADER is enabled and we are in FDT-based system,
* the boot_command_line will be overwritten by early_init_dt_scan_chosen().
* So we need to append init_command_line (the original copy of boot_command_line)
* to boot_command_line.
*/
if (initial_boot_params) {
if (boot_command_line[0])
strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
if (!strstr(boot_command_line, init_command_line))
strlcat(boot_command_line, init_command_line, COMMAND_LINE_SIZE);
goto out;
}
#endif
/*
* Append built-in command line to the bootloader command line if
* CONFIG_CMDLINE_EXTEND is enabled.
*/
if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) && CONFIG_CMDLINE[0]) {
strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
strlcat(boot_command_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
}
/*
* Use built-in command line if the bootloader command line is empty.
*/
if (IS_ENABLED(CONFIG_CMDLINE_BOOTLOADER) && !boot_command_line[0])
strscpy(boot_command_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
out:
*cmdline_p = boot_command_line;
}
void __init platform_init(void)
{
arch_reserve_vmcore();
arch_reserve_crashkernel();
#ifdef CONFIG_ACPI_TABLE_UPGRADE
acpi_table_upgrade();
#endif
#ifdef CONFIG_ACPI
acpi_gbl_use_default_register_widths = false;
acpi_boot_table_init();
#endif
early_init_fdt_scan_reserved_mem();
unflatten_and_copy_device_tree();
#ifdef CONFIG_NUMA
init_numa_memory();
#endif
dmi_setup();
smbios_parse();
pr_info("The BIOS Version: %s\n", b_info.bios_version);
efi_runtime_init();
}
static void __init check_kernel_sections_mem(void)
{
phys_addr_t start = __pa_symbol(&_text);
phys_addr_t size = __pa_symbol(&_end) - start;
if (!memblock_is_region_memory(start, size)) {
pr_info("Kernel sections are not in the memory maps\n");
memblock_add(start, size);
}
}
/*
* arch_mem_init - initialize memory management subsystem
*/
static void __init arch_mem_init(char **cmdline_p)
{
if (usermem)
pr_info("User-defined physical RAM map overwrite\n");
check_kernel_sections_mem();
/*
* In order to reduce the possibility of kernel panic when failed to
* get IO TLB memory under CONFIG_SWIOTLB, it is better to allocate
* low memory as small as possible before swiotlb_init(), so make
* sparse_init() using top-down allocation.
*/
memblock_set_bottom_up(false);
sparse_init();
memblock_set_bottom_up(true);
swiotlb_init(true, SWIOTLB_VERBOSE);
dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
/* Reserve for hibernation. */
register_nosave_region(PFN_DOWN(__pa_symbol(&__nosave_begin)),
PFN_UP(__pa_symbol(&__nosave_end)));
memblock_dump_all();
early_memtest(PFN_PHYS(ARCH_PFN_OFFSET), PFN_PHYS(max_low_pfn));
}
static void __init resource_init(void)
{
long i = 0;
size_t res_size;
struct resource *res;
struct memblock_region *region;
code_resource.start = __pa_symbol(&_text);
code_resource.end = __pa_symbol(&_etext) - 1;
data_resource.start = __pa_symbol(&_etext);
data_resource.end = __pa_symbol(&_edata) - 1;
bss_resource.start = __pa_symbol(&__bss_start);
bss_resource.end = __pa_symbol(&__bss_stop) - 1;
num_standard_resources = memblock.memory.cnt;
res_size = num_standard_resources * sizeof(*standard_resources);
standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES);
for_each_mem_region(region) {
res = &standard_resources[i++];
if (!memblock_is_nomap(region)) {
res->name = "System RAM";
res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
} else {
res->name = "Reserved";
res->flags = IORESOURCE_MEM;
res->start = __pfn_to_phys(memblock_region_reserved_base_pfn(region));
res->end = __pfn_to_phys(memblock_region_reserved_end_pfn(region)) - 1;
}
request_resource(&iomem_resource, res);
/*
* We don't know which RAM region contains kernel data,
* so we try it repeatedly and let the resource manager
* test it.
*/
request_resource(res, &code_resource);
request_resource(res, &data_resource);
request_resource(res, &bss_resource);
}
}
static int __init add_legacy_isa_io(struct fwnode_handle *fwnode,
resource_size_t hw_start, resource_size_t size)
{
int ret = 0;
unsigned long vaddr;
struct logic_pio_hwaddr *range;
range = kzalloc(sizeof(*range), GFP_ATOMIC);
if (!range)
return -ENOMEM;
range->fwnode = fwnode;
range->size = size = round_up(size, PAGE_SIZE);
range->hw_start = hw_start;
range->flags = LOGIC_PIO_CPU_MMIO;
ret = logic_pio_register_range(range);
if (ret) {
kfree(range);
return ret;
}
/* Legacy ISA must placed at the start of PCI_IOBASE */
if (range->io_start != 0) {
logic_pio_unregister_range(range);
kfree(range);
return -EINVAL;
}
vaddr = (unsigned long)(PCI_IOBASE + range->io_start);
ioremap_page_range(vaddr, vaddr + size, hw_start, pgprot_device(PAGE_KERNEL));
return 0;
}
static __init int arch_reserve_pio_range(void)
{
struct device_node *np;
for_each_node_by_name(np, "isa") {
struct of_range range;
struct of_range_parser parser;
pr_info("ISA Bridge: %pOF\n", np);
if (of_range_parser_init(&parser, np)) {
pr_info("Failed to parse resources.\n");
of_node_put(np);
break;
}
for_each_of_range(&parser, &range) {
switch (range.flags & IORESOURCE_TYPE_BITS) {
case IORESOURCE_IO:
pr_info(" IO 0x%016llx..0x%016llx -> 0x%016llx\n",
range.cpu_addr,
range.cpu_addr + range.size - 1,
range.bus_addr);
if (add_legacy_isa_io(&np->fwnode, range.cpu_addr, range.size))
pr_warn("Failed to reserve legacy IO in Logic PIO\n");
break;
case IORESOURCE_MEM:
pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx\n",
range.cpu_addr,
range.cpu_addr + range.size - 1,
range.bus_addr);
break;
}
}
}
return 0;
}
arch_initcall(arch_reserve_pio_range);
static int __init reserve_memblock_reserved_regions(void)
{
u64 i, j;
for (i = 0; i < num_standard_resources; ++i) {
struct resource *mem = &standard_resources[i];
phys_addr_t r_start, r_end, mem_size = resource_size(mem);
if (!memblock_is_region_reserved(mem->start, mem_size))
continue;
for_each_reserved_mem_range(j, &r_start, &r_end) {
resource_size_t start, end;
start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start);
end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end);
if (start > mem->end || end < mem->start)
continue;
reserve_region_with_split(mem, start, end, "Reserved");
}
}
return 0;
}
arch_initcall(reserve_memblock_reserved_regions);
#ifdef CONFIG_SMP
static void __init prefill_possible_map(void)
{
int i, possible;
possible = num_processors + disabled_cpus;
if (possible > nr_cpu_ids)
possible = nr_cpu_ids;
pr_info("SMP: Allowing %d CPUs, %d hotplug CPUs\n",
possible, max((possible - num_processors), 0));
for (i = 0; i < possible; i++)
set_cpu_possible(i, true);
for (; i < NR_CPUS; i++)
set_cpu_possible(i, false);
set_nr_cpu_ids(possible);
}
#endif
void __init setup_arch(char **cmdline_p)
{
cpu_probe();
init_environ();
efi_init();
fdt_setup();
memblock_init();
pagetable_init();
bootcmdline_init(cmdline_p);
parse_early_param();
reserve_initrd_mem();
platform_init();
arch_mem_init(cmdline_p);
resource_init();
#ifdef CONFIG_SMP
plat_smp_setup();
prefill_possible_map();
#endif
paging_init();
#ifdef CONFIG_KASAN
kasan_init();
#endif
}