mirror_ubuntu-kernels/sound/soc/codecs/peb2466.c

2072 lines
55 KiB
C

// SPDX-License-Identifier: GPL-2.0
//
// peb2466.c -- Infineon PEB2466 ALSA SoC driver
//
// Copyright 2023 CS GROUP France
//
// Author: Herve Codina <herve.codina@bootlin.com>
#include <asm/unaligned.h>
#include <linux/clk.h>
#include <linux/firmware.h>
#include <linux/gpio/consumer.h>
#include <linux/gpio/driver.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/tlv.h>
#define PEB2466_NB_CHANNEL 4
struct peb2466_lookup {
u8 (*table)[4];
unsigned int count;
};
#define PEB2466_TLV_SIZE (sizeof((unsigned int []){TLV_DB_SCALE_ITEM(0, 0, 0)}) / \
sizeof(unsigned int))
struct peb2466_lkup_ctrl {
int reg;
unsigned int index;
const struct peb2466_lookup *lookup;
unsigned int tlv_array[PEB2466_TLV_SIZE];
};
struct peb2466 {
struct spi_device *spi;
struct clk *mclk;
struct gpio_desc *reset_gpio;
u8 spi_tx_buf[2 + 8]; /* Cannot use stack area for SPI (dma-safe memory) */
u8 spi_rx_buf[2 + 8]; /* Cannot use stack area for SPI (dma-safe memory) */
struct regmap *regmap;
struct {
struct peb2466_lookup ax_lookup;
struct peb2466_lookup ar_lookup;
struct peb2466_lkup_ctrl ax_lkup_ctrl;
struct peb2466_lkup_ctrl ar_lkup_ctrl;
unsigned int tg1_freq_item;
unsigned int tg2_freq_item;
} ch[PEB2466_NB_CHANNEL];
int max_chan_playback;
int max_chan_capture;
struct {
struct gpio_chip gpio_chip;
struct mutex lock;
struct {
unsigned int xr0;
unsigned int xr1;
unsigned int xr2;
unsigned int xr3;
} cache;
} gpio;
};
#define PEB2466_CMD_R (1 << 5)
#define PEB2466_CMD_W (0 << 5)
#define PEB2466_CMD_MASK 0x18
#define PEB2466_CMD_XOP 0x18 /* XOP is 0bxxx11xxx */
#define PEB2466_CMD_SOP 0x10 /* SOP is 0bxxx10xxx */
#define PEB2466_CMD_COP 0x00 /* COP is 0bxxx0xxxx, handle 0bxxx00xxx */
#define PEB2466_CMD_COP1 0x08 /* COP is 0bxxx0xxxx, handle 0bxxx01xxx */
#define PEB2466_MAKE_XOP(_lsel) (PEB2466_CMD_XOP | (_lsel))
#define PEB2466_MAKE_SOP(_ad, _lsel) (PEB2466_CMD_SOP | ((_ad) << 6) | (_lsel))
#define PEB2466_MAKE_COP(_ad, _code) (PEB2466_CMD_COP | ((_ad) << 6) | (_code))
#define PEB2466_CR0(_ch) PEB2466_MAKE_SOP(_ch, 0x0)
#define PEB2466_CR0_TH (1 << 7)
#define PEB2466_CR0_IMR1 (1 << 6)
#define PEB2466_CR0_FRX (1 << 5)
#define PEB2466_CR0_FRR (1 << 4)
#define PEB2466_CR0_AX (1 << 3)
#define PEB2466_CR0_AR (1 << 2)
#define PEB2466_CR0_THSEL_MASK (0x3 << 0)
#define PEB2466_CR0_THSEL(_set) ((_set) << 0)
#define PEB2466_CR1(_ch) PEB2466_MAKE_SOP(_ch, 0x1)
#define PEB2466_CR1_ETG2 (1 << 7)
#define PEB2466_CR1_ETG1 (1 << 6)
#define PEB2466_CR1_PTG2 (1 << 5)
#define PEB2466_CR1_PTG1 (1 << 4)
#define PEB2466_CR1_LAW_MASK (1 << 3)
#define PEB2466_CR1_LAW_ALAW (0 << 3)
#define PEB2466_CR1_LAW_MULAW (1 << 3)
#define PEB2466_CR1_PU (1 << 0)
#define PEB2466_CR2(_ch) PEB2466_MAKE_SOP(_ch, 0x2)
#define PEB2466_CR3(_ch) PEB2466_MAKE_SOP(_ch, 0x3)
#define PEB2466_CR4(_ch) PEB2466_MAKE_SOP(_ch, 0x4)
#define PEB2466_CR5(_ch) PEB2466_MAKE_SOP(_ch, 0x5)
#define PEB2466_XR0 PEB2466_MAKE_XOP(0x0)
#define PEB2466_XR1 PEB2466_MAKE_XOP(0x1)
#define PEB2466_XR2 PEB2466_MAKE_XOP(0x2)
#define PEB2466_XR3 PEB2466_MAKE_XOP(0x3)
#define PEB2466_XR4 PEB2466_MAKE_XOP(0x4)
#define PEB2466_XR5 PEB2466_MAKE_XOP(0x5)
#define PEB2466_XR5_MCLK_1536 (0x0 << 6)
#define PEB2466_XR5_MCLK_2048 (0x1 << 6)
#define PEB2466_XR5_MCLK_4096 (0x2 << 6)
#define PEB2466_XR5_MCLK_8192 (0x3 << 6)
#define PEB2466_XR6 PEB2466_MAKE_XOP(0x6)
#define PEB2466_XR6_PCM_OFFSET(_off) ((_off) << 0)
#define PEB2466_XR7 PEB2466_MAKE_XOP(0x7)
#define PEB2466_TH_FILTER_P1(_ch) PEB2466_MAKE_COP(_ch, 0x0)
#define PEB2466_TH_FILTER_P2(_ch) PEB2466_MAKE_COP(_ch, 0x1)
#define PEB2466_TH_FILTER_P3(_ch) PEB2466_MAKE_COP(_ch, 0x2)
#define PEB2466_IMR1_FILTER_P1(_ch) PEB2466_MAKE_COP(_ch, 0x4)
#define PEB2466_IMR1_FILTER_P2(_ch) PEB2466_MAKE_COP(_ch, 0x5)
#define PEB2466_FRX_FILTER(_ch) PEB2466_MAKE_COP(_ch, 0x6)
#define PEB2466_FRR_FILTER(_ch) PEB2466_MAKE_COP(_ch, 0x7)
#define PEB2466_AX_FILTER(_ch) PEB2466_MAKE_COP(_ch, 0x8)
#define PEB2466_AR_FILTER(_ch) PEB2466_MAKE_COP(_ch, 0x9)
#define PEB2466_TG1(_ch) PEB2466_MAKE_COP(_ch, 0xc)
#define PEB2466_TG2(_ch) PEB2466_MAKE_COP(_ch, 0xd)
static int peb2466_write_byte(struct peb2466 *peb2466, u8 cmd, u8 val)
{
struct spi_transfer xfer = {
.tx_buf = &peb2466->spi_tx_buf,
.len = 2,
};
peb2466->spi_tx_buf[0] = cmd | PEB2466_CMD_W;
peb2466->spi_tx_buf[1] = val;
dev_dbg(&peb2466->spi->dev, "write byte (cmd %02x) %02x\n",
peb2466->spi_tx_buf[0], peb2466->spi_tx_buf[1]);
return spi_sync_transfer(peb2466->spi, &xfer, 1);
}
static int peb2466_read_byte(struct peb2466 *peb2466, u8 cmd, u8 *val)
{
struct spi_transfer xfer = {
.tx_buf = &peb2466->spi_tx_buf,
.rx_buf = &peb2466->spi_rx_buf,
.len = 3,
};
int ret;
peb2466->spi_tx_buf[0] = cmd | PEB2466_CMD_R;
ret = spi_sync_transfer(peb2466->spi, &xfer, 1);
if (ret)
return ret;
if (peb2466->spi_rx_buf[1] != 0x81) {
dev_err(&peb2466->spi->dev,
"spi xfer rd (cmd %02x) invalid ident byte (0x%02x)\n",
peb2466->spi_tx_buf[0], peb2466->spi_rx_buf[1]);
return -EILSEQ;
}
*val = peb2466->spi_rx_buf[2];
dev_dbg(&peb2466->spi->dev, "read byte (cmd %02x) %02x\n",
peb2466->spi_tx_buf[0], *val);
return 0;
}
static int peb2466_write_buf(struct peb2466 *peb2466, u8 cmd, const u8 *buf, unsigned int len)
{
struct spi_transfer xfer = {
.tx_buf = &peb2466->spi_tx_buf,
.len = len + 1,
};
if (len > 8)
return -EINVAL;
peb2466->spi_tx_buf[0] = cmd | PEB2466_CMD_W;
memcpy(&peb2466->spi_tx_buf[1], buf, len);
dev_dbg(&peb2466->spi->dev, "write buf (cmd %02x, %u) %*ph\n",
peb2466->spi_tx_buf[0], len, len, &peb2466->spi_tx_buf[1]);
return spi_sync_transfer(peb2466->spi, &xfer, 1);
}
static int peb2466_reg_write(void *context, unsigned int reg, unsigned int val)
{
struct peb2466 *peb2466 = context;
int ret;
/*
* Only XOP and SOP commands can be handled as registers.
* COP commands are handled using direct peb2466_write_buf() calls.
*/
switch (reg & PEB2466_CMD_MASK) {
case PEB2466_CMD_XOP:
case PEB2466_CMD_SOP:
ret = peb2466_write_byte(peb2466, reg, val);
break;
default:
dev_err(&peb2466->spi->dev, "Not a XOP or SOP command\n");
ret = -EINVAL;
break;
}
return ret;
}
static int peb2466_reg_read(void *context, unsigned int reg, unsigned int *val)
{
struct peb2466 *peb2466 = context;
int ret;
u8 tmp;
/* Only XOP and SOP commands can be handled as registers */
switch (reg & PEB2466_CMD_MASK) {
case PEB2466_CMD_XOP:
case PEB2466_CMD_SOP:
ret = peb2466_read_byte(peb2466, reg, &tmp);
*val = tmp;
break;
default:
dev_err(&peb2466->spi->dev, "Not a XOP or SOP command\n");
ret = -EINVAL;
break;
}
return ret;
}
static const struct regmap_config peb2466_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = 0xFF,
.reg_write = peb2466_reg_write,
.reg_read = peb2466_reg_read,
.cache_type = REGCACHE_NONE,
};
static int peb2466_lkup_ctrl_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct peb2466_lkup_ctrl *lkup_ctrl =
(struct peb2466_lkup_ctrl *)kcontrol->private_value;
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = lkup_ctrl->lookup->count - 1;
return 0;
}
static int peb2466_lkup_ctrl_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct peb2466_lkup_ctrl *lkup_ctrl =
(struct peb2466_lkup_ctrl *)kcontrol->private_value;
ucontrol->value.integer.value[0] = lkup_ctrl->index;
return 0;
}
static int peb2466_lkup_ctrl_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct peb2466_lkup_ctrl *lkup_ctrl =
(struct peb2466_lkup_ctrl *)kcontrol->private_value;
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
unsigned int index;
int ret;
index = ucontrol->value.integer.value[0];
if (index >= lkup_ctrl->lookup->count)
return -EINVAL;
if (index == lkup_ctrl->index)
return 0;
ret = peb2466_write_buf(peb2466, lkup_ctrl->reg,
lkup_ctrl->lookup->table[index], 4);
if (ret)
return ret;
lkup_ctrl->index = index;
return 1; /* The value changed */
}
static int peb2466_add_lkup_ctrl(struct snd_soc_component *component,
struct peb2466_lkup_ctrl *lkup_ctrl,
const char *name, int min_val, int step)
{
DECLARE_TLV_DB_SCALE(tlv_array, min_val, step, 0);
struct snd_kcontrol_new control = {0};
BUILD_BUG_ON(sizeof(lkup_ctrl->tlv_array) < sizeof(tlv_array));
memcpy(lkup_ctrl->tlv_array, tlv_array, sizeof(tlv_array));
control.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
control.name = name;
control.access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |
SNDRV_CTL_ELEM_ACCESS_READWRITE;
control.tlv.p = lkup_ctrl->tlv_array;
control.info = peb2466_lkup_ctrl_info;
control.get = peb2466_lkup_ctrl_get;
control.put = peb2466_lkup_ctrl_put;
control.private_value = (unsigned long)lkup_ctrl;
return snd_soc_add_component_controls(component, &control, 1);
}
enum peb2466_tone_freq {
PEB2466_TONE_697HZ,
PEB2466_TONE_800HZ,
PEB2466_TONE_950HZ,
PEB2466_TONE_1000HZ,
PEB2466_TONE_1008HZ,
PEB2466_TONE_2000HZ,
};
static const u8 peb2466_tone_lookup[][4] = {
[PEB2466_TONE_697HZ] = {0x0a, 0x33, 0x5a, 0x2c},
[PEB2466_TONE_800HZ] = {0x12, 0xD6, 0x5a, 0xc0},
[PEB2466_TONE_950HZ] = {0x1c, 0xf0, 0x5c, 0xc0},
[PEB2466_TONE_1000HZ] = {0}, /* lookup value not used for 1000Hz */
[PEB2466_TONE_1008HZ] = {0x1a, 0xae, 0x57, 0x70},
[PEB2466_TONE_2000HZ] = {0x00, 0x80, 0x50, 0x09},
};
static const char * const peb2466_tone_freq_txt[] = {
[PEB2466_TONE_697HZ] = "697Hz",
[PEB2466_TONE_800HZ] = "800Hz",
[PEB2466_TONE_950HZ] = "950Hz",
[PEB2466_TONE_1000HZ] = "1000Hz",
[PEB2466_TONE_1008HZ] = "1008Hz",
[PEB2466_TONE_2000HZ] = "2000Hz"
};
static const struct soc_enum peb2466_tg_freq[][2] = {
[0] = {
SOC_ENUM_SINGLE(PEB2466_TG1(0), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
peb2466_tone_freq_txt),
SOC_ENUM_SINGLE(PEB2466_TG2(0), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
peb2466_tone_freq_txt)
},
[1] = {
SOC_ENUM_SINGLE(PEB2466_TG1(1), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
peb2466_tone_freq_txt),
SOC_ENUM_SINGLE(PEB2466_TG2(1), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
peb2466_tone_freq_txt)
},
[2] = {
SOC_ENUM_SINGLE(PEB2466_TG1(2), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
peb2466_tone_freq_txt),
SOC_ENUM_SINGLE(PEB2466_TG2(2), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
peb2466_tone_freq_txt)
},
[3] = {
SOC_ENUM_SINGLE(PEB2466_TG1(3), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
peb2466_tone_freq_txt),
SOC_ENUM_SINGLE(PEB2466_TG2(3), 0, ARRAY_SIZE(peb2466_tone_freq_txt),
peb2466_tone_freq_txt)
}
};
static int peb2466_tg_freq_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
switch (e->reg) {
case PEB2466_TG1(0):
ucontrol->value.enumerated.item[0] = peb2466->ch[0].tg1_freq_item;
break;
case PEB2466_TG2(0):
ucontrol->value.enumerated.item[0] = peb2466->ch[0].tg2_freq_item;
break;
case PEB2466_TG1(1):
ucontrol->value.enumerated.item[0] = peb2466->ch[1].tg1_freq_item;
break;
case PEB2466_TG2(1):
ucontrol->value.enumerated.item[0] = peb2466->ch[1].tg2_freq_item;
break;
case PEB2466_TG1(2):
ucontrol->value.enumerated.item[0] = peb2466->ch[2].tg1_freq_item;
break;
case PEB2466_TG2(2):
ucontrol->value.enumerated.item[0] = peb2466->ch[2].tg2_freq_item;
break;
case PEB2466_TG1(3):
ucontrol->value.enumerated.item[0] = peb2466->ch[3].tg1_freq_item;
break;
case PEB2466_TG2(3):
ucontrol->value.enumerated.item[0] = peb2466->ch[3].tg2_freq_item;
break;
default:
return -EINVAL;
}
return 0;
}
static int peb2466_tg_freq_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned int *tg_freq_item;
u8 cr1_reg, cr1_mask;
unsigned int index;
int ret;
index = ucontrol->value.enumerated.item[0];
if (index >= ARRAY_SIZE(peb2466_tone_lookup))
return -EINVAL;
switch (e->reg) {
case PEB2466_TG1(0):
tg_freq_item = &peb2466->ch[0].tg1_freq_item;
cr1_reg = PEB2466_CR1(0);
cr1_mask = PEB2466_CR1_PTG1;
break;
case PEB2466_TG2(0):
tg_freq_item = &peb2466->ch[0].tg2_freq_item;
cr1_reg = PEB2466_CR1(0);
cr1_mask = PEB2466_CR1_PTG2;
break;
case PEB2466_TG1(1):
tg_freq_item = &peb2466->ch[1].tg1_freq_item;
cr1_reg = PEB2466_CR1(1);
cr1_mask = PEB2466_CR1_PTG1;
break;
case PEB2466_TG2(1):
tg_freq_item = &peb2466->ch[1].tg2_freq_item;
cr1_reg = PEB2466_CR1(1);
cr1_mask = PEB2466_CR1_PTG2;
break;
case PEB2466_TG1(2):
tg_freq_item = &peb2466->ch[2].tg1_freq_item;
cr1_reg = PEB2466_CR1(2);
cr1_mask = PEB2466_CR1_PTG1;
break;
case PEB2466_TG2(2):
tg_freq_item = &peb2466->ch[2].tg2_freq_item;
cr1_reg = PEB2466_CR1(2);
cr1_mask = PEB2466_CR1_PTG2;
break;
case PEB2466_TG1(3):
tg_freq_item = &peb2466->ch[3].tg1_freq_item;
cr1_reg = PEB2466_CR1(3);
cr1_mask = PEB2466_CR1_PTG1;
break;
case PEB2466_TG2(3):
tg_freq_item = &peb2466->ch[3].tg2_freq_item;
cr1_reg = PEB2466_CR1(3);
cr1_mask = PEB2466_CR1_PTG2;
break;
default:
return -EINVAL;
}
if (index == *tg_freq_item)
return 0;
if (index == PEB2466_TONE_1000HZ) {
ret = regmap_update_bits(peb2466->regmap, cr1_reg, cr1_mask, 0);
if (ret)
return ret;
} else {
ret = peb2466_write_buf(peb2466, e->reg, peb2466_tone_lookup[index], 4);
if (ret)
return ret;
ret = regmap_update_bits(peb2466->regmap, cr1_reg, cr1_mask, cr1_mask);
if (ret)
return ret;
}
*tg_freq_item = index;
return 1; /* The value changed */
}
static const struct snd_kcontrol_new peb2466_ch0_out_mix_controls[] = {
SOC_DAPM_SINGLE("TG1 Switch", PEB2466_CR1(0), 6, 1, 0),
SOC_DAPM_SINGLE("TG2 Switch", PEB2466_CR1(0), 7, 1, 0),
SOC_DAPM_SINGLE("Voice Switch", PEB2466_CR2(0), 0, 1, 0)
};
static const struct snd_kcontrol_new peb2466_ch1_out_mix_controls[] = {
SOC_DAPM_SINGLE("TG1 Switch", PEB2466_CR1(1), 6, 1, 0),
SOC_DAPM_SINGLE("TG2 Switch", PEB2466_CR1(1), 7, 1, 0),
SOC_DAPM_SINGLE("Voice Switch", PEB2466_CR2(1), 0, 1, 0)
};
static const struct snd_kcontrol_new peb2466_ch2_out_mix_controls[] = {
SOC_DAPM_SINGLE("TG1 Switch", PEB2466_CR1(2), 6, 1, 0),
SOC_DAPM_SINGLE("TG2 Switch", PEB2466_CR1(2), 7, 1, 0),
SOC_DAPM_SINGLE("Voice Switch", PEB2466_CR2(2), 0, 1, 0)
};
static const struct snd_kcontrol_new peb2466_ch3_out_mix_controls[] = {
SOC_DAPM_SINGLE("TG1 Switch", PEB2466_CR1(3), 6, 1, 0),
SOC_DAPM_SINGLE("TG2 Switch", PEB2466_CR1(3), 7, 1, 0),
SOC_DAPM_SINGLE("Voice Switch", PEB2466_CR2(3), 0, 1, 0)
};
static const struct snd_kcontrol_new peb2466_controls[] = {
/* Attenuators */
SOC_SINGLE("DAC0 -6dB Playback Switch", PEB2466_CR3(0), 2, 1, 0),
SOC_SINGLE("DAC1 -6dB Playback Switch", PEB2466_CR3(1), 2, 1, 0),
SOC_SINGLE("DAC2 -6dB Playback Switch", PEB2466_CR3(2), 2, 1, 0),
SOC_SINGLE("DAC3 -6dB Playback Switch", PEB2466_CR3(3), 2, 1, 0),
/* Amplifiers */
SOC_SINGLE("ADC0 +6dB Capture Switch", PEB2466_CR3(0), 3, 1, 0),
SOC_SINGLE("ADC1 +6dB Capture Switch", PEB2466_CR3(1), 3, 1, 0),
SOC_SINGLE("ADC2 +6dB Capture Switch", PEB2466_CR3(2), 3, 1, 0),
SOC_SINGLE("ADC3 +6dB Capture Switch", PEB2466_CR3(3), 3, 1, 0),
/* Tone generators */
SOC_ENUM_EXT("DAC0 TG1 Freq", peb2466_tg_freq[0][0],
peb2466_tg_freq_get, peb2466_tg_freq_put),
SOC_ENUM_EXT("DAC1 TG1 Freq", peb2466_tg_freq[1][0],
peb2466_tg_freq_get, peb2466_tg_freq_put),
SOC_ENUM_EXT("DAC2 TG1 Freq", peb2466_tg_freq[2][0],
peb2466_tg_freq_get, peb2466_tg_freq_put),
SOC_ENUM_EXT("DAC3 TG1 Freq", peb2466_tg_freq[3][0],
peb2466_tg_freq_get, peb2466_tg_freq_put),
SOC_ENUM_EXT("DAC0 TG2 Freq", peb2466_tg_freq[0][1],
peb2466_tg_freq_get, peb2466_tg_freq_put),
SOC_ENUM_EXT("DAC1 TG2 Freq", peb2466_tg_freq[1][1],
peb2466_tg_freq_get, peb2466_tg_freq_put),
SOC_ENUM_EXT("DAC2 TG2 Freq", peb2466_tg_freq[2][1],
peb2466_tg_freq_get, peb2466_tg_freq_put),
SOC_ENUM_EXT("DAC3 TG2 Freq", peb2466_tg_freq[3][1],
peb2466_tg_freq_get, peb2466_tg_freq_put),
};
static const struct snd_soc_dapm_widget peb2466_dapm_widgets[] = {
SND_SOC_DAPM_SUPPLY("CH0 PWR", PEB2466_CR1(0), 0, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("CH1 PWR", PEB2466_CR1(1), 0, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("CH2 PWR", PEB2466_CR1(2), 0, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("CH3 PWR", PEB2466_CR1(3), 0, 0, NULL, 0),
SND_SOC_DAPM_DAC("CH0 DIN", "Playback", SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_DAC("CH1 DIN", "Playback", SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_DAC("CH2 DIN", "Playback", SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_DAC("CH3 DIN", "Playback", SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_SIGGEN("CH0 TG1"),
SND_SOC_DAPM_SIGGEN("CH1 TG1"),
SND_SOC_DAPM_SIGGEN("CH2 TG1"),
SND_SOC_DAPM_SIGGEN("CH3 TG1"),
SND_SOC_DAPM_SIGGEN("CH0 TG2"),
SND_SOC_DAPM_SIGGEN("CH1 TG2"),
SND_SOC_DAPM_SIGGEN("CH2 TG2"),
SND_SOC_DAPM_SIGGEN("CH3 TG2"),
SND_SOC_DAPM_MIXER("DAC0 Mixer", SND_SOC_NOPM, 0, 0,
peb2466_ch0_out_mix_controls,
ARRAY_SIZE(peb2466_ch0_out_mix_controls)),
SND_SOC_DAPM_MIXER("DAC1 Mixer", SND_SOC_NOPM, 0, 0,
peb2466_ch1_out_mix_controls,
ARRAY_SIZE(peb2466_ch1_out_mix_controls)),
SND_SOC_DAPM_MIXER("DAC2 Mixer", SND_SOC_NOPM, 0, 0,
peb2466_ch2_out_mix_controls,
ARRAY_SIZE(peb2466_ch2_out_mix_controls)),
SND_SOC_DAPM_MIXER("DAC3 Mixer", SND_SOC_NOPM, 0, 0,
peb2466_ch3_out_mix_controls,
ARRAY_SIZE(peb2466_ch3_out_mix_controls)),
SND_SOC_DAPM_PGA("DAC0 PGA", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("DAC1 PGA", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("DAC2 PGA", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("DAC3 PGA", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_OUTPUT("OUT0"),
SND_SOC_DAPM_OUTPUT("OUT1"),
SND_SOC_DAPM_OUTPUT("OUT2"),
SND_SOC_DAPM_OUTPUT("OUT3"),
SND_SOC_DAPM_INPUT("IN0"),
SND_SOC_DAPM_INPUT("IN1"),
SND_SOC_DAPM_INPUT("IN2"),
SND_SOC_DAPM_INPUT("IN3"),
SND_SOC_DAPM_DAC("ADC0", "Capture", SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_DAC("ADC1", "Capture", SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_DAC("ADC2", "Capture", SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_DAC("ADC3", "Capture", SND_SOC_NOPM, 0, 0),
};
static const struct snd_soc_dapm_route peb2466_dapm_routes[] = {
{ "CH0 DIN", NULL, "CH0 PWR" },
{ "CH1 DIN", NULL, "CH1 PWR" },
{ "CH2 DIN", NULL, "CH2 PWR" },
{ "CH3 DIN", NULL, "CH3 PWR" },
{ "CH0 TG1", NULL, "CH0 PWR" },
{ "CH1 TG1", NULL, "CH1 PWR" },
{ "CH2 TG1", NULL, "CH2 PWR" },
{ "CH3 TG1", NULL, "CH3 PWR" },
{ "CH0 TG2", NULL, "CH0 PWR" },
{ "CH1 TG2", NULL, "CH1 PWR" },
{ "CH2 TG2", NULL, "CH2 PWR" },
{ "CH3 TG2", NULL, "CH3 PWR" },
{ "DAC0 Mixer", "TG1 Switch", "CH0 TG1" },
{ "DAC0 Mixer", "TG2 Switch", "CH0 TG2" },
{ "DAC0 Mixer", "Voice Switch", "CH0 DIN" },
{ "DAC0 Mixer", NULL, "CH0 DIN" },
{ "DAC1 Mixer", "TG1 Switch", "CH1 TG1" },
{ "DAC1 Mixer", "TG2 Switch", "CH1 TG2" },
{ "DAC1 Mixer", "Voice Switch", "CH1 DIN" },
{ "DAC1 Mixer", NULL, "CH1 DIN" },
{ "DAC2 Mixer", "TG1 Switch", "CH2 TG1" },
{ "DAC2 Mixer", "TG2 Switch", "CH2 TG2" },
{ "DAC2 Mixer", "Voice Switch", "CH2 DIN" },
{ "DAC2 Mixer", NULL, "CH2 DIN" },
{ "DAC3 Mixer", "TG1 Switch", "CH3 TG1" },
{ "DAC3 Mixer", "TG2 Switch", "CH3 TG2" },
{ "DAC3 Mixer", "Voice Switch", "CH3 DIN" },
{ "DAC3 Mixer", NULL, "CH3 DIN" },
{ "DAC0 PGA", NULL, "DAC0 Mixer" },
{ "DAC1 PGA", NULL, "DAC1 Mixer" },
{ "DAC2 PGA", NULL, "DAC2 Mixer" },
{ "DAC3 PGA", NULL, "DAC3 Mixer" },
{ "OUT0", NULL, "DAC0 PGA" },
{ "OUT1", NULL, "DAC1 PGA" },
{ "OUT2", NULL, "DAC2 PGA" },
{ "OUT3", NULL, "DAC3 PGA" },
{ "ADC0", NULL, "IN0" },
{ "ADC1", NULL, "IN1" },
{ "ADC2", NULL, "IN2" },
{ "ADC3", NULL, "IN3" },
{ "ADC0", NULL, "CH0 PWR" },
{ "ADC1", NULL, "CH1 PWR" },
{ "ADC2", NULL, "CH2 PWR" },
{ "ADC3", NULL, "CH3 PWR" },
};
static int peb2466_dai_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask,
unsigned int rx_mask, int slots, int width)
{
struct peb2466 *peb2466 = snd_soc_component_get_drvdata(dai->component);
unsigned int chan;
unsigned int mask;
u8 slot;
int ret;
switch (width) {
case 0:
/* Not set -> default 8 */
case 8:
break;
default:
dev_err(dai->dev, "tdm slot width %d not supported\n", width);
return -EINVAL;
}
mask = tx_mask;
slot = 0;
chan = 0;
while (mask && chan < PEB2466_NB_CHANNEL) {
if (mask & 0x1) {
ret = regmap_write(peb2466->regmap, PEB2466_CR5(chan), slot);
if (ret) {
dev_err(dai->dev, "chan %d set tx tdm slot failed (%d)\n",
chan, ret);
return ret;
}
chan++;
}
mask >>= 1;
slot++;
}
if (mask) {
dev_err(dai->dev, "too much tx slots defined (mask = 0x%x) support max %d\n",
tx_mask, PEB2466_NB_CHANNEL);
return -EINVAL;
}
peb2466->max_chan_playback = chan;
mask = rx_mask;
slot = 0;
chan = 0;
while (mask && chan < PEB2466_NB_CHANNEL) {
if (mask & 0x1) {
ret = regmap_write(peb2466->regmap, PEB2466_CR4(chan), slot);
if (ret) {
dev_err(dai->dev, "chan %d set rx tdm slot failed (%d)\n",
chan, ret);
return ret;
}
chan++;
}
mask >>= 1;
slot++;
}
if (mask) {
dev_err(dai->dev, "too much rx slots defined (mask = 0x%x) support max %d\n",
rx_mask, PEB2466_NB_CHANNEL);
return -EINVAL;
}
peb2466->max_chan_capture = chan;
return 0;
}
static int peb2466_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct peb2466 *peb2466 = snd_soc_component_get_drvdata(dai->component);
u8 xr6;
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_DSP_A:
xr6 = PEB2466_XR6_PCM_OFFSET(1);
break;
case SND_SOC_DAIFMT_DSP_B:
xr6 = PEB2466_XR6_PCM_OFFSET(0);
break;
default:
dev_err(dai->dev, "Unsupported format 0x%x\n",
fmt & SND_SOC_DAIFMT_FORMAT_MASK);
return -EINVAL;
}
return regmap_write(peb2466->regmap, PEB2466_XR6, xr6);
}
static int peb2466_dai_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct peb2466 *peb2466 = snd_soc_component_get_drvdata(dai->component);
unsigned int ch;
int ret;
u8 cr1;
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_MU_LAW:
cr1 = PEB2466_CR1_LAW_MULAW;
break;
case SNDRV_PCM_FORMAT_A_LAW:
cr1 = PEB2466_CR1_LAW_ALAW;
break;
default:
dev_err(&peb2466->spi->dev, "Unsupported format 0x%x\n",
params_format(params));
return -EINVAL;
}
for (ch = 0; ch < PEB2466_NB_CHANNEL; ch++) {
ret = regmap_update_bits(peb2466->regmap, PEB2466_CR1(ch),
PEB2466_CR1_LAW_MASK, cr1);
if (ret)
return ret;
}
return 0;
}
static const unsigned int peb2466_sample_bits[] = {8};
static struct snd_pcm_hw_constraint_list peb2466_sample_bits_constr = {
.list = peb2466_sample_bits,
.count = ARRAY_SIZE(peb2466_sample_bits),
};
static int peb2466_dai_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct peb2466 *peb2466 = snd_soc_component_get_drvdata(dai->component);
unsigned int max_ch;
int ret;
max_ch = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
peb2466->max_chan_playback : peb2466->max_chan_capture;
/*
* Disable stream support (min = 0, max = 0) if no timeslots were
* configured.
*/
ret = snd_pcm_hw_constraint_minmax(substream->runtime,
SNDRV_PCM_HW_PARAM_CHANNELS,
max_ch ? 1 : 0, max_ch);
if (ret < 0)
return ret;
return snd_pcm_hw_constraint_list(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
&peb2466_sample_bits_constr);
}
static u64 peb2466_dai_formats[] = {
SND_SOC_POSSIBLE_DAIFMT_DSP_A |
SND_SOC_POSSIBLE_DAIFMT_DSP_B,
};
static const struct snd_soc_dai_ops peb2466_dai_ops = {
.startup = peb2466_dai_startup,
.hw_params = peb2466_dai_hw_params,
.set_tdm_slot = peb2466_dai_set_tdm_slot,
.set_fmt = peb2466_dai_set_fmt,
.auto_selectable_formats = peb2466_dai_formats,
.num_auto_selectable_formats = ARRAY_SIZE(peb2466_dai_formats),
};
static struct snd_soc_dai_driver peb2466_dai_driver = {
.name = "peb2466",
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = PEB2466_NB_CHANNEL,
.rates = SNDRV_PCM_RATE_8000,
.formats = SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
},
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = PEB2466_NB_CHANNEL,
.rates = SNDRV_PCM_RATE_8000,
.formats = SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
},
.ops = &peb2466_dai_ops,
};
static int peb2466_reset_audio(struct peb2466 *peb2466)
{
static const struct reg_sequence reg_reset[] = {
{ .reg = PEB2466_XR6, .def = 0x00 },
{ .reg = PEB2466_CR5(0), .def = 0x00 },
{ .reg = PEB2466_CR4(0), .def = 0x00 },
{ .reg = PEB2466_CR3(0), .def = 0x00 },
{ .reg = PEB2466_CR2(0), .def = 0x00 },
{ .reg = PEB2466_CR1(0), .def = 0x00 },
{ .reg = PEB2466_CR0(0), .def = PEB2466_CR0_IMR1 },
{ .reg = PEB2466_CR5(1), .def = 0x00 },
{ .reg = PEB2466_CR4(1), .def = 0x00 },
{ .reg = PEB2466_CR3(1), .def = 0x00 },
{ .reg = PEB2466_CR2(1), .def = 0x00 },
{ .reg = PEB2466_CR1(1), .def = 0x00 },
{ .reg = PEB2466_CR0(1), .def = PEB2466_CR0_IMR1 },
{ .reg = PEB2466_CR5(2), .def = 0x00 },
{ .reg = PEB2466_CR4(2), .def = 0x00 },
{ .reg = PEB2466_CR3(2), .def = 0x00 },
{ .reg = PEB2466_CR2(2), .def = 0x00 },
{ .reg = PEB2466_CR1(2), .def = 0x00 },
{ .reg = PEB2466_CR0(2), .def = PEB2466_CR0_IMR1 },
{ .reg = PEB2466_CR5(3), .def = 0x00 },
{ .reg = PEB2466_CR4(3), .def = 0x00 },
{ .reg = PEB2466_CR3(3), .def = 0x00 },
{ .reg = PEB2466_CR2(3), .def = 0x00 },
{ .reg = PEB2466_CR1(3), .def = 0x00 },
{ .reg = PEB2466_CR0(3), .def = PEB2466_CR0_IMR1 },
};
static const u8 imr1_p1[8] = {0x00, 0x90, 0x09, 0x00, 0x90, 0x09, 0x00, 0x00};
static const u8 imr1_p2[8] = {0x7F, 0xFF, 0x00, 0x00, 0x90, 0x14, 0x40, 0x08};
static const u8 zero[8] = {0};
int ret;
int i;
for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
peb2466->ch[i].tg1_freq_item = PEB2466_TONE_1000HZ;
peb2466->ch[i].tg2_freq_item = PEB2466_TONE_1000HZ;
/*
* Even if not used, disabling IM/R1 filter is not recommended.
* Instead, we must configure it with default coefficients and
* enable it.
* The filter will be enabled right after (in the following
* regmap_multi_reg_write() call).
*/
ret = peb2466_write_buf(peb2466, PEB2466_IMR1_FILTER_P1(i), imr1_p1, 8);
if (ret)
return ret;
ret = peb2466_write_buf(peb2466, PEB2466_IMR1_FILTER_P2(i), imr1_p2, 8);
if (ret)
return ret;
/* Set all other filters coefficients to zero */
ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P1(i), zero, 8);
if (ret)
return ret;
ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P2(i), zero, 8);
if (ret)
return ret;
ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P3(i), zero, 8);
if (ret)
return ret;
ret = peb2466_write_buf(peb2466, PEB2466_FRX_FILTER(i), zero, 8);
if (ret)
return ret;
ret = peb2466_write_buf(peb2466, PEB2466_FRR_FILTER(i), zero, 8);
if (ret)
return ret;
ret = peb2466_write_buf(peb2466, PEB2466_AX_FILTER(i), zero, 4);
if (ret)
return ret;
ret = peb2466_write_buf(peb2466, PEB2466_AR_FILTER(i), zero, 4);
if (ret)
return ret;
}
return regmap_multi_reg_write(peb2466->regmap, reg_reset, ARRAY_SIZE(reg_reset));
}
static int peb2466_fw_parse_thfilter(struct snd_soc_component *component,
u16 tag, u32 lng, const u8 *data)
{
struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
u8 mask;
int ret;
int i;
dev_info(component->dev, "fw TH filter: mask %x, %*phN\n", *data,
lng - 1, data + 1);
/*
* TH_FILTER TLV data:
* - @0 1 byte: Chan mask (bit set means related channel is concerned)
* - @1 8 bytes: TH-Filter coefficients part1
* - @9 8 bytes: TH-Filter coefficients part2
* - @17 8 bytes: TH-Filter coefficients part3
*/
mask = *data;
for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
if (!(mask & (1 << i)))
continue;
ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
PEB2466_CR0_TH, 0);
if (ret)
return ret;
ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P1(i), data + 1, 8);
if (ret)
return ret;
ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P2(i), data + 9, 8);
if (ret)
return ret;
ret = peb2466_write_buf(peb2466, PEB2466_TH_FILTER_P3(i), data + 17, 8);
if (ret)
return ret;
ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
PEB2466_CR0_TH | PEB2466_CR0_THSEL_MASK,
PEB2466_CR0_TH | PEB2466_CR0_THSEL(i));
if (ret)
return ret;
}
return 0;
}
static int peb2466_fw_parse_imr1filter(struct snd_soc_component *component,
u16 tag, u32 lng, const u8 *data)
{
struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
u8 mask;
int ret;
int i;
dev_info(component->dev, "fw IM/R1 filter: mask %x, %*phN\n", *data,
lng - 1, data + 1);
/*
* IMR1_FILTER TLV data:
* - @0 1 byte: Chan mask (bit set means related channel is concerned)
* - @1 8 bytes: IM/R1-Filter coefficients part1
* - @9 8 bytes: IM/R1-Filter coefficients part2
*/
mask = *data;
for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
if (!(mask & (1 << i)))
continue;
ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
PEB2466_CR0_IMR1, 0);
if (ret)
return ret;
ret = peb2466_write_buf(peb2466, PEB2466_IMR1_FILTER_P1(i), data + 1, 8);
if (ret)
return ret;
ret = peb2466_write_buf(peb2466, PEB2466_IMR1_FILTER_P2(i), data + 9, 8);
if (ret)
return ret;
ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
PEB2466_CR0_IMR1, PEB2466_CR0_IMR1);
if (ret)
return ret;
}
return 0;
}
static int peb2466_fw_parse_frxfilter(struct snd_soc_component *component,
u16 tag, u32 lng, const u8 *data)
{
struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
u8 mask;
int ret;
int i;
dev_info(component->dev, "fw FRX filter: mask %x, %*phN\n", *data,
lng - 1, data + 1);
/*
* FRX_FILTER TLV data:
* - @0 1 byte: Chan mask (bit set means related channel is concerned)
* - @1 8 bytes: FRX-Filter coefficients
*/
mask = *data;
for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
if (!(mask & (1 << i)))
continue;
ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
PEB2466_CR0_FRX, 0);
if (ret)
return ret;
ret = peb2466_write_buf(peb2466, PEB2466_FRX_FILTER(i), data + 1, 8);
if (ret)
return ret;
ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
PEB2466_CR0_FRX, PEB2466_CR0_FRX);
if (ret)
return ret;
}
return 0;
}
static int peb2466_fw_parse_frrfilter(struct snd_soc_component *component,
u16 tag, u32 lng, const u8 *data)
{
struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
u8 mask;
int ret;
int i;
dev_info(component->dev, "fw FRR filter: mask %x, %*phN\n", *data,
lng - 1, data + 1);
/*
* FRR_FILTER TLV data:
* - @0 1 byte: Chan mask (bit set means related channel is concerned)
* - @1 8 bytes: FRR-Filter coefficients
*/
mask = *data;
for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
if (!(mask & (1 << i)))
continue;
ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
PEB2466_CR0_FRR, 0);
if (ret)
return ret;
ret = peb2466_write_buf(peb2466, PEB2466_FRR_FILTER(i), data + 1, 8);
if (ret)
return ret;
ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
PEB2466_CR0_FRR, PEB2466_CR0_FRR);
if (ret)
return ret;
}
return 0;
}
static int peb2466_fw_parse_axfilter(struct snd_soc_component *component,
u16 tag, u32 lng, const u8 *data)
{
struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
u8 mask;
int ret;
int i;
dev_info(component->dev, "fw AX filter: mask %x, %*phN\n", *data,
lng - 1, data + 1);
/*
* AX_FILTER TLV data:
* - @0 1 byte: Chan mask (bit set means related channel is concerned)
* - @1 4 bytes: AX-Filter coefficients
*/
mask = *data;
for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
if (!(mask & (1 << i)))
continue;
ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
PEB2466_CR0_AX, 0);
if (ret)
return ret;
ret = peb2466_write_buf(peb2466, PEB2466_AX_FILTER(i), data + 1, 4);
if (ret)
return ret;
ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
PEB2466_CR0_AX, PEB2466_CR0_AX);
if (ret)
return ret;
}
return 0;
}
static int peb2466_fw_parse_arfilter(struct snd_soc_component *component,
u16 tag, u32 lng, const u8 *data)
{
struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
u8 mask;
int ret;
int i;
dev_info(component->dev, "fw AR filter: mask %x, %*phN\n", *data,
lng - 1, data + 1);
/*
* AR_FILTER TLV data:
* - @0 1 byte: Chan mask (bit set means related channel is concerned)
* - @1 4 bytes: AR-Filter coefficients
*/
mask = *data;
for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
if (!(mask & (1 << i)))
continue;
ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
PEB2466_CR0_AR, 0);
if (ret)
return ret;
ret = peb2466_write_buf(peb2466, PEB2466_AR_FILTER(i), data + 1, 4);
if (ret)
return ret;
ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
PEB2466_CR0_AR, PEB2466_CR0_AR);
if (ret)
return ret;
}
return 0;
}
static const char * const peb2466_ax_ctrl_names[] = {
"ADC0 Capture Volume",
"ADC1 Capture Volume",
"ADC2 Capture Volume",
"ADC3 Capture Volume",
};
static int peb2466_fw_parse_axtable(struct snd_soc_component *component,
u16 tag, u32 lng, const u8 *data)
{
struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
struct peb2466_lkup_ctrl *lkup_ctrl;
struct peb2466_lookup *lookup;
u8 (*table)[4];
u32 table_size;
u32 init_index;
s32 min_val;
s32 step;
u8 mask;
int ret;
int i;
/*
* AX_TABLE TLV data:
* - @0 1 byte: Chan mask (bit set means related channel is concerned)
* - @1 32bits signed: Min table value in centi dB (MinVal)
* ie -300 means -3.0 dB
* - @5 32bits signed: Step from on item to other item in centi dB (Step)
* ie 25 means 0.25 dB)
* - @9 32bits unsigned: Item index in the table to use for the initial
* value
* - @13 N*4 bytes: Table composed of 4 bytes items.
* Each item correspond to an AX filter value.
*
* The conversion from raw value item in the table to/from the value in
* dB is: Raw value at index i <-> (MinVal + i * Step) in centi dB.
*/
/* Check Lng and extract the table size. */
if (lng < 13 || ((lng - 13) % 4)) {
dev_err(component->dev, "fw AX table lng %u invalid\n", lng);
return -EINVAL;
}
table_size = lng - 13;
min_val = get_unaligned_be32(data + 1);
step = get_unaligned_be32(data + 5);
init_index = get_unaligned_be32(data + 9);
if (init_index >= (table_size / 4)) {
dev_err(component->dev, "fw AX table index %u out of table[%u]\n",
init_index, table_size / 4);
return -EINVAL;
}
dev_info(component->dev,
"fw AX table: mask %x, min %d, step %d, %u items, tbl[%u] %*phN\n",
*data, min_val, step, table_size / 4, init_index,
4, data + 13 + (init_index * 4));
BUILD_BUG_ON(sizeof(*table) != 4);
table = devm_kzalloc(&peb2466->spi->dev, table_size, GFP_KERNEL);
if (!table)
return -ENOMEM;
memcpy(table, data + 13, table_size);
mask = *data;
BUILD_BUG_ON(ARRAY_SIZE(peb2466_ax_ctrl_names) != ARRAY_SIZE(peb2466->ch));
for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
if (!(mask & (1 << i)))
continue;
lookup = &peb2466->ch[i].ax_lookup;
lookup->table = table;
lookup->count = table_size / 4;
ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
PEB2466_CR0_AX, 0);
if (ret)
return ret;
ret = peb2466_write_buf(peb2466, PEB2466_AX_FILTER(i),
lookup->table[init_index], 4);
if (ret)
return ret;
ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
PEB2466_CR0_AX, PEB2466_CR0_AX);
if (ret)
return ret;
lkup_ctrl = &peb2466->ch[i].ax_lkup_ctrl;
lkup_ctrl->lookup = lookup;
lkup_ctrl->reg = PEB2466_AX_FILTER(i);
lkup_ctrl->index = init_index;
ret = peb2466_add_lkup_ctrl(component, lkup_ctrl,
peb2466_ax_ctrl_names[i],
min_val, step);
if (ret)
return ret;
}
return 0;
}
static const char * const peb2466_ar_ctrl_names[] = {
"DAC0 Playback Volume",
"DAC1 Playback Volume",
"DAC2 Playback Volume",
"DAC3 Playback Volume",
};
static int peb2466_fw_parse_artable(struct snd_soc_component *component,
u16 tag, u32 lng, const u8 *data)
{
struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
struct peb2466_lkup_ctrl *lkup_ctrl;
struct peb2466_lookup *lookup;
u8 (*table)[4];
u32 table_size;
u32 init_index;
s32 min_val;
s32 step;
u8 mask;
int ret;
int i;
/*
* AR_TABLE TLV data:
* - @0 1 byte: Chan mask (bit set means related channel is concerned)
* - @1 32bits signed: Min table value in centi dB (MinVal)
* ie -300 means -3.0 dB
* - @5 32bits signed: Step from on item to other item in centi dB (Step)
* ie 25 means 0.25 dB)
* - @9 32bits unsigned: Item index in the table to use for the initial
* value
* - @13 N*4 bytes: Table composed of 4 bytes items.
* Each item correspond to an AR filter value.
*
* The conversion from raw value item in the table to/from the value in
* dB is: Raw value at index i <-> (MinVal + i * Step) in centi dB.
*/
/* Check Lng and extract the table size. */
if (lng < 13 || ((lng - 13) % 4)) {
dev_err(component->dev, "fw AR table lng %u invalid\n", lng);
return -EINVAL;
}
table_size = lng - 13;
min_val = get_unaligned_be32(data + 1);
step = get_unaligned_be32(data + 5);
init_index = get_unaligned_be32(data + 9);
if (init_index >= (table_size / 4)) {
dev_err(component->dev, "fw AR table index %u out of table[%u]\n",
init_index, table_size / 4);
return -EINVAL;
}
dev_info(component->dev,
"fw AR table: mask %x, min %d, step %d, %u items, tbl[%u] %*phN\n",
*data, min_val, step, table_size / 4, init_index,
4, data + 13 + (init_index * 4));
BUILD_BUG_ON(sizeof(*table) != 4);
table = devm_kzalloc(&peb2466->spi->dev, table_size, GFP_KERNEL);
if (!table)
return -ENOMEM;
memcpy(table, data + 13, table_size);
mask = *data;
BUILD_BUG_ON(ARRAY_SIZE(peb2466_ar_ctrl_names) != ARRAY_SIZE(peb2466->ch));
for (i = 0; i < ARRAY_SIZE(peb2466->ch); i++) {
if (!(mask & (1 << i)))
continue;
lookup = &peb2466->ch[i].ar_lookup;
lookup->table = table;
lookup->count = table_size / 4;
ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
PEB2466_CR0_AR, 0);
if (ret)
return ret;
ret = peb2466_write_buf(peb2466, PEB2466_AR_FILTER(i),
lookup->table[init_index], 4);
if (ret)
return ret;
ret = regmap_update_bits(peb2466->regmap, PEB2466_CR0(i),
PEB2466_CR0_AR, PEB2466_CR0_AR);
if (ret)
return ret;
lkup_ctrl = &peb2466->ch[i].ar_lkup_ctrl;
lkup_ctrl->lookup = lookup;
lkup_ctrl->reg = PEB2466_AR_FILTER(i);
lkup_ctrl->index = init_index;
ret = peb2466_add_lkup_ctrl(component, lkup_ctrl,
peb2466_ar_ctrl_names[i],
min_val, step);
if (ret)
return ret;
}
return 0;
}
struct peb2466_fw_tag_def {
u16 tag;
u32 lng_min;
u32 lng_max;
int (*parse)(struct snd_soc_component *component,
u16 tag, u32 lng, const u8 *data);
};
#define PEB2466_TAG_DEF_LNG_EQ(__tag, __lng, __parse) { \
.tag = __tag, \
.lng_min = __lng, \
.lng_max = __lng, \
.parse = __parse, \
}
#define PEB2466_TAG_DEF_LNG_MIN(__tag, __lng_min, __parse) { \
.tag = __tag, \
.lng_min = __lng_min, \
.lng_max = U32_MAX, \
.parse = __parse, \
}
static const struct peb2466_fw_tag_def peb2466_fw_tag_defs[] = {
/* TH FILTER */
PEB2466_TAG_DEF_LNG_EQ(0x0001, 1 + 3 * 8, peb2466_fw_parse_thfilter),
/* IMR1 FILTER */
PEB2466_TAG_DEF_LNG_EQ(0x0002, 1 + 2 * 8, peb2466_fw_parse_imr1filter),
/* FRX FILTER */
PEB2466_TAG_DEF_LNG_EQ(0x0003, 1 + 8, peb2466_fw_parse_frxfilter),
/* FRR FILTER */
PEB2466_TAG_DEF_LNG_EQ(0x0004, 1 + 8, peb2466_fw_parse_frrfilter),
/* AX FILTER */
PEB2466_TAG_DEF_LNG_EQ(0x0005, 1 + 4, peb2466_fw_parse_axfilter),
/* AR FILTER */
PEB2466_TAG_DEF_LNG_EQ(0x0006, 1 + 4, peb2466_fw_parse_arfilter),
/* AX TABLE */
PEB2466_TAG_DEF_LNG_MIN(0x0105, 1 + 3 * 4, peb2466_fw_parse_axtable),
/* AR TABLE */
PEB2466_TAG_DEF_LNG_MIN(0x0106, 1 + 3 * 4, peb2466_fw_parse_artable),
};
static const struct peb2466_fw_tag_def *peb2466_fw_get_tag_def(u16 tag)
{
int i;
for (i = 0; i < ARRAY_SIZE(peb2466_fw_tag_defs); i++) {
if (peb2466_fw_tag_defs[i].tag == tag)
return &peb2466_fw_tag_defs[i];
}
return NULL;
}
static int peb2466_fw_parse(struct snd_soc_component *component,
const u8 *data, size_t size)
{
const struct peb2466_fw_tag_def *tag_def;
size_t left;
const u8 *buf;
u16 val16;
u16 tag;
u32 lng;
int ret;
/*
* Coefficients firmware binary structure (16bits and 32bits are
* big-endian values).
*
* @0, 16bits: Magic (0x2466)
* @2, 16bits: Version (0x0100 for version 1.0)
* @4, 2+4+N bytes: TLV block
* @4+(2+4+N) bytes: Next TLV block
* ...
*
* Detail of a TLV block:
* @0, 16bits: Tag
* @2, 32bits: Lng
* @6, lng bytes: Data
*
* The detail the Data for a given TLV Tag is provided in the related
* parser.
*/
left = size;
buf = data;
if (left < 4) {
dev_err(component->dev, "fw size %zu, exp at least 4\n", left);
return -EINVAL;
}
/* Check magic */
val16 = get_unaligned_be16(buf);
if (val16 != 0x2466) {
dev_err(component->dev, "fw magic 0x%04x exp 0x2466\n", val16);
return -EINVAL;
}
buf += 2;
left -= 2;
/* Check version */
val16 = get_unaligned_be16(buf);
if (val16 != 0x0100) {
dev_err(component->dev, "fw magic 0x%04x exp 0x0100\n", val16);
return -EINVAL;
}
buf += 2;
left -= 2;
while (left) {
if (left < 6) {
dev_err(component->dev, "fw %td/%zu left %zu, exp at least 6\n",
buf - data, size, left);
return -EINVAL;
}
/* Check tag and lng */
tag = get_unaligned_be16(buf);
lng = get_unaligned_be32(buf + 2);
tag_def = peb2466_fw_get_tag_def(tag);
if (!tag_def) {
dev_err(component->dev, "fw %td/%zu tag 0x%04x unknown\n",
buf - data, size, tag);
return -EINVAL;
}
if (lng < tag_def->lng_min || lng > tag_def->lng_max) {
dev_err(component->dev, "fw %td/%zu tag 0x%04x lng %u, exp [%u;%u]\n",
buf - data, size, tag, lng, tag_def->lng_min, tag_def->lng_max);
return -EINVAL;
}
buf += 6;
left -= 6;
if (left < lng) {
dev_err(component->dev, "fw %td/%zu tag 0x%04x lng %u, left %zu\n",
buf - data, size, tag, lng, left);
return -EINVAL;
}
/* TLV block is valid -> parse the data part */
ret = tag_def->parse(component, tag, lng, buf);
if (ret) {
dev_err(component->dev, "fw %td/%zu tag 0x%04x lng %u parse failed\n",
buf - data, size, tag, lng);
return ret;
}
buf += lng;
left -= lng;
}
return 0;
}
static int peb2466_load_coeffs(struct snd_soc_component *component, const char *fw_name)
{
const struct firmware *fw;
int ret;
ret = request_firmware(&fw, fw_name, component->dev);
if (ret)
return ret;
ret = peb2466_fw_parse(component, fw->data, fw->size);
release_firmware(fw);
return ret;
}
static int peb2466_component_probe(struct snd_soc_component *component)
{
struct peb2466 *peb2466 = snd_soc_component_get_drvdata(component);
const char *firmware_name;
int ret;
/* reset peb2466 audio part */
ret = peb2466_reset_audio(peb2466);
if (ret)
return ret;
ret = of_property_read_string(peb2466->spi->dev.of_node,
"firmware-name", &firmware_name);
if (ret)
return (ret == -EINVAL) ? 0 : ret;
return peb2466_load_coeffs(component, firmware_name);
}
static const struct snd_soc_component_driver peb2466_component_driver = {
.probe = peb2466_component_probe,
.controls = peb2466_controls,
.num_controls = ARRAY_SIZE(peb2466_controls),
.dapm_widgets = peb2466_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(peb2466_dapm_widgets),
.dapm_routes = peb2466_dapm_routes,
.num_dapm_routes = ARRAY_SIZE(peb2466_dapm_routes),
.endianness = 1,
};
/*
* The mapping used for the relationship between the gpio offset and the
* physical pin is the following:
*
* offset pin
* 0 SI1_0
* 1 SI1_1
* 2 SI2_0
* 3 SI2_1
* 4 SI3_0
* 5 SI3_1
* 6 SI4_0
* 7 SI4_1
* 8 SO1_0
* 9 SO1_1
* 10 SO2_0
* 11 SO2_1
* 12 SO3_0
* 13 SO3_1
* 14 SO4_0
* 15 SO4_1
* 16 SB1_0
* 17 SB1_1
* 18 SB2_0
* 19 SB2_1
* 20 SB3_0
* 21 SB3_1
* 22 SB4_0
* 23 SB4_1
* 24 SB1_2
* 25 SB2_2
* 26 SB3_2
* 27 SB4_2
*/
static int peb2466_chip_gpio_offset_to_data_regmask(unsigned int offset,
unsigned int *xr_reg,
unsigned int *mask)
{
if (offset < 16) {
/*
* SIx_{0,1} and SOx_{0,1}
* Read accesses read SIx_{0,1} values
* Write accesses write SOx_{0,1} values
*/
*xr_reg = PEB2466_XR0;
*mask = (1 << (offset % 8));
return 0;
}
if (offset < 24) {
/* SBx_{0,1} */
*xr_reg = PEB2466_XR1;
*mask = (1 << (offset - 16));
return 0;
}
if (offset < 28) {
/* SBx_2 */
*xr_reg = PEB2466_XR3;
*mask = (1 << (offset - 24 + 4));
return 0;
}
return -EINVAL;
}
static int peb2466_chip_gpio_offset_to_dir_regmask(unsigned int offset,
unsigned int *xr_reg,
unsigned int *mask)
{
if (offset < 16) {
/* Direction cannot be changed for these GPIOs */
return -EINVAL;
}
if (offset < 24) {
*xr_reg = PEB2466_XR2;
*mask = (1 << (offset - 16));
return 0;
}
if (offset < 28) {
*xr_reg = PEB2466_XR3;
*mask = (1 << (offset - 24));
return 0;
}
return -EINVAL;
}
static unsigned int *peb2466_chip_gpio_get_cache(struct peb2466 *peb2466,
unsigned int xr_reg)
{
unsigned int *cache;
switch (xr_reg) {
case PEB2466_XR0:
cache = &peb2466->gpio.cache.xr0;
break;
case PEB2466_XR1:
cache = &peb2466->gpio.cache.xr1;
break;
case PEB2466_XR2:
cache = &peb2466->gpio.cache.xr2;
break;
case PEB2466_XR3:
cache = &peb2466->gpio.cache.xr3;
break;
default:
cache = NULL;
break;
}
return cache;
}
static int peb2466_chip_gpio_update_bits(struct peb2466 *peb2466, unsigned int xr_reg,
unsigned int mask, unsigned int val)
{
unsigned int tmp;
unsigned int *cache;
int ret;
/*
* Read and write accesses use different peb2466 internal signals (input
* signals on reads and output signals on writes). regmap_update_bits
* cannot be used to read/modify/write the value.
* So, a specific cache value is used.
*/
mutex_lock(&peb2466->gpio.lock);
cache = peb2466_chip_gpio_get_cache(peb2466, xr_reg);
if (!cache) {
ret = -EINVAL;
goto end;
}
tmp = *cache;
tmp &= ~mask;
tmp |= val;
ret = regmap_write(peb2466->regmap, xr_reg, tmp);
if (ret)
goto end;
*cache = tmp;
ret = 0;
end:
mutex_unlock(&peb2466->gpio.lock);
return ret;
}
static void peb2466_chip_gpio_set(struct gpio_chip *c, unsigned int offset, int val)
{
struct peb2466 *peb2466 = gpiochip_get_data(c);
unsigned int xr_reg;
unsigned int mask;
int ret;
if (offset < 8) {
/*
* SIx_{0,1} signals cannot be set and writing the related
* register will change the SOx_{0,1} signals
*/
dev_warn(&peb2466->spi->dev, "cannot set gpio %d (read-only)\n",
offset);
return;
}
ret = peb2466_chip_gpio_offset_to_data_regmask(offset, &xr_reg, &mask);
if (ret) {
dev_err(&peb2466->spi->dev, "cannot set gpio %d (%d)\n",
offset, ret);
return;
}
ret = peb2466_chip_gpio_update_bits(peb2466, xr_reg, mask, val ? mask : 0);
if (ret) {
dev_err(&peb2466->spi->dev, "set gpio %d (0x%x, 0x%x) failed (%d)\n",
offset, xr_reg, mask, ret);
}
}
static int peb2466_chip_gpio_get(struct gpio_chip *c, unsigned int offset)
{
struct peb2466 *peb2466 = gpiochip_get_data(c);
bool use_cache = false;
unsigned int *cache;
unsigned int xr_reg;
unsigned int mask;
unsigned int val;
int ret;
if (offset >= 8 && offset < 16) {
/*
* SOx_{0,1} signals cannot be read. Reading the related
* register will read the SIx_{0,1} signals.
* Use the cache to get value;
*/
use_cache = true;
}
ret = peb2466_chip_gpio_offset_to_data_regmask(offset, &xr_reg, &mask);
if (ret) {
dev_err(&peb2466->spi->dev, "cannot get gpio %d (%d)\n",
offset, ret);
return -EINVAL;
}
if (use_cache) {
cache = peb2466_chip_gpio_get_cache(peb2466, xr_reg);
if (!cache)
return -EINVAL;
val = *cache;
} else {
ret = regmap_read(peb2466->regmap, xr_reg, &val);
if (ret) {
dev_err(&peb2466->spi->dev, "get gpio %d (0x%x, 0x%x) failed (%d)\n",
offset, xr_reg, mask, ret);
return ret;
}
}
return !!(val & mask);
}
static int peb2466_chip_get_direction(struct gpio_chip *c, unsigned int offset)
{
struct peb2466 *peb2466 = gpiochip_get_data(c);
unsigned int xr_reg;
unsigned int mask;
unsigned int val;
int ret;
if (offset < 8) {
/* SIx_{0,1} */
return GPIO_LINE_DIRECTION_IN;
}
if (offset < 16) {
/* SOx_{0,1} */
return GPIO_LINE_DIRECTION_OUT;
}
ret = peb2466_chip_gpio_offset_to_dir_regmask(offset, &xr_reg, &mask);
if (ret) {
dev_err(&peb2466->spi->dev, "cannot get gpio %d direction (%d)\n",
offset, ret);
return ret;
}
ret = regmap_read(peb2466->regmap, xr_reg, &val);
if (ret) {
dev_err(&peb2466->spi->dev, "get dir gpio %d (0x%x, 0x%x) failed (%d)\n",
offset, xr_reg, mask, ret);
return ret;
}
return val & mask ? GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
}
static int peb2466_chip_direction_input(struct gpio_chip *c, unsigned int offset)
{
struct peb2466 *peb2466 = gpiochip_get_data(c);
unsigned int xr_reg;
unsigned int mask;
int ret;
if (offset < 8) {
/* SIx_{0,1} */
return 0;
}
if (offset < 16) {
/* SOx_{0,1} */
return -EINVAL;
}
ret = peb2466_chip_gpio_offset_to_dir_regmask(offset, &xr_reg, &mask);
if (ret) {
dev_err(&peb2466->spi->dev, "cannot set gpio %d direction (%d)\n",
offset, ret);
return ret;
}
ret = peb2466_chip_gpio_update_bits(peb2466, xr_reg, mask, 0);
if (ret) {
dev_err(&peb2466->spi->dev, "Set dir in gpio %d (0x%x, 0x%x) failed (%d)\n",
offset, xr_reg, mask, ret);
return ret;
}
return 0;
}
static int peb2466_chip_direction_output(struct gpio_chip *c, unsigned int offset, int val)
{
struct peb2466 *peb2466 = gpiochip_get_data(c);
unsigned int xr_reg;
unsigned int mask;
int ret;
if (offset < 8) {
/* SIx_{0,1} */
return -EINVAL;
}
peb2466_chip_gpio_set(c, offset, val);
if (offset < 16) {
/* SOx_{0,1} */
return 0;
}
ret = peb2466_chip_gpio_offset_to_dir_regmask(offset, &xr_reg, &mask);
if (ret) {
dev_err(&peb2466->spi->dev, "cannot set gpio %d direction (%d)\n",
offset, ret);
return ret;
}
ret = peb2466_chip_gpio_update_bits(peb2466, xr_reg, mask, mask);
if (ret) {
dev_err(&peb2466->spi->dev, "Set dir in gpio %d (0x%x, 0x%x) failed (%d)\n",
offset, xr_reg, mask, ret);
return ret;
}
return 0;
}
static int peb2466_reset_gpio(struct peb2466 *peb2466)
{
static const struct reg_sequence reg_reset[] = {
/* Output pins at 0, input/output pins as input */
{ .reg = PEB2466_XR0, .def = 0 },
{ .reg = PEB2466_XR1, .def = 0 },
{ .reg = PEB2466_XR2, .def = 0 },
{ .reg = PEB2466_XR3, .def = 0 },
};
peb2466->gpio.cache.xr0 = 0;
peb2466->gpio.cache.xr1 = 0;
peb2466->gpio.cache.xr2 = 0;
peb2466->gpio.cache.xr3 = 0;
return regmap_multi_reg_write(peb2466->regmap, reg_reset, ARRAY_SIZE(reg_reset));
}
static int peb2466_gpio_init(struct peb2466 *peb2466)
{
int ret;
mutex_init(&peb2466->gpio.lock);
ret = peb2466_reset_gpio(peb2466);
if (ret)
return ret;
peb2466->gpio.gpio_chip.owner = THIS_MODULE;
peb2466->gpio.gpio_chip.label = dev_name(&peb2466->spi->dev);
peb2466->gpio.gpio_chip.parent = &peb2466->spi->dev;
peb2466->gpio.gpio_chip.base = -1;
peb2466->gpio.gpio_chip.ngpio = 28;
peb2466->gpio.gpio_chip.get_direction = peb2466_chip_get_direction;
peb2466->gpio.gpio_chip.direction_input = peb2466_chip_direction_input;
peb2466->gpio.gpio_chip.direction_output = peb2466_chip_direction_output;
peb2466->gpio.gpio_chip.get = peb2466_chip_gpio_get;
peb2466->gpio.gpio_chip.set = peb2466_chip_gpio_set;
peb2466->gpio.gpio_chip.can_sleep = true;
return devm_gpiochip_add_data(&peb2466->spi->dev, &peb2466->gpio.gpio_chip,
peb2466);
}
static int peb2466_spi_probe(struct spi_device *spi)
{
struct peb2466 *peb2466;
unsigned long mclk_rate;
int ret;
u8 xr5;
spi->bits_per_word = 8;
ret = spi_setup(spi);
if (ret < 0)
return ret;
peb2466 = devm_kzalloc(&spi->dev, sizeof(*peb2466), GFP_KERNEL);
if (!peb2466)
return -ENOMEM;
peb2466->spi = spi;
peb2466->regmap = devm_regmap_init(&peb2466->spi->dev, NULL, peb2466,
&peb2466_regmap_config);
if (IS_ERR(peb2466->regmap))
return PTR_ERR(peb2466->regmap);
peb2466->reset_gpio = devm_gpiod_get_optional(&peb2466->spi->dev,
"reset", GPIOD_OUT_LOW);
if (IS_ERR(peb2466->reset_gpio))
return PTR_ERR(peb2466->reset_gpio);
peb2466->mclk = devm_clk_get(&peb2466->spi->dev, "mclk");
if (IS_ERR(peb2466->mclk))
return PTR_ERR(peb2466->mclk);
ret = clk_prepare_enable(peb2466->mclk);
if (ret)
return ret;
if (peb2466->reset_gpio) {
gpiod_set_value_cansleep(peb2466->reset_gpio, 1);
udelay(4);
gpiod_set_value_cansleep(peb2466->reset_gpio, 0);
udelay(4);
}
spi_set_drvdata(spi, peb2466);
mclk_rate = clk_get_rate(peb2466->mclk);
switch (mclk_rate) {
case 1536000:
xr5 = PEB2466_XR5_MCLK_1536;
break;
case 2048000:
xr5 = PEB2466_XR5_MCLK_2048;
break;
case 4096000:
xr5 = PEB2466_XR5_MCLK_4096;
break;
case 8192000:
xr5 = PEB2466_XR5_MCLK_8192;
break;
default:
dev_err(&peb2466->spi->dev, "Unsupported clock rate %lu\n",
mclk_rate);
ret = -EINVAL;
goto failed;
}
ret = regmap_write(peb2466->regmap, PEB2466_XR5, xr5);
if (ret) {
dev_err(&peb2466->spi->dev, "Setting MCLK failed (%d)\n", ret);
goto failed;
}
ret = devm_snd_soc_register_component(&spi->dev, &peb2466_component_driver,
&peb2466_dai_driver, 1);
if (ret)
goto failed;
if (IS_ENABLED(CONFIG_GPIOLIB)) {
ret = peb2466_gpio_init(peb2466);
if (ret)
goto failed;
}
return 0;
failed:
clk_disable_unprepare(peb2466->mclk);
return ret;
}
static void peb2466_spi_remove(struct spi_device *spi)
{
struct peb2466 *peb2466 = spi_get_drvdata(spi);
clk_disable_unprepare(peb2466->mclk);
}
static const struct of_device_id peb2466_of_match[] = {
{ .compatible = "infineon,peb2466", },
{ }
};
MODULE_DEVICE_TABLE(of, peb2466_of_match);
static const struct spi_device_id peb2466_id_table[] = {
{ "peb2466", 0 },
{ }
};
MODULE_DEVICE_TABLE(spi, peb2466_id_table);
static struct spi_driver peb2466_spi_driver = {
.driver = {
.name = "peb2466",
.of_match_table = peb2466_of_match,
},
.id_table = peb2466_id_table,
.probe = peb2466_spi_probe,
.remove = peb2466_spi_remove,
};
module_spi_driver(peb2466_spi_driver);
MODULE_AUTHOR("Herve Codina <herve.codina@bootlin.com>");
MODULE_DESCRIPTION("PEB2466 ALSA SoC driver");
MODULE_LICENSE("GPL");