mirror_ubuntu-kernels/net/ipv4/tcp_fastopen.c

596 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/kernel.h>
#include <linux/tcp.h>
#include <linux/rcupdate.h>
#include <net/tcp.h>
void tcp_fastopen_init_key_once(struct net *net)
{
u8 key[TCP_FASTOPEN_KEY_LENGTH];
struct tcp_fastopen_context *ctxt;
rcu_read_lock();
ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
if (ctxt) {
rcu_read_unlock();
return;
}
rcu_read_unlock();
/* tcp_fastopen_reset_cipher publishes the new context
* atomically, so we allow this race happening here.
*
* All call sites of tcp_fastopen_cookie_gen also check
* for a valid cookie, so this is an acceptable risk.
*/
get_random_bytes(key, sizeof(key));
tcp_fastopen_reset_cipher(net, NULL, key, NULL);
}
static void tcp_fastopen_ctx_free(struct rcu_head *head)
{
struct tcp_fastopen_context *ctx =
container_of(head, struct tcp_fastopen_context, rcu);
kfree_sensitive(ctx);
}
void tcp_fastopen_destroy_cipher(struct sock *sk)
{
struct tcp_fastopen_context *ctx;
ctx = rcu_dereference_protected(
inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1);
if (ctx)
call_rcu(&ctx->rcu, tcp_fastopen_ctx_free);
}
void tcp_fastopen_ctx_destroy(struct net *net)
{
struct tcp_fastopen_context *ctxt;
ctxt = xchg((__force struct tcp_fastopen_context **)&net->ipv4.tcp_fastopen_ctx, NULL);
if (ctxt)
call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free);
}
int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
void *primary_key, void *backup_key)
{
struct tcp_fastopen_context *ctx, *octx;
struct fastopen_queue *q;
int err = 0;
ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx) {
err = -ENOMEM;
goto out;
}
ctx->key[0].key[0] = get_unaligned_le64(primary_key);
ctx->key[0].key[1] = get_unaligned_le64(primary_key + 8);
if (backup_key) {
ctx->key[1].key[0] = get_unaligned_le64(backup_key);
ctx->key[1].key[1] = get_unaligned_le64(backup_key + 8);
ctx->num = 2;
} else {
ctx->num = 1;
}
if (sk) {
q = &inet_csk(sk)->icsk_accept_queue.fastopenq;
octx = xchg((__force struct tcp_fastopen_context **)&q->ctx, ctx);
} else {
octx = xchg((__force struct tcp_fastopen_context **)&net->ipv4.tcp_fastopen_ctx, ctx);
}
if (octx)
call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
out:
return err;
}
int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
u64 *key)
{
struct tcp_fastopen_context *ctx;
int n_keys = 0, i;
rcu_read_lock();
if (icsk)
ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
else
ctx = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
if (ctx) {
n_keys = tcp_fastopen_context_len(ctx);
for (i = 0; i < n_keys; i++) {
put_unaligned_le64(ctx->key[i].key[0], key + (i * 2));
put_unaligned_le64(ctx->key[i].key[1], key + (i * 2) + 1);
}
}
rcu_read_unlock();
return n_keys;
}
static bool __tcp_fastopen_cookie_gen_cipher(struct request_sock *req,
struct sk_buff *syn,
const siphash_key_t *key,
struct tcp_fastopen_cookie *foc)
{
BUILD_BUG_ON(TCP_FASTOPEN_COOKIE_SIZE != sizeof(u64));
if (req->rsk_ops->family == AF_INET) {
const struct iphdr *iph = ip_hdr(syn);
foc->val[0] = cpu_to_le64(siphash(&iph->saddr,
sizeof(iph->saddr) +
sizeof(iph->daddr),
key));
foc->len = TCP_FASTOPEN_COOKIE_SIZE;
return true;
}
#if IS_ENABLED(CONFIG_IPV6)
if (req->rsk_ops->family == AF_INET6) {
const struct ipv6hdr *ip6h = ipv6_hdr(syn);
foc->val[0] = cpu_to_le64(siphash(&ip6h->saddr,
sizeof(ip6h->saddr) +
sizeof(ip6h->daddr),
key));
foc->len = TCP_FASTOPEN_COOKIE_SIZE;
return true;
}
#endif
return false;
}
/* Generate the fastopen cookie by applying SipHash to both the source and
* destination addresses.
*/
static void tcp_fastopen_cookie_gen(struct sock *sk,
struct request_sock *req,
struct sk_buff *syn,
struct tcp_fastopen_cookie *foc)
{
struct tcp_fastopen_context *ctx;
rcu_read_lock();
ctx = tcp_fastopen_get_ctx(sk);
if (ctx)
__tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[0], foc);
rcu_read_unlock();
}
/* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
* queue this additional data / FIN.
*/
void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
{
struct tcp_sock *tp = tcp_sk(sk);
if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
return;
skb = skb_clone(skb, GFP_ATOMIC);
if (!skb)
return;
skb_dst_drop(skb);
/* segs_in has been initialized to 1 in tcp_create_openreq_child().
* Hence, reset segs_in to 0 before calling tcp_segs_in()
* to avoid double counting. Also, tcp_segs_in() expects
* skb->len to include the tcp_hdrlen. Hence, it should
* be called before __skb_pull().
*/
tp->segs_in = 0;
tcp_segs_in(tp, skb);
__skb_pull(skb, tcp_hdrlen(skb));
sk_forced_mem_schedule(sk, skb->truesize);
skb_set_owner_r(skb, sk);
TCP_SKB_CB(skb)->seq++;
TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
__skb_queue_tail(&sk->sk_receive_queue, skb);
tp->syn_data_acked = 1;
/* u64_stats_update_begin(&tp->syncp) not needed here,
* as we certainly are not changing upper 32bit value (0)
*/
tp->bytes_received = skb->len;
if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
tcp_fin(sk);
}
/* returns 0 - no key match, 1 for primary, 2 for backup */
static int tcp_fastopen_cookie_gen_check(struct sock *sk,
struct request_sock *req,
struct sk_buff *syn,
struct tcp_fastopen_cookie *orig,
struct tcp_fastopen_cookie *valid_foc)
{
struct tcp_fastopen_cookie search_foc = { .len = -1 };
struct tcp_fastopen_cookie *foc = valid_foc;
struct tcp_fastopen_context *ctx;
int i, ret = 0;
rcu_read_lock();
ctx = tcp_fastopen_get_ctx(sk);
if (!ctx)
goto out;
for (i = 0; i < tcp_fastopen_context_len(ctx); i++) {
__tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[i], foc);
if (tcp_fastopen_cookie_match(foc, orig)) {
ret = i + 1;
goto out;
}
foc = &search_foc;
}
out:
rcu_read_unlock();
return ret;
}
static struct sock *tcp_fastopen_create_child(struct sock *sk,
struct sk_buff *skb,
struct request_sock *req)
{
struct tcp_sock *tp;
struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
struct sock *child;
bool own_req;
child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
NULL, &own_req);
if (!child)
return NULL;
spin_lock(&queue->fastopenq.lock);
queue->fastopenq.qlen++;
spin_unlock(&queue->fastopenq.lock);
/* Initialize the child socket. Have to fix some values to take
* into account the child is a Fast Open socket and is created
* only out of the bits carried in the SYN packet.
*/
tp = tcp_sk(child);
rcu_assign_pointer(tp->fastopen_rsk, req);
tcp_rsk(req)->tfo_listener = true;
/* RFC1323: The window in SYN & SYN/ACK segments is never
* scaled. So correct it appropriately.
*/
tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
tp->max_window = tp->snd_wnd;
/* Activate the retrans timer so that SYNACK can be retransmitted.
* The request socket is not added to the ehash
* because it's been added to the accept queue directly.
*/
req->timeout = tcp_timeout_init(child);
inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
req->timeout, TCP_RTO_MAX);
refcount_set(&req->rsk_refcnt, 2);
/* Now finish processing the fastopen child socket. */
tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, skb);
tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
tcp_fastopen_add_skb(child, skb);
tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
tp->rcv_wup = tp->rcv_nxt;
/* tcp_conn_request() is sending the SYNACK,
* and queues the child into listener accept queue.
*/
return child;
}
static bool tcp_fastopen_queue_check(struct sock *sk)
{
struct fastopen_queue *fastopenq;
int max_qlen;
/* Make sure the listener has enabled fastopen, and we don't
* exceed the max # of pending TFO requests allowed before trying
* to validating the cookie in order to avoid burning CPU cycles
* unnecessarily.
*
* XXX (TFO) - The implication of checking the max_qlen before
* processing a cookie request is that clients can't differentiate
* between qlen overflow causing Fast Open to be disabled
* temporarily vs a server not supporting Fast Open at all.
*/
fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
max_qlen = READ_ONCE(fastopenq->max_qlen);
if (max_qlen == 0)
return false;
if (fastopenq->qlen >= max_qlen) {
struct request_sock *req1;
spin_lock(&fastopenq->lock);
req1 = fastopenq->rskq_rst_head;
if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
__NET_INC_STATS(sock_net(sk),
LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
spin_unlock(&fastopenq->lock);
return false;
}
fastopenq->rskq_rst_head = req1->dl_next;
fastopenq->qlen--;
spin_unlock(&fastopenq->lock);
reqsk_put(req1);
}
return true;
}
static bool tcp_fastopen_no_cookie(const struct sock *sk,
const struct dst_entry *dst,
int flag)
{
return (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & flag) ||
tcp_sk(sk)->fastopen_no_cookie ||
(dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE));
}
/* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
* may be updated and return the client in the SYN-ACK later. E.g., Fast Open
* cookie request (foc->len == 0).
*/
struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
struct request_sock *req,
struct tcp_fastopen_cookie *foc,
const struct dst_entry *dst)
{
bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
int tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen);
struct tcp_fastopen_cookie valid_foc = { .len = -1 };
struct sock *child;
int ret = 0;
if (foc->len == 0) /* Client requests a cookie */
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
if (!((tcp_fastopen & TFO_SERVER_ENABLE) &&
(syn_data || foc->len >= 0) &&
tcp_fastopen_queue_check(sk))) {
foc->len = -1;
return NULL;
}
if (tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD))
goto fastopen;
if (foc->len == 0) {
/* Client requests a cookie. */
tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc);
} else if (foc->len > 0) {
ret = tcp_fastopen_cookie_gen_check(sk, req, skb, foc,
&valid_foc);
if (!ret) {
NET_INC_STATS(sock_net(sk),
LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
} else {
/* Cookie is valid. Create a (full) child socket to
* accept the data in SYN before returning a SYN-ACK to
* ack the data. If we fail to create the socket, fall
* back and ack the ISN only but includes the same
* cookie.
*
* Note: Data-less SYN with valid cookie is allowed to
* send data in SYN_RECV state.
*/
fastopen:
child = tcp_fastopen_create_child(sk, skb, req);
if (child) {
if (ret == 2) {
valid_foc.exp = foc->exp;
*foc = valid_foc;
NET_INC_STATS(sock_net(sk),
LINUX_MIB_TCPFASTOPENPASSIVEALTKEY);
} else {
foc->len = -1;
}
NET_INC_STATS(sock_net(sk),
LINUX_MIB_TCPFASTOPENPASSIVE);
return child;
}
NET_INC_STATS(sock_net(sk),
LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
}
}
valid_foc.exp = foc->exp;
*foc = valid_foc;
return NULL;
}
bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
struct tcp_fastopen_cookie *cookie)
{
const struct dst_entry *dst;
tcp_fastopen_cache_get(sk, mss, cookie);
/* Firewall blackhole issue check */
if (tcp_fastopen_active_should_disable(sk)) {
cookie->len = -1;
return false;
}
dst = __sk_dst_get(sk);
if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) {
cookie->len = -1;
return true;
}
if (cookie->len > 0)
return true;
tcp_sk(sk)->fastopen_client_fail = TFO_COOKIE_UNAVAILABLE;
return false;
}
/* This function checks if we want to defer sending SYN until the first
* write(). We defer under the following conditions:
* 1. fastopen_connect sockopt is set
* 2. we have a valid cookie
* Return value: return true if we want to defer until application writes data
* return false if we want to send out SYN immediately
*/
bool tcp_fastopen_defer_connect(struct sock *sk, int *err)
{
struct tcp_fastopen_cookie cookie = { .len = 0 };
struct tcp_sock *tp = tcp_sk(sk);
u16 mss;
if (tp->fastopen_connect && !tp->fastopen_req) {
if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) {
inet_set_bit(DEFER_CONNECT, sk);
return true;
}
/* Alloc fastopen_req in order for FO option to be included
* in SYN
*/
tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req),
sk->sk_allocation);
if (tp->fastopen_req)
tp->fastopen_req->cookie = cookie;
else
*err = -ENOBUFS;
}
return false;
}
EXPORT_SYMBOL(tcp_fastopen_defer_connect);
/*
* The following code block is to deal with middle box issues with TFO:
* Middlebox firewall issues can potentially cause server's data being
* blackholed after a successful 3WHS using TFO.
* The proposed solution is to disable active TFO globally under the
* following circumstances:
* 1. client side TFO socket receives out of order FIN
* 2. client side TFO socket receives out of order RST
* 3. client side TFO socket has timed out three times consecutively during
* or after handshake
* We disable active side TFO globally for 1hr at first. Then if it
* happens again, we disable it for 2h, then 4h, 8h, ...
* And we reset the timeout back to 1hr when we see a successful active
* TFO connection with data exchanges.
*/
/* Disable active TFO and record current jiffies and
* tfo_active_disable_times
*/
void tcp_fastopen_active_disable(struct sock *sk)
{
struct net *net = sock_net(sk);
if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout))
return;
/* Paired with READ_ONCE() in tcp_fastopen_active_should_disable() */
WRITE_ONCE(net->ipv4.tfo_active_disable_stamp, jiffies);
/* Paired with smp_rmb() in tcp_fastopen_active_should_disable().
* We want net->ipv4.tfo_active_disable_stamp to be updated first.
*/
smp_mb__before_atomic();
atomic_inc(&net->ipv4.tfo_active_disable_times);
NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE);
}
/* Calculate timeout for tfo active disable
* Return true if we are still in the active TFO disable period
* Return false if timeout already expired and we should use active TFO
*/
bool tcp_fastopen_active_should_disable(struct sock *sk)
{
unsigned int tfo_bh_timeout =
READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout);
unsigned long timeout;
int tfo_da_times;
int multiplier;
if (!tfo_bh_timeout)
return false;
tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times);
if (!tfo_da_times)
return false;
/* Paired with smp_mb__before_atomic() in tcp_fastopen_active_disable() */
smp_rmb();
/* Limit timeout to max: 2^6 * initial timeout */
multiplier = 1 << min(tfo_da_times - 1, 6);
/* Paired with the WRITE_ONCE() in tcp_fastopen_active_disable(). */
timeout = READ_ONCE(sock_net(sk)->ipv4.tfo_active_disable_stamp) +
multiplier * tfo_bh_timeout * HZ;
if (time_before(jiffies, timeout))
return true;
/* Mark check bit so we can check for successful active TFO
* condition and reset tfo_active_disable_times
*/
tcp_sk(sk)->syn_fastopen_ch = 1;
return false;
}
/* Disable active TFO if FIN is the only packet in the ofo queue
* and no data is received.
* Also check if we can reset tfo_active_disable_times if data is
* received successfully on a marked active TFO sockets opened on
* a non-loopback interface
*/
void tcp_fastopen_active_disable_ofo_check(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
struct dst_entry *dst;
struct sk_buff *skb;
if (!tp->syn_fastopen)
return;
if (!tp->data_segs_in) {
skb = skb_rb_first(&tp->out_of_order_queue);
if (skb && !skb_rb_next(skb)) {
if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
tcp_fastopen_active_disable(sk);
return;
}
}
} else if (tp->syn_fastopen_ch &&
atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) {
dst = sk_dst_get(sk);
if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK)))
atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0);
dst_release(dst);
}
}
void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired)
{
u32 timeouts = inet_csk(sk)->icsk_retransmits;
struct tcp_sock *tp = tcp_sk(sk);
/* Broken middle-boxes may black-hole Fast Open connection during or
* even after the handshake. Be extremely conservative and pause
* Fast Open globally after hitting the third consecutive timeout or
* exceeding the configured timeout limit.
*/
if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) &&
(timeouts == 2 || (timeouts < 2 && expired))) {
tcp_fastopen_active_disable(sk);
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
}
}