mirror_ubuntu-kernels/include/linux/of.h

1708 lines
49 KiB
C

/* SPDX-License-Identifier: GPL-2.0+ */
#ifndef _LINUX_OF_H
#define _LINUX_OF_H
/*
* Definitions for talking to the Open Firmware PROM on
* Power Macintosh and other computers.
*
* Copyright (C) 1996-2005 Paul Mackerras.
*
* Updates for PPC64 by Peter Bergner & David Engebretsen, IBM Corp.
* Updates for SPARC64 by David S. Miller
* Derived from PowerPC and Sparc prom.h files by Stephen Rothwell, IBM Corp.
*/
#include <linux/types.h>
#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/kobject.h>
#include <linux/mod_devicetable.h>
#include <linux/property.h>
#include <linux/list.h>
#include <asm/byteorder.h>
typedef u32 phandle;
typedef u32 ihandle;
struct property {
char *name;
int length;
void *value;
struct property *next;
#if defined(CONFIG_OF_DYNAMIC) || defined(CONFIG_SPARC)
unsigned long _flags;
#endif
#if defined(CONFIG_OF_PROMTREE)
unsigned int unique_id;
#endif
#if defined(CONFIG_OF_KOBJ)
struct bin_attribute attr;
#endif
};
#if defined(CONFIG_SPARC)
struct of_irq_controller;
#endif
struct device_node {
const char *name;
phandle phandle;
const char *full_name;
struct fwnode_handle fwnode;
struct property *properties;
struct property *deadprops; /* removed properties */
struct device_node *parent;
struct device_node *child;
struct device_node *sibling;
#if defined(CONFIG_OF_KOBJ)
struct kobject kobj;
#endif
unsigned long _flags;
void *data;
#if defined(CONFIG_SPARC)
unsigned int unique_id;
struct of_irq_controller *irq_trans;
#endif
};
#define MAX_PHANDLE_ARGS 16
struct of_phandle_args {
struct device_node *np;
int args_count;
uint32_t args[MAX_PHANDLE_ARGS];
};
struct of_phandle_iterator {
/* Common iterator information */
const char *cells_name;
int cell_count;
const struct device_node *parent;
/* List size information */
const __be32 *list_end;
const __be32 *phandle_end;
/* Current position state */
const __be32 *cur;
uint32_t cur_count;
phandle phandle;
struct device_node *node;
};
struct of_reconfig_data {
struct device_node *dn;
struct property *prop;
struct property *old_prop;
};
extern const struct kobj_type of_node_ktype;
extern const struct fwnode_operations of_fwnode_ops;
/**
* of_node_init - initialize a devicetree node
* @node: Pointer to device node that has been created by kzalloc()
*
* On return the device_node refcount is set to one. Use of_node_put()
* on @node when done to free the memory allocated for it. If the node
* is NOT a dynamic node the memory will not be freed. The decision of
* whether to free the memory will be done by node->release(), which is
* of_node_release().
*/
static inline void of_node_init(struct device_node *node)
{
#if defined(CONFIG_OF_KOBJ)
kobject_init(&node->kobj, &of_node_ktype);
#endif
fwnode_init(&node->fwnode, &of_fwnode_ops);
}
#if defined(CONFIG_OF_KOBJ)
#define of_node_kobj(n) (&(n)->kobj)
#else
#define of_node_kobj(n) NULL
#endif
#ifdef CONFIG_OF_DYNAMIC
extern struct device_node *of_node_get(struct device_node *node);
extern void of_node_put(struct device_node *node);
#else /* CONFIG_OF_DYNAMIC */
/* Dummy ref counting routines - to be implemented later */
static inline struct device_node *of_node_get(struct device_node *node)
{
return node;
}
static inline void of_node_put(struct device_node *node) { }
#endif /* !CONFIG_OF_DYNAMIC */
/* Pointer for first entry in chain of all nodes. */
extern struct device_node *of_root;
extern struct device_node *of_chosen;
extern struct device_node *of_aliases;
extern struct device_node *of_stdout;
/*
* struct device_node flag descriptions
* (need to be visible even when !CONFIG_OF)
*/
#define OF_DYNAMIC 1 /* (and properties) allocated via kmalloc */
#define OF_DETACHED 2 /* detached from the device tree */
#define OF_POPULATED 3 /* device already created */
#define OF_POPULATED_BUS 4 /* platform bus created for children */
#define OF_OVERLAY 5 /* allocated for an overlay */
#define OF_OVERLAY_FREE_CSET 6 /* in overlay cset being freed */
#define OF_BAD_ADDR ((u64)-1)
#ifdef CONFIG_OF
void of_core_init(void);
static inline bool is_of_node(const struct fwnode_handle *fwnode)
{
return !IS_ERR_OR_NULL(fwnode) && fwnode->ops == &of_fwnode_ops;
}
#define to_of_node(__fwnode) \
({ \
typeof(__fwnode) __to_of_node_fwnode = (__fwnode); \
\
is_of_node(__to_of_node_fwnode) ? \
container_of(__to_of_node_fwnode, \
struct device_node, fwnode) : \
NULL; \
})
#define of_fwnode_handle(node) \
({ \
typeof(node) __of_fwnode_handle_node = (node); \
\
__of_fwnode_handle_node ? \
&__of_fwnode_handle_node->fwnode : NULL; \
})
static inline bool of_have_populated_dt(void)
{
return of_root != NULL;
}
static inline bool of_node_is_root(const struct device_node *node)
{
return node && (node->parent == NULL);
}
static inline int of_node_check_flag(const struct device_node *n, unsigned long flag)
{
return test_bit(flag, &n->_flags);
}
static inline int of_node_test_and_set_flag(struct device_node *n,
unsigned long flag)
{
return test_and_set_bit(flag, &n->_flags);
}
static inline void of_node_set_flag(struct device_node *n, unsigned long flag)
{
set_bit(flag, &n->_flags);
}
static inline void of_node_clear_flag(struct device_node *n, unsigned long flag)
{
clear_bit(flag, &n->_flags);
}
#if defined(CONFIG_OF_DYNAMIC) || defined(CONFIG_SPARC)
static inline int of_property_check_flag(const struct property *p, unsigned long flag)
{
return test_bit(flag, &p->_flags);
}
static inline void of_property_set_flag(struct property *p, unsigned long flag)
{
set_bit(flag, &p->_flags);
}
static inline void of_property_clear_flag(struct property *p, unsigned long flag)
{
clear_bit(flag, &p->_flags);
}
#endif
extern struct device_node *__of_find_all_nodes(struct device_node *prev);
extern struct device_node *of_find_all_nodes(struct device_node *prev);
/*
* OF address retrieval & translation
*/
/* Helper to read a big number; size is in cells (not bytes) */
static inline u64 of_read_number(const __be32 *cell, int size)
{
u64 r = 0;
for (; size--; cell++)
r = (r << 32) | be32_to_cpu(*cell);
return r;
}
/* Like of_read_number, but we want an unsigned long result */
static inline unsigned long of_read_ulong(const __be32 *cell, int size)
{
/* toss away upper bits if unsigned long is smaller than u64 */
return of_read_number(cell, size);
}
#if defined(CONFIG_SPARC)
#include <asm/prom.h>
#endif
#define OF_IS_DYNAMIC(x) test_bit(OF_DYNAMIC, &x->_flags)
#define OF_MARK_DYNAMIC(x) set_bit(OF_DYNAMIC, &x->_flags)
extern bool of_node_name_eq(const struct device_node *np, const char *name);
extern bool of_node_name_prefix(const struct device_node *np, const char *prefix);
static inline const char *of_node_full_name(const struct device_node *np)
{
return np ? np->full_name : "<no-node>";
}
#define for_each_of_allnodes_from(from, dn) \
for (dn = __of_find_all_nodes(from); dn; dn = __of_find_all_nodes(dn))
#define for_each_of_allnodes(dn) for_each_of_allnodes_from(NULL, dn)
extern struct device_node *of_find_node_by_name(struct device_node *from,
const char *name);
extern struct device_node *of_find_node_by_type(struct device_node *from,
const char *type);
extern struct device_node *of_find_compatible_node(struct device_node *from,
const char *type, const char *compat);
extern struct device_node *of_find_matching_node_and_match(
struct device_node *from,
const struct of_device_id *matches,
const struct of_device_id **match);
extern struct device_node *of_find_node_opts_by_path(const char *path,
const char **opts);
static inline struct device_node *of_find_node_by_path(const char *path)
{
return of_find_node_opts_by_path(path, NULL);
}
extern struct device_node *of_find_node_by_phandle(phandle handle);
extern struct device_node *of_get_parent(const struct device_node *node);
extern struct device_node *of_get_next_parent(struct device_node *node);
extern struct device_node *of_get_next_child(const struct device_node *node,
struct device_node *prev);
extern struct device_node *of_get_next_available_child(
const struct device_node *node, struct device_node *prev);
extern struct device_node *of_get_compatible_child(const struct device_node *parent,
const char *compatible);
extern struct device_node *of_get_child_by_name(const struct device_node *node,
const char *name);
/* cache lookup */
extern struct device_node *of_find_next_cache_node(const struct device_node *);
extern int of_find_last_cache_level(unsigned int cpu);
extern struct device_node *of_find_node_with_property(
struct device_node *from, const char *prop_name);
extern struct property *of_find_property(const struct device_node *np,
const char *name,
int *lenp);
extern int of_property_count_elems_of_size(const struct device_node *np,
const char *propname, int elem_size);
extern int of_property_read_u32_index(const struct device_node *np,
const char *propname,
u32 index, u32 *out_value);
extern int of_property_read_u64_index(const struct device_node *np,
const char *propname,
u32 index, u64 *out_value);
extern int of_property_read_variable_u8_array(const struct device_node *np,
const char *propname, u8 *out_values,
size_t sz_min, size_t sz_max);
extern int of_property_read_variable_u16_array(const struct device_node *np,
const char *propname, u16 *out_values,
size_t sz_min, size_t sz_max);
extern int of_property_read_variable_u32_array(const struct device_node *np,
const char *propname,
u32 *out_values,
size_t sz_min,
size_t sz_max);
extern int of_property_read_u64(const struct device_node *np,
const char *propname, u64 *out_value);
extern int of_property_read_variable_u64_array(const struct device_node *np,
const char *propname,
u64 *out_values,
size_t sz_min,
size_t sz_max);
extern int of_property_read_string(const struct device_node *np,
const char *propname,
const char **out_string);
extern int of_property_match_string(const struct device_node *np,
const char *propname,
const char *string);
extern int of_property_read_string_helper(const struct device_node *np,
const char *propname,
const char **out_strs, size_t sz, int index);
extern int of_device_is_compatible(const struct device_node *device,
const char *);
extern int of_device_compatible_match(const struct device_node *device,
const char *const *compat);
extern bool of_device_is_available(const struct device_node *device);
extern bool of_device_is_big_endian(const struct device_node *device);
extern const void *of_get_property(const struct device_node *node,
const char *name,
int *lenp);
extern struct device_node *of_get_cpu_node(int cpu, unsigned int *thread);
extern struct device_node *of_cpu_device_node_get(int cpu);
extern int of_cpu_node_to_id(struct device_node *np);
extern struct device_node *of_get_next_cpu_node(struct device_node *prev);
extern struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
int index);
extern u64 of_get_cpu_hwid(struct device_node *cpun, unsigned int thread);
#define for_each_property_of_node(dn, pp) \
for (pp = dn->properties; pp != NULL; pp = pp->next)
extern int of_n_addr_cells(struct device_node *np);
extern int of_n_size_cells(struct device_node *np);
extern const struct of_device_id *of_match_node(
const struct of_device_id *matches, const struct device_node *node);
extern const void *of_device_get_match_data(const struct device *dev);
extern int of_alias_from_compatible(const struct device_node *node, char *alias,
int len);
extern void of_print_phandle_args(const char *msg, const struct of_phandle_args *args);
extern int __of_parse_phandle_with_args(const struct device_node *np,
const char *list_name, const char *cells_name, int cell_count,
int index, struct of_phandle_args *out_args);
extern int of_parse_phandle_with_args_map(const struct device_node *np,
const char *list_name, const char *stem_name, int index,
struct of_phandle_args *out_args);
extern int of_count_phandle_with_args(const struct device_node *np,
const char *list_name, const char *cells_name);
/* module functions */
extern ssize_t of_modalias(const struct device_node *np, char *str, ssize_t len);
extern int of_request_module(const struct device_node *np);
/* phandle iterator functions */
extern int of_phandle_iterator_init(struct of_phandle_iterator *it,
const struct device_node *np,
const char *list_name,
const char *cells_name,
int cell_count);
extern int of_phandle_iterator_next(struct of_phandle_iterator *it);
extern int of_phandle_iterator_args(struct of_phandle_iterator *it,
uint32_t *args,
int size);
extern void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align));
extern int of_alias_get_id(struct device_node *np, const char *stem);
extern int of_alias_get_highest_id(const char *stem);
extern int of_machine_is_compatible(const char *compat);
extern int of_add_property(struct device_node *np, struct property *prop);
extern int of_remove_property(struct device_node *np, struct property *prop);
extern int of_update_property(struct device_node *np, struct property *newprop);
/* For updating the device tree at runtime */
#define OF_RECONFIG_ATTACH_NODE 0x0001
#define OF_RECONFIG_DETACH_NODE 0x0002
#define OF_RECONFIG_ADD_PROPERTY 0x0003
#define OF_RECONFIG_REMOVE_PROPERTY 0x0004
#define OF_RECONFIG_UPDATE_PROPERTY 0x0005
extern int of_attach_node(struct device_node *);
extern int of_detach_node(struct device_node *);
#define of_match_ptr(_ptr) (_ptr)
/*
* struct property *prop;
* const __be32 *p;
* u32 u;
*
* of_property_for_each_u32(np, "propname", prop, p, u)
* printk("U32 value: %x\n", u);
*/
const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
u32 *pu);
/*
* struct property *prop;
* const char *s;
*
* of_property_for_each_string(np, "propname", prop, s)
* printk("String value: %s\n", s);
*/
const char *of_prop_next_string(struct property *prop, const char *cur);
bool of_console_check(struct device_node *dn, char *name, int index);
int of_map_id(struct device_node *np, u32 id,
const char *map_name, const char *map_mask_name,
struct device_node **target, u32 *id_out);
phys_addr_t of_dma_get_max_cpu_address(struct device_node *np);
struct kimage;
void *of_kexec_alloc_and_setup_fdt(const struct kimage *image,
unsigned long initrd_load_addr,
unsigned long initrd_len,
const char *cmdline, size_t extra_fdt_size);
#else /* CONFIG_OF */
static inline void of_core_init(void)
{
}
static inline bool is_of_node(const struct fwnode_handle *fwnode)
{
return false;
}
static inline struct device_node *to_of_node(const struct fwnode_handle *fwnode)
{
return NULL;
}
static inline bool of_node_name_eq(const struct device_node *np, const char *name)
{
return false;
}
static inline bool of_node_name_prefix(const struct device_node *np, const char *prefix)
{
return false;
}
static inline const char* of_node_full_name(const struct device_node *np)
{
return "<no-node>";
}
static inline struct device_node *of_find_node_by_name(struct device_node *from,
const char *name)
{
return NULL;
}
static inline struct device_node *of_find_node_by_type(struct device_node *from,
const char *type)
{
return NULL;
}
static inline struct device_node *of_find_matching_node_and_match(
struct device_node *from,
const struct of_device_id *matches,
const struct of_device_id **match)
{
return NULL;
}
static inline struct device_node *of_find_node_by_path(const char *path)
{
return NULL;
}
static inline struct device_node *of_find_node_opts_by_path(const char *path,
const char **opts)
{
return NULL;
}
static inline struct device_node *of_find_node_by_phandle(phandle handle)
{
return NULL;
}
static inline struct device_node *of_get_parent(const struct device_node *node)
{
return NULL;
}
static inline struct device_node *of_get_next_parent(struct device_node *node)
{
return NULL;
}
static inline struct device_node *of_get_next_child(
const struct device_node *node, struct device_node *prev)
{
return NULL;
}
static inline struct device_node *of_get_next_available_child(
const struct device_node *node, struct device_node *prev)
{
return NULL;
}
static inline struct device_node *of_find_node_with_property(
struct device_node *from, const char *prop_name)
{
return NULL;
}
#define of_fwnode_handle(node) NULL
static inline bool of_have_populated_dt(void)
{
return false;
}
static inline struct device_node *of_get_compatible_child(const struct device_node *parent,
const char *compatible)
{
return NULL;
}
static inline struct device_node *of_get_child_by_name(
const struct device_node *node,
const char *name)
{
return NULL;
}
static inline int of_device_is_compatible(const struct device_node *device,
const char *name)
{
return 0;
}
static inline int of_device_compatible_match(const struct device_node *device,
const char *const *compat)
{
return 0;
}
static inline bool of_device_is_available(const struct device_node *device)
{
return false;
}
static inline bool of_device_is_big_endian(const struct device_node *device)
{
return false;
}
static inline struct property *of_find_property(const struct device_node *np,
const char *name,
int *lenp)
{
return NULL;
}
static inline struct device_node *of_find_compatible_node(
struct device_node *from,
const char *type,
const char *compat)
{
return NULL;
}
static inline int of_property_count_elems_of_size(const struct device_node *np,
const char *propname, int elem_size)
{
return -ENOSYS;
}
static inline int of_property_read_u32_index(const struct device_node *np,
const char *propname, u32 index, u32 *out_value)
{
return -ENOSYS;
}
static inline int of_property_read_u64_index(const struct device_node *np,
const char *propname, u32 index, u64 *out_value)
{
return -ENOSYS;
}
static inline const void *of_get_property(const struct device_node *node,
const char *name,
int *lenp)
{
return NULL;
}
static inline struct device_node *of_get_cpu_node(int cpu,
unsigned int *thread)
{
return NULL;
}
static inline struct device_node *of_cpu_device_node_get(int cpu)
{
return NULL;
}
static inline int of_cpu_node_to_id(struct device_node *np)
{
return -ENODEV;
}
static inline struct device_node *of_get_next_cpu_node(struct device_node *prev)
{
return NULL;
}
static inline struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
int index)
{
return NULL;
}
static inline int of_n_addr_cells(struct device_node *np)
{
return 0;
}
static inline int of_n_size_cells(struct device_node *np)
{
return 0;
}
static inline int of_property_read_variable_u8_array(const struct device_node *np,
const char *propname, u8 *out_values,
size_t sz_min, size_t sz_max)
{
return -ENOSYS;
}
static inline int of_property_read_variable_u16_array(const struct device_node *np,
const char *propname, u16 *out_values,
size_t sz_min, size_t sz_max)
{
return -ENOSYS;
}
static inline int of_property_read_variable_u32_array(const struct device_node *np,
const char *propname,
u32 *out_values,
size_t sz_min,
size_t sz_max)
{
return -ENOSYS;
}
static inline int of_property_read_u64(const struct device_node *np,
const char *propname, u64 *out_value)
{
return -ENOSYS;
}
static inline int of_property_read_variable_u64_array(const struct device_node *np,
const char *propname,
u64 *out_values,
size_t sz_min,
size_t sz_max)
{
return -ENOSYS;
}
static inline int of_property_read_string(const struct device_node *np,
const char *propname,
const char **out_string)
{
return -ENOSYS;
}
static inline int of_property_match_string(const struct device_node *np,
const char *propname,
const char *string)
{
return -ENOSYS;
}
static inline int of_property_read_string_helper(const struct device_node *np,
const char *propname,
const char **out_strs, size_t sz, int index)
{
return -ENOSYS;
}
static inline int __of_parse_phandle_with_args(const struct device_node *np,
const char *list_name,
const char *cells_name,
int cell_count,
int index,
struct of_phandle_args *out_args)
{
return -ENOSYS;
}
static inline int of_parse_phandle_with_args_map(const struct device_node *np,
const char *list_name,
const char *stem_name,
int index,
struct of_phandle_args *out_args)
{
return -ENOSYS;
}
static inline int of_count_phandle_with_args(const struct device_node *np,
const char *list_name,
const char *cells_name)
{
return -ENOSYS;
}
static inline ssize_t of_modalias(const struct device_node *np, char *str,
ssize_t len)
{
return -ENODEV;
}
static inline int of_request_module(const struct device_node *np)
{
return -ENODEV;
}
static inline int of_phandle_iterator_init(struct of_phandle_iterator *it,
const struct device_node *np,
const char *list_name,
const char *cells_name,
int cell_count)
{
return -ENOSYS;
}
static inline int of_phandle_iterator_next(struct of_phandle_iterator *it)
{
return -ENOSYS;
}
static inline int of_phandle_iterator_args(struct of_phandle_iterator *it,
uint32_t *args,
int size)
{
return 0;
}
static inline int of_alias_get_id(struct device_node *np, const char *stem)
{
return -ENOSYS;
}
static inline int of_alias_get_highest_id(const char *stem)
{
return -ENOSYS;
}
static inline int of_machine_is_compatible(const char *compat)
{
return 0;
}
static inline int of_add_property(struct device_node *np, struct property *prop)
{
return 0;
}
static inline int of_remove_property(struct device_node *np, struct property *prop)
{
return 0;
}
static inline bool of_console_check(const struct device_node *dn, const char *name, int index)
{
return false;
}
static inline const __be32 *of_prop_next_u32(struct property *prop,
const __be32 *cur, u32 *pu)
{
return NULL;
}
static inline const char *of_prop_next_string(struct property *prop,
const char *cur)
{
return NULL;
}
static inline int of_node_check_flag(struct device_node *n, unsigned long flag)
{
return 0;
}
static inline int of_node_test_and_set_flag(struct device_node *n,
unsigned long flag)
{
return 0;
}
static inline void of_node_set_flag(struct device_node *n, unsigned long flag)
{
}
static inline void of_node_clear_flag(struct device_node *n, unsigned long flag)
{
}
static inline int of_property_check_flag(const struct property *p,
unsigned long flag)
{
return 0;
}
static inline void of_property_set_flag(struct property *p, unsigned long flag)
{
}
static inline void of_property_clear_flag(struct property *p, unsigned long flag)
{
}
static inline int of_map_id(struct device_node *np, u32 id,
const char *map_name, const char *map_mask_name,
struct device_node **target, u32 *id_out)
{
return -EINVAL;
}
static inline phys_addr_t of_dma_get_max_cpu_address(struct device_node *np)
{
return PHYS_ADDR_MAX;
}
static inline const void *of_device_get_match_data(const struct device *dev)
{
return NULL;
}
#define of_match_ptr(_ptr) NULL
#define of_match_node(_matches, _node) NULL
#endif /* CONFIG_OF */
/* Default string compare functions, Allow arch asm/prom.h to override */
#if !defined(of_compat_cmp)
#define of_compat_cmp(s1, s2, l) strcasecmp((s1), (s2))
#define of_prop_cmp(s1, s2) strcmp((s1), (s2))
#define of_node_cmp(s1, s2) strcasecmp((s1), (s2))
#endif
static inline int of_prop_val_eq(struct property *p1, struct property *p2)
{
return p1->length == p2->length &&
!memcmp(p1->value, p2->value, (size_t)p1->length);
}
#if defined(CONFIG_OF) && defined(CONFIG_NUMA)
extern int of_node_to_nid(struct device_node *np);
#else
static inline int of_node_to_nid(struct device_node *device)
{
return NUMA_NO_NODE;
}
#endif
#ifdef CONFIG_OF_NUMA
extern int of_numa_init(void);
#else
static inline int of_numa_init(void)
{
return -ENOSYS;
}
#endif
static inline struct device_node *of_find_matching_node(
struct device_node *from,
const struct of_device_id *matches)
{
return of_find_matching_node_and_match(from, matches, NULL);
}
static inline const char *of_node_get_device_type(const struct device_node *np)
{
return of_get_property(np, "device_type", NULL);
}
static inline bool of_node_is_type(const struct device_node *np, const char *type)
{
const char *match = of_node_get_device_type(np);
return np && match && type && !strcmp(match, type);
}
/**
* of_parse_phandle - Resolve a phandle property to a device_node pointer
* @np: Pointer to device node holding phandle property
* @phandle_name: Name of property holding a phandle value
* @index: For properties holding a table of phandles, this is the index into
* the table
*
* Return: The device_node pointer with refcount incremented. Use
* of_node_put() on it when done.
*/
static inline struct device_node *of_parse_phandle(const struct device_node *np,
const char *phandle_name,
int index)
{
struct of_phandle_args args;
if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
index, &args))
return NULL;
return args.np;
}
/**
* of_parse_phandle_with_args() - Find a node pointed by phandle in a list
* @np: pointer to a device tree node containing a list
* @list_name: property name that contains a list
* @cells_name: property name that specifies phandles' arguments count
* @index: index of a phandle to parse out
* @out_args: optional pointer to output arguments structure (will be filled)
*
* This function is useful to parse lists of phandles and their arguments.
* Returns 0 on success and fills out_args, on error returns appropriate
* errno value.
*
* Caller is responsible to call of_node_put() on the returned out_args->np
* pointer.
*
* Example::
*
* phandle1: node1 {
* #list-cells = <2>;
* };
*
* phandle2: node2 {
* #list-cells = <1>;
* };
*
* node3 {
* list = <&phandle1 1 2 &phandle2 3>;
* };
*
* To get a device_node of the ``node2`` node you may call this:
* of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
*/
static inline int of_parse_phandle_with_args(const struct device_node *np,
const char *list_name,
const char *cells_name,
int index,
struct of_phandle_args *out_args)
{
int cell_count = -1;
/* If cells_name is NULL we assume a cell count of 0 */
if (!cells_name)
cell_count = 0;
return __of_parse_phandle_with_args(np, list_name, cells_name,
cell_count, index, out_args);
}
/**
* of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
* @np: pointer to a device tree node containing a list
* @list_name: property name that contains a list
* @cell_count: number of argument cells following the phandle
* @index: index of a phandle to parse out
* @out_args: optional pointer to output arguments structure (will be filled)
*
* This function is useful to parse lists of phandles and their arguments.
* Returns 0 on success and fills out_args, on error returns appropriate
* errno value.
*
* Caller is responsible to call of_node_put() on the returned out_args->np
* pointer.
*
* Example::
*
* phandle1: node1 {
* };
*
* phandle2: node2 {
* };
*
* node3 {
* list = <&phandle1 0 2 &phandle2 2 3>;
* };
*
* To get a device_node of the ``node2`` node you may call this:
* of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
*/
static inline int of_parse_phandle_with_fixed_args(const struct device_node *np,
const char *list_name,
int cell_count,
int index,
struct of_phandle_args *out_args)
{
return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
index, out_args);
}
/**
* of_parse_phandle_with_optional_args() - Find a node pointed by phandle in a list
* @np: pointer to a device tree node containing a list
* @list_name: property name that contains a list
* @cells_name: property name that specifies phandles' arguments count
* @index: index of a phandle to parse out
* @out_args: optional pointer to output arguments structure (will be filled)
*
* Same as of_parse_phandle_with_args() except that if the cells_name property
* is not found, cell_count of 0 is assumed.
*
* This is used to useful, if you have a phandle which didn't have arguments
* before and thus doesn't have a '#*-cells' property but is now migrated to
* having arguments while retaining backwards compatibility.
*/
static inline int of_parse_phandle_with_optional_args(const struct device_node *np,
const char *list_name,
const char *cells_name,
int index,
struct of_phandle_args *out_args)
{
return __of_parse_phandle_with_args(np, list_name, cells_name,
0, index, out_args);
}
/**
* of_property_count_u8_elems - Count the number of u8 elements in a property
*
* @np: device node from which the property value is to be read.
* @propname: name of the property to be searched.
*
* Search for a property in a device node and count the number of u8 elements
* in it.
*
* Return: The number of elements on sucess, -EINVAL if the property does
* not exist or its length does not match a multiple of u8 and -ENODATA if the
* property does not have a value.
*/
static inline int of_property_count_u8_elems(const struct device_node *np,
const char *propname)
{
return of_property_count_elems_of_size(np, propname, sizeof(u8));
}
/**
* of_property_count_u16_elems - Count the number of u16 elements in a property
*
* @np: device node from which the property value is to be read.
* @propname: name of the property to be searched.
*
* Search for a property in a device node and count the number of u16 elements
* in it.
*
* Return: The number of elements on sucess, -EINVAL if the property does
* not exist or its length does not match a multiple of u16 and -ENODATA if the
* property does not have a value.
*/
static inline int of_property_count_u16_elems(const struct device_node *np,
const char *propname)
{
return of_property_count_elems_of_size(np, propname, sizeof(u16));
}
/**
* of_property_count_u32_elems - Count the number of u32 elements in a property
*
* @np: device node from which the property value is to be read.
* @propname: name of the property to be searched.
*
* Search for a property in a device node and count the number of u32 elements
* in it.
*
* Return: The number of elements on sucess, -EINVAL if the property does
* not exist or its length does not match a multiple of u32 and -ENODATA if the
* property does not have a value.
*/
static inline int of_property_count_u32_elems(const struct device_node *np,
const char *propname)
{
return of_property_count_elems_of_size(np, propname, sizeof(u32));
}
/**
* of_property_count_u64_elems - Count the number of u64 elements in a property
*
* @np: device node from which the property value is to be read.
* @propname: name of the property to be searched.
*
* Search for a property in a device node and count the number of u64 elements
* in it.
*
* Return: The number of elements on sucess, -EINVAL if the property does
* not exist or its length does not match a multiple of u64 and -ENODATA if the
* property does not have a value.
*/
static inline int of_property_count_u64_elems(const struct device_node *np,
const char *propname)
{
return of_property_count_elems_of_size(np, propname, sizeof(u64));
}
/**
* of_property_read_string_array() - Read an array of strings from a multiple
* strings property.
* @np: device node from which the property value is to be read.
* @propname: name of the property to be searched.
* @out_strs: output array of string pointers.
* @sz: number of array elements to read.
*
* Search for a property in a device tree node and retrieve a list of
* terminated string values (pointer to data, not a copy) in that property.
*
* Return: If @out_strs is NULL, the number of strings in the property is returned.
*/
static inline int of_property_read_string_array(const struct device_node *np,
const char *propname, const char **out_strs,
size_t sz)
{
return of_property_read_string_helper(np, propname, out_strs, sz, 0);
}
/**
* of_property_count_strings() - Find and return the number of strings from a
* multiple strings property.
* @np: device node from which the property value is to be read.
* @propname: name of the property to be searched.
*
* Search for a property in a device tree node and retrieve the number of null
* terminated string contain in it.
*
* Return: The number of strings on success, -EINVAL if the property does not
* exist, -ENODATA if property does not have a value, and -EILSEQ if the string
* is not null-terminated within the length of the property data.
*/
static inline int of_property_count_strings(const struct device_node *np,
const char *propname)
{
return of_property_read_string_helper(np, propname, NULL, 0, 0);
}
/**
* of_property_read_string_index() - Find and read a string from a multiple
* strings property.
* @np: device node from which the property value is to be read.
* @propname: name of the property to be searched.
* @index: index of the string in the list of strings
* @output: pointer to null terminated return string, modified only if
* return value is 0.
*
* Search for a property in a device tree node and retrieve a null
* terminated string value (pointer to data, not a copy) in the list of strings
* contained in that property.
*
* Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
* property does not have a value, and -EILSEQ if the string is not
* null-terminated within the length of the property data.
*
* The out_string pointer is modified only if a valid string can be decoded.
*/
static inline int of_property_read_string_index(const struct device_node *np,
const char *propname,
int index, const char **output)
{
int rc = of_property_read_string_helper(np, propname, output, 1, index);
return rc < 0 ? rc : 0;
}
/**
* of_property_read_bool - Find a property
* @np: device node from which the property value is to be read.
* @propname: name of the property to be searched.
*
* Search for a boolean property in a device node. Usage on non-boolean
* property types is deprecated.
*
* Return: true if the property exists false otherwise.
*/
static inline bool of_property_read_bool(const struct device_node *np,
const char *propname)
{
struct property *prop = of_find_property(np, propname, NULL);
return prop ? true : false;
}
/**
* of_property_present - Test if a property is present in a node
* @np: device node to search for the property.
* @propname: name of the property to be searched.
*
* Test for a property present in a device node.
*
* Return: true if the property exists false otherwise.
*/
static inline bool of_property_present(const struct device_node *np, const char *propname)
{
return of_property_read_bool(np, propname);
}
/**
* of_property_read_u8_array - Find and read an array of u8 from a property.
*
* @np: device node from which the property value is to be read.
* @propname: name of the property to be searched.
* @out_values: pointer to return value, modified only if return value is 0.
* @sz: number of array elements to read
*
* Search for a property in a device node and read 8-bit value(s) from
* it.
*
* dts entry of array should be like:
* ``property = /bits/ 8 <0x50 0x60 0x70>;``
*
* Return: 0 on success, -EINVAL if the property does not exist,
* -ENODATA if property does not have a value, and -EOVERFLOW if the
* property data isn't large enough.
*
* The out_values is modified only if a valid u8 value can be decoded.
*/
static inline int of_property_read_u8_array(const struct device_node *np,
const char *propname,
u8 *out_values, size_t sz)
{
int ret = of_property_read_variable_u8_array(np, propname, out_values,
sz, 0);
if (ret >= 0)
return 0;
else
return ret;
}
/**
* of_property_read_u16_array - Find and read an array of u16 from a property.
*
* @np: device node from which the property value is to be read.
* @propname: name of the property to be searched.
* @out_values: pointer to return value, modified only if return value is 0.
* @sz: number of array elements to read
*
* Search for a property in a device node and read 16-bit value(s) from
* it.
*
* dts entry of array should be like:
* ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
*
* Return: 0 on success, -EINVAL if the property does not exist,
* -ENODATA if property does not have a value, and -EOVERFLOW if the
* property data isn't large enough.
*
* The out_values is modified only if a valid u16 value can be decoded.
*/
static inline int of_property_read_u16_array(const struct device_node *np,
const char *propname,
u16 *out_values, size_t sz)
{
int ret = of_property_read_variable_u16_array(np, propname, out_values,
sz, 0);
if (ret >= 0)
return 0;
else
return ret;
}
/**
* of_property_read_u32_array - Find and read an array of 32 bit integers
* from a property.
*
* @np: device node from which the property value is to be read.
* @propname: name of the property to be searched.
* @out_values: pointer to return value, modified only if return value is 0.
* @sz: number of array elements to read
*
* Search for a property in a device node and read 32-bit value(s) from
* it.
*
* Return: 0 on success, -EINVAL if the property does not exist,
* -ENODATA if property does not have a value, and -EOVERFLOW if the
* property data isn't large enough.
*
* The out_values is modified only if a valid u32 value can be decoded.
*/
static inline int of_property_read_u32_array(const struct device_node *np,
const char *propname,
u32 *out_values, size_t sz)
{
int ret = of_property_read_variable_u32_array(np, propname, out_values,
sz, 0);
if (ret >= 0)
return 0;
else
return ret;
}
/**
* of_property_read_u64_array - Find and read an array of 64 bit integers
* from a property.
*
* @np: device node from which the property value is to be read.
* @propname: name of the property to be searched.
* @out_values: pointer to return value, modified only if return value is 0.
* @sz: number of array elements to read
*
* Search for a property in a device node and read 64-bit value(s) from
* it.
*
* Return: 0 on success, -EINVAL if the property does not exist,
* -ENODATA if property does not have a value, and -EOVERFLOW if the
* property data isn't large enough.
*
* The out_values is modified only if a valid u64 value can be decoded.
*/
static inline int of_property_read_u64_array(const struct device_node *np,
const char *propname,
u64 *out_values, size_t sz)
{
int ret = of_property_read_variable_u64_array(np, propname, out_values,
sz, 0);
if (ret >= 0)
return 0;
else
return ret;
}
static inline int of_property_read_u8(const struct device_node *np,
const char *propname,
u8 *out_value)
{
return of_property_read_u8_array(np, propname, out_value, 1);
}
static inline int of_property_read_u16(const struct device_node *np,
const char *propname,
u16 *out_value)
{
return of_property_read_u16_array(np, propname, out_value, 1);
}
static inline int of_property_read_u32(const struct device_node *np,
const char *propname,
u32 *out_value)
{
return of_property_read_u32_array(np, propname, out_value, 1);
}
static inline int of_property_read_s32(const struct device_node *np,
const char *propname,
s32 *out_value)
{
return of_property_read_u32(np, propname, (u32*) out_value);
}
#define of_for_each_phandle(it, err, np, ln, cn, cc) \
for (of_phandle_iterator_init((it), (np), (ln), (cn), (cc)), \
err = of_phandle_iterator_next(it); \
err == 0; \
err = of_phandle_iterator_next(it))
#define of_property_for_each_u32(np, propname, prop, p, u) \
for (prop = of_find_property(np, propname, NULL), \
p = of_prop_next_u32(prop, NULL, &u); \
p; \
p = of_prop_next_u32(prop, p, &u))
#define of_property_for_each_string(np, propname, prop, s) \
for (prop = of_find_property(np, propname, NULL), \
s = of_prop_next_string(prop, NULL); \
s; \
s = of_prop_next_string(prop, s))
#define for_each_node_by_name(dn, name) \
for (dn = of_find_node_by_name(NULL, name); dn; \
dn = of_find_node_by_name(dn, name))
#define for_each_node_by_type(dn, type) \
for (dn = of_find_node_by_type(NULL, type); dn; \
dn = of_find_node_by_type(dn, type))
#define for_each_compatible_node(dn, type, compatible) \
for (dn = of_find_compatible_node(NULL, type, compatible); dn; \
dn = of_find_compatible_node(dn, type, compatible))
#define for_each_matching_node(dn, matches) \
for (dn = of_find_matching_node(NULL, matches); dn; \
dn = of_find_matching_node(dn, matches))
#define for_each_matching_node_and_match(dn, matches, match) \
for (dn = of_find_matching_node_and_match(NULL, matches, match); \
dn; dn = of_find_matching_node_and_match(dn, matches, match))
#define for_each_child_of_node(parent, child) \
for (child = of_get_next_child(parent, NULL); child != NULL; \
child = of_get_next_child(parent, child))
#define for_each_available_child_of_node(parent, child) \
for (child = of_get_next_available_child(parent, NULL); child != NULL; \
child = of_get_next_available_child(parent, child))
#define for_each_of_cpu_node(cpu) \
for (cpu = of_get_next_cpu_node(NULL); cpu != NULL; \
cpu = of_get_next_cpu_node(cpu))
#define for_each_node_with_property(dn, prop_name) \
for (dn = of_find_node_with_property(NULL, prop_name); dn; \
dn = of_find_node_with_property(dn, prop_name))
static inline int of_get_child_count(const struct device_node *np)
{
struct device_node *child;
int num = 0;
for_each_child_of_node(np, child)
num++;
return num;
}
static inline int of_get_available_child_count(const struct device_node *np)
{
struct device_node *child;
int num = 0;
for_each_available_child_of_node(np, child)
num++;
return num;
}
#define _OF_DECLARE_STUB(table, name, compat, fn, fn_type) \
static const struct of_device_id __of_table_##name \
__attribute__((unused)) \
= { .compatible = compat, \
.data = (fn == (fn_type)NULL) ? fn : fn }
#if defined(CONFIG_OF) && !defined(MODULE)
#define _OF_DECLARE(table, name, compat, fn, fn_type) \
static const struct of_device_id __of_table_##name \
__used __section("__" #table "_of_table") \
__aligned(__alignof__(struct of_device_id)) \
= { .compatible = compat, \
.data = (fn == (fn_type)NULL) ? fn : fn }
#else
#define _OF_DECLARE(table, name, compat, fn, fn_type) \
_OF_DECLARE_STUB(table, name, compat, fn, fn_type)
#endif
typedef int (*of_init_fn_2)(struct device_node *, struct device_node *);
typedef int (*of_init_fn_1_ret)(struct device_node *);
typedef void (*of_init_fn_1)(struct device_node *);
#define OF_DECLARE_1(table, name, compat, fn) \
_OF_DECLARE(table, name, compat, fn, of_init_fn_1)
#define OF_DECLARE_1_RET(table, name, compat, fn) \
_OF_DECLARE(table, name, compat, fn, of_init_fn_1_ret)
#define OF_DECLARE_2(table, name, compat, fn) \
_OF_DECLARE(table, name, compat, fn, of_init_fn_2)
/**
* struct of_changeset_entry - Holds a changeset entry
*
* @node: list_head for the log list
* @action: notifier action
* @np: pointer to the device node affected
* @prop: pointer to the property affected
* @old_prop: hold a pointer to the original property
*
* Every modification of the device tree during a changeset
* is held in a list of of_changeset_entry structures.
* That way we can recover from a partial application, or we can
* revert the changeset
*/
struct of_changeset_entry {
struct list_head node;
unsigned long action;
struct device_node *np;
struct property *prop;
struct property *old_prop;
};
/**
* struct of_changeset - changeset tracker structure
*
* @entries: list_head for the changeset entries
*
* changesets are a convenient way to apply bulk changes to the
* live tree. In case of an error, changes are rolled-back.
* changesets live on after initial application, and if not
* destroyed after use, they can be reverted in one single call.
*/
struct of_changeset {
struct list_head entries;
};
enum of_reconfig_change {
OF_RECONFIG_NO_CHANGE = 0,
OF_RECONFIG_CHANGE_ADD,
OF_RECONFIG_CHANGE_REMOVE,
};
struct notifier_block;
#ifdef CONFIG_OF_DYNAMIC
extern int of_reconfig_notifier_register(struct notifier_block *);
extern int of_reconfig_notifier_unregister(struct notifier_block *);
extern int of_reconfig_notify(unsigned long, struct of_reconfig_data *rd);
extern int of_reconfig_get_state_change(unsigned long action,
struct of_reconfig_data *arg);
extern void of_changeset_init(struct of_changeset *ocs);
extern void of_changeset_destroy(struct of_changeset *ocs);
extern int of_changeset_apply(struct of_changeset *ocs);
extern int of_changeset_revert(struct of_changeset *ocs);
extern int of_changeset_action(struct of_changeset *ocs,
unsigned long action, struct device_node *np,
struct property *prop);
static inline int of_changeset_attach_node(struct of_changeset *ocs,
struct device_node *np)
{
return of_changeset_action(ocs, OF_RECONFIG_ATTACH_NODE, np, NULL);
}
static inline int of_changeset_detach_node(struct of_changeset *ocs,
struct device_node *np)
{
return of_changeset_action(ocs, OF_RECONFIG_DETACH_NODE, np, NULL);
}
static inline int of_changeset_add_property(struct of_changeset *ocs,
struct device_node *np, struct property *prop)
{
return of_changeset_action(ocs, OF_RECONFIG_ADD_PROPERTY, np, prop);
}
static inline int of_changeset_remove_property(struct of_changeset *ocs,
struct device_node *np, struct property *prop)
{
return of_changeset_action(ocs, OF_RECONFIG_REMOVE_PROPERTY, np, prop);
}
static inline int of_changeset_update_property(struct of_changeset *ocs,
struct device_node *np, struct property *prop)
{
return of_changeset_action(ocs, OF_RECONFIG_UPDATE_PROPERTY, np, prop);
}
struct device_node *of_changeset_create_node(struct of_changeset *ocs,
struct device_node *parent,
const char *full_name);
int of_changeset_add_prop_string(struct of_changeset *ocs,
struct device_node *np,
const char *prop_name, const char *str);
int of_changeset_add_prop_string_array(struct of_changeset *ocs,
struct device_node *np,
const char *prop_name,
const char **str_array, size_t sz);
int of_changeset_add_prop_u32_array(struct of_changeset *ocs,
struct device_node *np,
const char *prop_name,
const u32 *array, size_t sz);
static inline int of_changeset_add_prop_u32(struct of_changeset *ocs,
struct device_node *np,
const char *prop_name,
const u32 val)
{
return of_changeset_add_prop_u32_array(ocs, np, prop_name, &val, 1);
}
#else /* CONFIG_OF_DYNAMIC */
static inline int of_reconfig_notifier_register(struct notifier_block *nb)
{
return -EINVAL;
}
static inline int of_reconfig_notifier_unregister(struct notifier_block *nb)
{
return -EINVAL;
}
static inline int of_reconfig_notify(unsigned long action,
struct of_reconfig_data *arg)
{
return -EINVAL;
}
static inline int of_reconfig_get_state_change(unsigned long action,
struct of_reconfig_data *arg)
{
return -EINVAL;
}
#endif /* CONFIG_OF_DYNAMIC */
/**
* of_device_is_system_power_controller - Tells if system-power-controller is found for device_node
* @np: Pointer to the given device_node
*
* Return: true if present false otherwise
*/
static inline bool of_device_is_system_power_controller(const struct device_node *np)
{
return of_property_read_bool(np, "system-power-controller");
}
/*
* Overlay support
*/
enum of_overlay_notify_action {
OF_OVERLAY_INIT = 0, /* kzalloc() of ovcs sets this value */
OF_OVERLAY_PRE_APPLY,
OF_OVERLAY_POST_APPLY,
OF_OVERLAY_PRE_REMOVE,
OF_OVERLAY_POST_REMOVE,
};
static inline const char *of_overlay_action_name(enum of_overlay_notify_action action)
{
static const char *const of_overlay_action_name[] = {
"init",
"pre-apply",
"post-apply",
"pre-remove",
"post-remove",
};
return of_overlay_action_name[action];
}
struct of_overlay_notify_data {
struct device_node *overlay;
struct device_node *target;
};
#ifdef CONFIG_OF_OVERLAY
int of_overlay_fdt_apply(const void *overlay_fdt, u32 overlay_fdt_size,
int *ovcs_id, struct device_node *target_base);
int of_overlay_remove(int *ovcs_id);
int of_overlay_remove_all(void);
int of_overlay_notifier_register(struct notifier_block *nb);
int of_overlay_notifier_unregister(struct notifier_block *nb);
#else
static inline int of_overlay_fdt_apply(const void *overlay_fdt, u32 overlay_fdt_size,
int *ovcs_id, struct device_node *target_base)
{
return -ENOTSUPP;
}
static inline int of_overlay_remove(int *ovcs_id)
{
return -ENOTSUPP;
}
static inline int of_overlay_remove_all(void)
{
return -ENOTSUPP;
}
static inline int of_overlay_notifier_register(struct notifier_block *nb)
{
return 0;
}
static inline int of_overlay_notifier_unregister(struct notifier_block *nb)
{
return 0;
}
#endif
#endif /* _LINUX_OF_H */