mirror_ubuntu-kernels/fs/splice.c

2030 lines
47 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* "splice": joining two ropes together by interweaving their strands.
*
* This is the "extended pipe" functionality, where a pipe is used as
* an arbitrary in-memory buffer. Think of a pipe as a small kernel
* buffer that you can use to transfer data from one end to the other.
*
* The traditional unix read/write is extended with a "splice()" operation
* that transfers data buffers to or from a pipe buffer.
*
* Named by Larry McVoy, original implementation from Linus, extended by
* Jens to support splicing to files, network, direct splicing, etc and
* fixing lots of bugs.
*
* Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
* Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
* Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
*
*/
#include <linux/bvec.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/pagemap.h>
#include <linux/splice.h>
#include <linux/memcontrol.h>
#include <linux/mm_inline.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/export.h>
#include <linux/syscalls.h>
#include <linux/uio.h>
#include <linux/fsnotify.h>
#include <linux/security.h>
#include <linux/gfp.h>
#include <linux/net.h>
#include <linux/socket.h>
#include <linux/sched/signal.h>
#include "internal.h"
/*
* Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to
* indicate they support non-blocking reads or writes, we must clear it
* here if set to avoid blocking other users of this pipe if splice is
* being done on it.
*/
static noinline void noinline pipe_clear_nowait(struct file *file)
{
fmode_t fmode = READ_ONCE(file->f_mode);
do {
if (!(fmode & FMODE_NOWAIT))
break;
} while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT));
}
/*
* Attempt to steal a page from a pipe buffer. This should perhaps go into
* a vm helper function, it's already simplified quite a bit by the
* addition of remove_mapping(). If success is returned, the caller may
* attempt to reuse this page for another destination.
*/
static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
struct pipe_buffer *buf)
{
struct folio *folio = page_folio(buf->page);
struct address_space *mapping;
folio_lock(folio);
mapping = folio_mapping(folio);
if (mapping) {
WARN_ON(!folio_test_uptodate(folio));
/*
* At least for ext2 with nobh option, we need to wait on
* writeback completing on this folio, since we'll remove it
* from the pagecache. Otherwise truncate wont wait on the
* folio, allowing the disk blocks to be reused by someone else
* before we actually wrote our data to them. fs corruption
* ensues.
*/
folio_wait_writeback(folio);
if (!filemap_release_folio(folio, GFP_KERNEL))
goto out_unlock;
/*
* If we succeeded in removing the mapping, set LRU flag
* and return good.
*/
if (remove_mapping(mapping, folio)) {
buf->flags |= PIPE_BUF_FLAG_LRU;
return true;
}
}
/*
* Raced with truncate or failed to remove folio from current
* address space, unlock and return failure.
*/
out_unlock:
folio_unlock(folio);
return false;
}
static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
struct pipe_buffer *buf)
{
put_page(buf->page);
buf->flags &= ~PIPE_BUF_FLAG_LRU;
}
/*
* Check whether the contents of buf is OK to access. Since the content
* is a page cache page, IO may be in flight.
*/
static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
struct pipe_buffer *buf)
{
struct folio *folio = page_folio(buf->page);
int err;
if (!folio_test_uptodate(folio)) {
folio_lock(folio);
/*
* Folio got truncated/unhashed. This will cause a 0-byte
* splice, if this is the first page.
*/
if (!folio->mapping) {
err = -ENODATA;
goto error;
}
/*
* Uh oh, read-error from disk.
*/
if (!folio_test_uptodate(folio)) {
err = -EIO;
goto error;
}
/* Folio is ok after all, we are done */
folio_unlock(folio);
}
return 0;
error:
folio_unlock(folio);
return err;
}
const struct pipe_buf_operations page_cache_pipe_buf_ops = {
.confirm = page_cache_pipe_buf_confirm,
.release = page_cache_pipe_buf_release,
.try_steal = page_cache_pipe_buf_try_steal,
.get = generic_pipe_buf_get,
};
static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
struct pipe_buffer *buf)
{
if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
return false;
buf->flags |= PIPE_BUF_FLAG_LRU;
return generic_pipe_buf_try_steal(pipe, buf);
}
static const struct pipe_buf_operations user_page_pipe_buf_ops = {
.release = page_cache_pipe_buf_release,
.try_steal = user_page_pipe_buf_try_steal,
.get = generic_pipe_buf_get,
};
static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
{
smp_mb();
if (waitqueue_active(&pipe->rd_wait))
wake_up_interruptible(&pipe->rd_wait);
kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
}
/**
* splice_to_pipe - fill passed data into a pipe
* @pipe: pipe to fill
* @spd: data to fill
*
* Description:
* @spd contains a map of pages and len/offset tuples, along with
* the struct pipe_buf_operations associated with these pages. This
* function will link that data to the pipe.
*
*/
ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
struct splice_pipe_desc *spd)
{
unsigned int spd_pages = spd->nr_pages;
unsigned int tail = pipe->tail;
unsigned int head = pipe->head;
unsigned int mask = pipe->ring_size - 1;
ssize_t ret = 0;
int page_nr = 0;
if (!spd_pages)
return 0;
if (unlikely(!pipe->readers)) {
send_sig(SIGPIPE, current, 0);
ret = -EPIPE;
goto out;
}
while (!pipe_full(head, tail, pipe->max_usage)) {
struct pipe_buffer *buf = &pipe->bufs[head & mask];
buf->page = spd->pages[page_nr];
buf->offset = spd->partial[page_nr].offset;
buf->len = spd->partial[page_nr].len;
buf->private = spd->partial[page_nr].private;
buf->ops = spd->ops;
buf->flags = 0;
head++;
pipe->head = head;
page_nr++;
ret += buf->len;
if (!--spd->nr_pages)
break;
}
if (!ret)
ret = -EAGAIN;
out:
while (page_nr < spd_pages)
spd->spd_release(spd, page_nr++);
return ret;
}
EXPORT_SYMBOL_GPL(splice_to_pipe);
ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
{
unsigned int head = pipe->head;
unsigned int tail = pipe->tail;
unsigned int mask = pipe->ring_size - 1;
int ret;
if (unlikely(!pipe->readers)) {
send_sig(SIGPIPE, current, 0);
ret = -EPIPE;
} else if (pipe_full(head, tail, pipe->max_usage)) {
ret = -EAGAIN;
} else {
pipe->bufs[head & mask] = *buf;
pipe->head = head + 1;
return buf->len;
}
pipe_buf_release(pipe, buf);
return ret;
}
EXPORT_SYMBOL(add_to_pipe);
/*
* Check if we need to grow the arrays holding pages and partial page
* descriptions.
*/
int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
{
unsigned int max_usage = READ_ONCE(pipe->max_usage);
spd->nr_pages_max = max_usage;
if (max_usage <= PIPE_DEF_BUFFERS)
return 0;
spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
GFP_KERNEL);
if (spd->pages && spd->partial)
return 0;
kfree(spd->pages);
kfree(spd->partial);
return -ENOMEM;
}
void splice_shrink_spd(struct splice_pipe_desc *spd)
{
if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
return;
kfree(spd->pages);
kfree(spd->partial);
}
/**
* copy_splice_read - Copy data from a file and splice the copy into a pipe
* @in: The file to read from
* @ppos: Pointer to the file position to read from
* @pipe: The pipe to splice into
* @len: The amount to splice
* @flags: The SPLICE_F_* flags
*
* This function allocates a bunch of pages sufficient to hold the requested
* amount of data (but limited by the remaining pipe capacity), passes it to
* the file's ->read_iter() to read into and then splices the used pages into
* the pipe.
*
* Return: On success, the number of bytes read will be returned and *@ppos
* will be updated if appropriate; 0 will be returned if there is no more data
* to be read; -EAGAIN will be returned if the pipe had no space, and some
* other negative error code will be returned on error. A short read may occur
* if the pipe has insufficient space, we reach the end of the data or we hit a
* hole.
*/
ssize_t copy_splice_read(struct file *in, loff_t *ppos,
struct pipe_inode_info *pipe,
size_t len, unsigned int flags)
{
struct iov_iter to;
struct bio_vec *bv;
struct kiocb kiocb;
struct page **pages;
ssize_t ret;
size_t used, npages, chunk, remain, keep = 0;
int i;
/* Work out how much data we can actually add into the pipe */
used = pipe_occupancy(pipe->head, pipe->tail);
npages = max_t(ssize_t, pipe->max_usage - used, 0);
len = min_t(size_t, len, npages * PAGE_SIZE);
npages = DIV_ROUND_UP(len, PAGE_SIZE);
bv = kzalloc(array_size(npages, sizeof(bv[0])) +
array_size(npages, sizeof(struct page *)), GFP_KERNEL);
if (!bv)
return -ENOMEM;
pages = (struct page **)(bv + npages);
npages = alloc_pages_bulk_array(GFP_USER, npages, pages);
if (!npages) {
kfree(bv);
return -ENOMEM;
}
remain = len = min_t(size_t, len, npages * PAGE_SIZE);
for (i = 0; i < npages; i++) {
chunk = min_t(size_t, PAGE_SIZE, remain);
bv[i].bv_page = pages[i];
bv[i].bv_offset = 0;
bv[i].bv_len = chunk;
remain -= chunk;
}
/* Do the I/O */
iov_iter_bvec(&to, ITER_DEST, bv, npages, len);
init_sync_kiocb(&kiocb, in);
kiocb.ki_pos = *ppos;
ret = call_read_iter(in, &kiocb, &to);
if (ret > 0) {
keep = DIV_ROUND_UP(ret, PAGE_SIZE);
*ppos = kiocb.ki_pos;
}
/*
* Callers of ->splice_read() expect -EAGAIN on "can't put anything in
* there", rather than -EFAULT.
*/
if (ret == -EFAULT)
ret = -EAGAIN;
/* Free any pages that didn't get touched at all. */
if (keep < npages)
release_pages(pages + keep, npages - keep);
/* Push the remaining pages into the pipe. */
remain = ret;
for (i = 0; i < keep; i++) {
struct pipe_buffer *buf = pipe_head_buf(pipe);
chunk = min_t(size_t, remain, PAGE_SIZE);
*buf = (struct pipe_buffer) {
.ops = &default_pipe_buf_ops,
.page = bv[i].bv_page,
.offset = 0,
.len = chunk,
};
pipe->head++;
remain -= chunk;
}
kfree(bv);
return ret;
}
EXPORT_SYMBOL(copy_splice_read);
const struct pipe_buf_operations default_pipe_buf_ops = {
.release = generic_pipe_buf_release,
.try_steal = generic_pipe_buf_try_steal,
.get = generic_pipe_buf_get,
};
/* Pipe buffer operations for a socket and similar. */
const struct pipe_buf_operations nosteal_pipe_buf_ops = {
.release = generic_pipe_buf_release,
.get = generic_pipe_buf_get,
};
EXPORT_SYMBOL(nosteal_pipe_buf_ops);
static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
{
smp_mb();
if (waitqueue_active(&pipe->wr_wait))
wake_up_interruptible(&pipe->wr_wait);
kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
}
/**
* splice_from_pipe_feed - feed available data from a pipe to a file
* @pipe: pipe to splice from
* @sd: information to @actor
* @actor: handler that splices the data
*
* Description:
* This function loops over the pipe and calls @actor to do the
* actual moving of a single struct pipe_buffer to the desired
* destination. It returns when there's no more buffers left in
* the pipe or if the requested number of bytes (@sd->total_len)
* have been copied. It returns a positive number (one) if the
* pipe needs to be filled with more data, zero if the required
* number of bytes have been copied and -errno on error.
*
* This, together with splice_from_pipe_{begin,end,next}, may be
* used to implement the functionality of __splice_from_pipe() when
* locking is required around copying the pipe buffers to the
* destination.
*/
static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
splice_actor *actor)
{
unsigned int head = pipe->head;
unsigned int tail = pipe->tail;
unsigned int mask = pipe->ring_size - 1;
int ret;
while (!pipe_empty(head, tail)) {
struct pipe_buffer *buf = &pipe->bufs[tail & mask];
sd->len = buf->len;
if (sd->len > sd->total_len)
sd->len = sd->total_len;
ret = pipe_buf_confirm(pipe, buf);
if (unlikely(ret)) {
if (ret == -ENODATA)
ret = 0;
return ret;
}
ret = actor(pipe, buf, sd);
if (ret <= 0)
return ret;
buf->offset += ret;
buf->len -= ret;
sd->num_spliced += ret;
sd->len -= ret;
sd->pos += ret;
sd->total_len -= ret;
if (!buf->len) {
pipe_buf_release(pipe, buf);
tail++;
pipe->tail = tail;
if (pipe->files)
sd->need_wakeup = true;
}
if (!sd->total_len)
return 0;
}
return 1;
}
/* We know we have a pipe buffer, but maybe it's empty? */
static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
{
unsigned int tail = pipe->tail;
unsigned int mask = pipe->ring_size - 1;
struct pipe_buffer *buf = &pipe->bufs[tail & mask];
if (unlikely(!buf->len)) {
pipe_buf_release(pipe, buf);
pipe->tail = tail+1;
return true;
}
return false;
}
/**
* splice_from_pipe_next - wait for some data to splice from
* @pipe: pipe to splice from
* @sd: information about the splice operation
*
* Description:
* This function will wait for some data and return a positive
* value (one) if pipe buffers are available. It will return zero
* or -errno if no more data needs to be spliced.
*/
static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
{
/*
* Check for signal early to make process killable when there are
* always buffers available
*/
if (signal_pending(current))
return -ERESTARTSYS;
repeat:
while (pipe_empty(pipe->head, pipe->tail)) {
if (!pipe->writers)
return 0;
if (sd->num_spliced)
return 0;
if (sd->flags & SPLICE_F_NONBLOCK)
return -EAGAIN;
if (signal_pending(current))
return -ERESTARTSYS;
if (sd->need_wakeup) {
wakeup_pipe_writers(pipe);
sd->need_wakeup = false;
}
pipe_wait_readable(pipe);
}
if (eat_empty_buffer(pipe))
goto repeat;
return 1;
}
/**
* splice_from_pipe_begin - start splicing from pipe
* @sd: information about the splice operation
*
* Description:
* This function should be called before a loop containing
* splice_from_pipe_next() and splice_from_pipe_feed() to
* initialize the necessary fields of @sd.
*/
static void splice_from_pipe_begin(struct splice_desc *sd)
{
sd->num_spliced = 0;
sd->need_wakeup = false;
}
/**
* splice_from_pipe_end - finish splicing from pipe
* @pipe: pipe to splice from
* @sd: information about the splice operation
*
* Description:
* This function will wake up pipe writers if necessary. It should
* be called after a loop containing splice_from_pipe_next() and
* splice_from_pipe_feed().
*/
static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
{
if (sd->need_wakeup)
wakeup_pipe_writers(pipe);
}
/**
* __splice_from_pipe - splice data from a pipe to given actor
* @pipe: pipe to splice from
* @sd: information to @actor
* @actor: handler that splices the data
*
* Description:
* This function does little more than loop over the pipe and call
* @actor to do the actual moving of a single struct pipe_buffer to
* the desired destination. See pipe_to_file, pipe_to_sendmsg, or
* pipe_to_user.
*
*/
ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
splice_actor *actor)
{
int ret;
splice_from_pipe_begin(sd);
do {
cond_resched();
ret = splice_from_pipe_next(pipe, sd);
if (ret > 0)
ret = splice_from_pipe_feed(pipe, sd, actor);
} while (ret > 0);
splice_from_pipe_end(pipe, sd);
return sd->num_spliced ? sd->num_spliced : ret;
}
EXPORT_SYMBOL(__splice_from_pipe);
/**
* splice_from_pipe - splice data from a pipe to a file
* @pipe: pipe to splice from
* @out: file to splice to
* @ppos: position in @out
* @len: how many bytes to splice
* @flags: splice modifier flags
* @actor: handler that splices the data
*
* Description:
* See __splice_from_pipe. This function locks the pipe inode,
* otherwise it's identical to __splice_from_pipe().
*
*/
ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
loff_t *ppos, size_t len, unsigned int flags,
splice_actor *actor)
{
ssize_t ret;
struct splice_desc sd = {
.total_len = len,
.flags = flags,
.pos = *ppos,
.u.file = out,
};
pipe_lock(pipe);
ret = __splice_from_pipe(pipe, &sd, actor);
pipe_unlock(pipe);
return ret;
}
/**
* iter_file_splice_write - splice data from a pipe to a file
* @pipe: pipe info
* @out: file to write to
* @ppos: position in @out
* @len: number of bytes to splice
* @flags: splice modifier flags
*
* Description:
* Will either move or copy pages (determined by @flags options) from
* the given pipe inode to the given file.
* This one is ->write_iter-based.
*
*/
ssize_t
iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
loff_t *ppos, size_t len, unsigned int flags)
{
struct splice_desc sd = {
.total_len = len,
.flags = flags,
.pos = *ppos,
.u.file = out,
};
int nbufs = pipe->max_usage;
struct bio_vec *array;
ssize_t ret;
if (!out->f_op->write_iter)
return -EINVAL;
array = kcalloc(nbufs, sizeof(struct bio_vec), GFP_KERNEL);
if (unlikely(!array))
return -ENOMEM;
pipe_lock(pipe);
splice_from_pipe_begin(&sd);
while (sd.total_len) {
struct kiocb kiocb;
struct iov_iter from;
unsigned int head, tail, mask;
size_t left;
int n;
ret = splice_from_pipe_next(pipe, &sd);
if (ret <= 0)
break;
if (unlikely(nbufs < pipe->max_usage)) {
kfree(array);
nbufs = pipe->max_usage;
array = kcalloc(nbufs, sizeof(struct bio_vec),
GFP_KERNEL);
if (!array) {
ret = -ENOMEM;
break;
}
}
head = pipe->head;
tail = pipe->tail;
mask = pipe->ring_size - 1;
/* build the vector */
left = sd.total_len;
for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
struct pipe_buffer *buf = &pipe->bufs[tail & mask];
size_t this_len = buf->len;
/* zero-length bvecs are not supported, skip them */
if (!this_len)
continue;
this_len = min(this_len, left);
ret = pipe_buf_confirm(pipe, buf);
if (unlikely(ret)) {
if (ret == -ENODATA)
ret = 0;
goto done;
}
bvec_set_page(&array[n], buf->page, this_len,
buf->offset);
left -= this_len;
n++;
}
iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left);
init_sync_kiocb(&kiocb, out);
kiocb.ki_pos = sd.pos;
ret = call_write_iter(out, &kiocb, &from);
sd.pos = kiocb.ki_pos;
if (ret <= 0)
break;
sd.num_spliced += ret;
sd.total_len -= ret;
*ppos = sd.pos;
/* dismiss the fully eaten buffers, adjust the partial one */
tail = pipe->tail;
while (ret) {
struct pipe_buffer *buf = &pipe->bufs[tail & mask];
if (ret >= buf->len) {
ret -= buf->len;
buf->len = 0;
pipe_buf_release(pipe, buf);
tail++;
pipe->tail = tail;
if (pipe->files)
sd.need_wakeup = true;
} else {
buf->offset += ret;
buf->len -= ret;
ret = 0;
}
}
}
done:
kfree(array);
splice_from_pipe_end(pipe, &sd);
pipe_unlock(pipe);
if (sd.num_spliced)
ret = sd.num_spliced;
return ret;
}
EXPORT_SYMBOL(iter_file_splice_write);
#ifdef CONFIG_NET
/**
* splice_to_socket - splice data from a pipe to a socket
* @pipe: pipe to splice from
* @out: socket to write to
* @ppos: position in @out
* @len: number of bytes to splice
* @flags: splice modifier flags
*
* Description:
* Will send @len bytes from the pipe to a network socket. No data copying
* is involved.
*
*/
ssize_t splice_to_socket(struct pipe_inode_info *pipe, struct file *out,
loff_t *ppos, size_t len, unsigned int flags)
{
struct socket *sock = sock_from_file(out);
struct bio_vec bvec[16];
struct msghdr msg = {};
ssize_t ret = 0;
size_t spliced = 0;
bool need_wakeup = false;
pipe_lock(pipe);
while (len > 0) {
unsigned int head, tail, mask, bc = 0;
size_t remain = len;
/*
* Check for signal early to make process killable when there
* are always buffers available
*/
ret = -ERESTARTSYS;
if (signal_pending(current))
break;
while (pipe_empty(pipe->head, pipe->tail)) {
ret = 0;
if (!pipe->writers)
goto out;
if (spliced)
goto out;
ret = -EAGAIN;
if (flags & SPLICE_F_NONBLOCK)
goto out;
ret = -ERESTARTSYS;
if (signal_pending(current))
goto out;
if (need_wakeup) {
wakeup_pipe_writers(pipe);
need_wakeup = false;
}
pipe_wait_readable(pipe);
}
head = pipe->head;
tail = pipe->tail;
mask = pipe->ring_size - 1;
while (!pipe_empty(head, tail)) {
struct pipe_buffer *buf = &pipe->bufs[tail & mask];
size_t seg;
if (!buf->len) {
tail++;
continue;
}
seg = min_t(size_t, remain, buf->len);
ret = pipe_buf_confirm(pipe, buf);
if (unlikely(ret)) {
if (ret == -ENODATA)
ret = 0;
break;
}
bvec_set_page(&bvec[bc++], buf->page, seg, buf->offset);
remain -= seg;
if (remain == 0 || bc >= ARRAY_SIZE(bvec))
break;
tail++;
}
if (!bc)
break;
msg.msg_flags = MSG_SPLICE_PAGES;
if (flags & SPLICE_F_MORE)
msg.msg_flags |= MSG_MORE;
if (remain && pipe_occupancy(pipe->head, tail) > 0)
msg.msg_flags |= MSG_MORE;
if (out->f_flags & O_NONBLOCK)
msg.msg_flags |= MSG_DONTWAIT;
iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, bvec, bc,
len - remain);
ret = sock_sendmsg(sock, &msg);
if (ret <= 0)
break;
spliced += ret;
len -= ret;
tail = pipe->tail;
while (ret > 0) {
struct pipe_buffer *buf = &pipe->bufs[tail & mask];
size_t seg = min_t(size_t, ret, buf->len);
buf->offset += seg;
buf->len -= seg;
ret -= seg;
if (!buf->len) {
pipe_buf_release(pipe, buf);
tail++;
}
}
if (tail != pipe->tail) {
pipe->tail = tail;
if (pipe->files)
need_wakeup = true;
}
}
out:
pipe_unlock(pipe);
if (need_wakeup)
wakeup_pipe_writers(pipe);
return spliced ?: ret;
}
#endif
static int warn_unsupported(struct file *file, const char *op)
{
pr_debug_ratelimited(
"splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
op, file, current->pid, current->comm);
return -EINVAL;
}
/*
* Attempt to initiate a splice from pipe to file.
*/
static ssize_t do_splice_from(struct pipe_inode_info *pipe, struct file *out,
loff_t *ppos, size_t len, unsigned int flags)
{
if (unlikely(!out->f_op->splice_write))
return warn_unsupported(out, "write");
return out->f_op->splice_write(pipe, out, ppos, len, flags);
}
/*
* Indicate to the caller that there was a premature EOF when reading from the
* source and the caller didn't indicate they would be sending more data after
* this.
*/
static void do_splice_eof(struct splice_desc *sd)
{
if (sd->splice_eof)
sd->splice_eof(sd);
}
/*
* Callers already called rw_verify_area() on the entire range.
* No need to call it for sub ranges.
*/
static ssize_t do_splice_read(struct file *in, loff_t *ppos,
struct pipe_inode_info *pipe, size_t len,
unsigned int flags)
{
unsigned int p_space;
if (unlikely(!(in->f_mode & FMODE_READ)))
return -EBADF;
if (!len)
return 0;
/* Don't try to read more the pipe has space for. */
p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail);
len = min_t(size_t, len, p_space << PAGE_SHIFT);
if (unlikely(len > MAX_RW_COUNT))
len = MAX_RW_COUNT;
if (unlikely(!in->f_op->splice_read))
return warn_unsupported(in, "read");
/*
* O_DIRECT and DAX don't deal with the pagecache, so we allocate a
* buffer, copy into it and splice that into the pipe.
*/
if ((in->f_flags & O_DIRECT) || IS_DAX(in->f_mapping->host))
return copy_splice_read(in, ppos, pipe, len, flags);
return in->f_op->splice_read(in, ppos, pipe, len, flags);
}
/**
* vfs_splice_read - Read data from a file and splice it into a pipe
* @in: File to splice from
* @ppos: Input file offset
* @pipe: Pipe to splice to
* @len: Number of bytes to splice
* @flags: Splice modifier flags (SPLICE_F_*)
*
* Splice the requested amount of data from the input file to the pipe. This
* is synchronous as the caller must hold the pipe lock across the entire
* operation.
*
* If successful, it returns the amount of data spliced, 0 if it hit the EOF or
* a hole and a negative error code otherwise.
*/
ssize_t vfs_splice_read(struct file *in, loff_t *ppos,
struct pipe_inode_info *pipe, size_t len,
unsigned int flags)
{
ssize_t ret;
ret = rw_verify_area(READ, in, ppos, len);
if (unlikely(ret < 0))
return ret;
return do_splice_read(in, ppos, pipe, len, flags);
}
EXPORT_SYMBOL_GPL(vfs_splice_read);
/**
* splice_direct_to_actor - splices data directly between two non-pipes
* @in: file to splice from
* @sd: actor information on where to splice to
* @actor: handles the data splicing
*
* Description:
* This is a special case helper to splice directly between two
* points, without requiring an explicit pipe. Internally an allocated
* pipe is cached in the process, and reused during the lifetime of
* that process.
*
*/
ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
splice_direct_actor *actor)
{
struct pipe_inode_info *pipe;
ssize_t ret, bytes;
size_t len;
int i, flags, more;
/*
* We require the input to be seekable, as we don't want to randomly
* drop data for eg socket -> socket splicing. Use the piped splicing
* for that!
*/
if (unlikely(!(in->f_mode & FMODE_LSEEK)))
return -EINVAL;
/*
* neither in nor out is a pipe, setup an internal pipe attached to
* 'out' and transfer the wanted data from 'in' to 'out' through that
*/
pipe = current->splice_pipe;
if (unlikely(!pipe)) {
pipe = alloc_pipe_info();
if (!pipe)
return -ENOMEM;
/*
* We don't have an immediate reader, but we'll read the stuff
* out of the pipe right after the splice_to_pipe(). So set
* PIPE_READERS appropriately.
*/
pipe->readers = 1;
current->splice_pipe = pipe;
}
/*
* Do the splice.
*/
bytes = 0;
len = sd->total_len;
/* Don't block on output, we have to drain the direct pipe. */
flags = sd->flags;
sd->flags &= ~SPLICE_F_NONBLOCK;
/*
* We signal MORE until we've read sufficient data to fulfill the
* request and we keep signalling it if the caller set it.
*/
more = sd->flags & SPLICE_F_MORE;
sd->flags |= SPLICE_F_MORE;
WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
while (len) {
size_t read_len;
loff_t pos = sd->pos, prev_pos = pos;
ret = do_splice_read(in, &pos, pipe, len, flags);
if (unlikely(ret <= 0))
goto read_failure;
read_len = ret;
sd->total_len = read_len;
/*
* If we now have sufficient data to fulfill the request then
* we clear SPLICE_F_MORE if it was not set initially.
*/
if (read_len >= len && !more)
sd->flags &= ~SPLICE_F_MORE;
/*
* NOTE: nonblocking mode only applies to the input. We
* must not do the output in nonblocking mode as then we
* could get stuck data in the internal pipe:
*/
ret = actor(pipe, sd);
if (unlikely(ret <= 0)) {
sd->pos = prev_pos;
goto out_release;
}
bytes += ret;
len -= ret;
sd->pos = pos;
if (ret < read_len) {
sd->pos = prev_pos + ret;
goto out_release;
}
}
done:
pipe->tail = pipe->head = 0;
file_accessed(in);
return bytes;
read_failure:
/*
* If the user did *not* set SPLICE_F_MORE *and* we didn't hit that
* "use all of len" case that cleared SPLICE_F_MORE, *and* we did a
* "->splice_in()" that returned EOF (ie zero) *and* we have sent at
* least 1 byte *then* we will also do the ->splice_eof() call.
*/
if (ret == 0 && !more && len > 0 && bytes)
do_splice_eof(sd);
out_release:
/*
* If we did an incomplete transfer we must release
* the pipe buffers in question:
*/
for (i = 0; i < pipe->ring_size; i++) {
struct pipe_buffer *buf = &pipe->bufs[i];
if (buf->ops)
pipe_buf_release(pipe, buf);
}
if (!bytes)
bytes = ret;
goto done;
}
EXPORT_SYMBOL(splice_direct_to_actor);
static int direct_splice_actor(struct pipe_inode_info *pipe,
struct splice_desc *sd)
{
struct file *file = sd->u.file;
long ret;
file_start_write(file);
ret = do_splice_from(pipe, file, sd->opos, sd->total_len, sd->flags);
file_end_write(file);
return ret;
}
static int splice_file_range_actor(struct pipe_inode_info *pipe,
struct splice_desc *sd)
{
struct file *file = sd->u.file;
return do_splice_from(pipe, file, sd->opos, sd->total_len, sd->flags);
}
static void direct_file_splice_eof(struct splice_desc *sd)
{
struct file *file = sd->u.file;
if (file->f_op->splice_eof)
file->f_op->splice_eof(file);
}
static ssize_t do_splice_direct_actor(struct file *in, loff_t *ppos,
struct file *out, loff_t *opos,
size_t len, unsigned int flags,
splice_direct_actor *actor)
{
struct splice_desc sd = {
.len = len,
.total_len = len,
.flags = flags,
.pos = *ppos,
.u.file = out,
.splice_eof = direct_file_splice_eof,
.opos = opos,
};
ssize_t ret;
if (unlikely(!(out->f_mode & FMODE_WRITE)))
return -EBADF;
if (unlikely(out->f_flags & O_APPEND))
return -EINVAL;
ret = splice_direct_to_actor(in, &sd, actor);
if (ret > 0)
*ppos = sd.pos;
return ret;
}
/**
* do_splice_direct - splices data directly between two files
* @in: file to splice from
* @ppos: input file offset
* @out: file to splice to
* @opos: output file offset
* @len: number of bytes to splice
* @flags: splice modifier flags
*
* Description:
* For use by do_sendfile(). splice can easily emulate sendfile, but
* doing it in the application would incur an extra system call
* (splice in + splice out, as compared to just sendfile()). So this helper
* can splice directly through a process-private pipe.
*
* Callers already called rw_verify_area() on the entire range.
*/
ssize_t do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
loff_t *opos, size_t len, unsigned int flags)
{
return do_splice_direct_actor(in, ppos, out, opos, len, flags,
direct_splice_actor);
}
EXPORT_SYMBOL(do_splice_direct);
/**
* splice_file_range - splices data between two files for copy_file_range()
* @in: file to splice from
* @ppos: input file offset
* @out: file to splice to
* @opos: output file offset
* @len: number of bytes to splice
*
* Description:
* For use by ->copy_file_range() methods.
* Like do_splice_direct(), but vfs_copy_file_range() already holds
* start_file_write() on @out file.
*
* Callers already called rw_verify_area() on the entire range.
*/
ssize_t splice_file_range(struct file *in, loff_t *ppos, struct file *out,
loff_t *opos, size_t len)
{
lockdep_assert(file_write_started(out));
return do_splice_direct_actor(in, ppos, out, opos,
min_t(size_t, len, MAX_RW_COUNT),
0, splice_file_range_actor);
}
EXPORT_SYMBOL(splice_file_range);
static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
{
for (;;) {
if (unlikely(!pipe->readers)) {
send_sig(SIGPIPE, current, 0);
return -EPIPE;
}
if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
return 0;
if (flags & SPLICE_F_NONBLOCK)
return -EAGAIN;
if (signal_pending(current))
return -ERESTARTSYS;
pipe_wait_writable(pipe);
}
}
static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
struct pipe_inode_info *opipe,
size_t len, unsigned int flags);
ssize_t splice_file_to_pipe(struct file *in,
struct pipe_inode_info *opipe,
loff_t *offset,
size_t len, unsigned int flags)
{
ssize_t ret;
pipe_lock(opipe);
ret = wait_for_space(opipe, flags);
if (!ret)
ret = do_splice_read(in, offset, opipe, len, flags);
pipe_unlock(opipe);
if (ret > 0)
wakeup_pipe_readers(opipe);
return ret;
}
/*
* Determine where to splice to/from.
*/
ssize_t do_splice(struct file *in, loff_t *off_in, struct file *out,
loff_t *off_out, size_t len, unsigned int flags)
{
struct pipe_inode_info *ipipe;
struct pipe_inode_info *opipe;
loff_t offset;
ssize_t ret;
if (unlikely(!(in->f_mode & FMODE_READ) ||
!(out->f_mode & FMODE_WRITE)))
return -EBADF;
ipipe = get_pipe_info(in, true);
opipe = get_pipe_info(out, true);
if (ipipe && opipe) {
if (off_in || off_out)
return -ESPIPE;
/* Splicing to self would be fun, but... */
if (ipipe == opipe)
return -EINVAL;
if ((in->f_flags | out->f_flags) & O_NONBLOCK)
flags |= SPLICE_F_NONBLOCK;
ret = splice_pipe_to_pipe(ipipe, opipe, len, flags);
} else if (ipipe) {
if (off_in)
return -ESPIPE;
if (off_out) {
if (!(out->f_mode & FMODE_PWRITE))
return -EINVAL;
offset = *off_out;
} else {
offset = out->f_pos;
}
if (unlikely(out->f_flags & O_APPEND))
return -EINVAL;
ret = rw_verify_area(WRITE, out, &offset, len);
if (unlikely(ret < 0))
return ret;
if (in->f_flags & O_NONBLOCK)
flags |= SPLICE_F_NONBLOCK;
file_start_write(out);
ret = do_splice_from(ipipe, out, &offset, len, flags);
file_end_write(out);
if (!off_out)
out->f_pos = offset;
else
*off_out = offset;
} else if (opipe) {
if (off_out)
return -ESPIPE;
if (off_in) {
if (!(in->f_mode & FMODE_PREAD))
return -EINVAL;
offset = *off_in;
} else {
offset = in->f_pos;
}
ret = rw_verify_area(READ, in, &offset, len);
if (unlikely(ret < 0))
return ret;
if (out->f_flags & O_NONBLOCK)
flags |= SPLICE_F_NONBLOCK;
ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
if (!off_in)
in->f_pos = offset;
else
*off_in = offset;
} else {
ret = -EINVAL;
}
if (ret > 0) {
/*
* Generate modify out before access in:
* do_splice_from() may've already sent modify out,
* and this ensures the events get merged.
*/
fsnotify_modify(out);
fsnotify_access(in);
}
return ret;
}
static ssize_t __do_splice(struct file *in, loff_t __user *off_in,
struct file *out, loff_t __user *off_out,
size_t len, unsigned int flags)
{
struct pipe_inode_info *ipipe;
struct pipe_inode_info *opipe;
loff_t offset, *__off_in = NULL, *__off_out = NULL;
ssize_t ret;
ipipe = get_pipe_info(in, true);
opipe = get_pipe_info(out, true);
if (ipipe) {
if (off_in)
return -ESPIPE;
pipe_clear_nowait(in);
}
if (opipe) {
if (off_out)
return -ESPIPE;
pipe_clear_nowait(out);
}
if (off_out) {
if (copy_from_user(&offset, off_out, sizeof(loff_t)))
return -EFAULT;
__off_out = &offset;
}
if (off_in) {
if (copy_from_user(&offset, off_in, sizeof(loff_t)))
return -EFAULT;
__off_in = &offset;
}
ret = do_splice(in, __off_in, out, __off_out, len, flags);
if (ret < 0)
return ret;
if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
return -EFAULT;
if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
return -EFAULT;
return ret;
}
static ssize_t iter_to_pipe(struct iov_iter *from,
struct pipe_inode_info *pipe,
unsigned int flags)
{
struct pipe_buffer buf = {
.ops = &user_page_pipe_buf_ops,
.flags = flags
};
size_t total = 0;
ssize_t ret = 0;
while (iov_iter_count(from)) {
struct page *pages[16];
ssize_t left;
size_t start;
int i, n;
left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start);
if (left <= 0) {
ret = left;
break;
}
n = DIV_ROUND_UP(left + start, PAGE_SIZE);
for (i = 0; i < n; i++) {
int size = min_t(int, left, PAGE_SIZE - start);
buf.page = pages[i];
buf.offset = start;
buf.len = size;
ret = add_to_pipe(pipe, &buf);
if (unlikely(ret < 0)) {
iov_iter_revert(from, left);
// this one got dropped by add_to_pipe()
while (++i < n)
put_page(pages[i]);
goto out;
}
total += ret;
left -= size;
start = 0;
}
}
out:
return total ? total : ret;
}
static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
struct splice_desc *sd)
{
int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
return n == sd->len ? n : -EFAULT;
}
/*
* For lack of a better implementation, implement vmsplice() to userspace
* as a simple copy of the pipes pages to the user iov.
*/
static ssize_t vmsplice_to_user(struct file *file, struct iov_iter *iter,
unsigned int flags)
{
struct pipe_inode_info *pipe = get_pipe_info(file, true);
struct splice_desc sd = {
.total_len = iov_iter_count(iter),
.flags = flags,
.u.data = iter
};
ssize_t ret = 0;
if (!pipe)
return -EBADF;
pipe_clear_nowait(file);
if (sd.total_len) {
pipe_lock(pipe);
ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
pipe_unlock(pipe);
}
if (ret > 0)
fsnotify_access(file);
return ret;
}
/*
* vmsplice splices a user address range into a pipe. It can be thought of
* as splice-from-memory, where the regular splice is splice-from-file (or
* to file). In both cases the output is a pipe, naturally.
*/
static ssize_t vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
unsigned int flags)
{
struct pipe_inode_info *pipe;
ssize_t ret = 0;
unsigned buf_flag = 0;
if (flags & SPLICE_F_GIFT)
buf_flag = PIPE_BUF_FLAG_GIFT;
pipe = get_pipe_info(file, true);
if (!pipe)
return -EBADF;
pipe_clear_nowait(file);
pipe_lock(pipe);
ret = wait_for_space(pipe, flags);
if (!ret)
ret = iter_to_pipe(iter, pipe, buf_flag);
pipe_unlock(pipe);
if (ret > 0) {
wakeup_pipe_readers(pipe);
fsnotify_modify(file);
}
return ret;
}
static int vmsplice_type(struct fd f, int *type)
{
if (!f.file)
return -EBADF;
if (f.file->f_mode & FMODE_WRITE) {
*type = ITER_SOURCE;
} else if (f.file->f_mode & FMODE_READ) {
*type = ITER_DEST;
} else {
fdput(f);
return -EBADF;
}
return 0;
}
/*
* Note that vmsplice only really supports true splicing _from_ user memory
* to a pipe, not the other way around. Splicing from user memory is a simple
* operation that can be supported without any funky alignment restrictions
* or nasty vm tricks. We simply map in the user memory and fill them into
* a pipe. The reverse isn't quite as easy, though. There are two possible
* solutions for that:
*
* - memcpy() the data internally, at which point we might as well just
* do a regular read() on the buffer anyway.
* - Lots of nasty vm tricks, that are neither fast nor flexible (it
* has restriction limitations on both ends of the pipe).
*
* Currently we punt and implement it as a normal copy, see pipe_to_user().
*
*/
SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
unsigned long, nr_segs, unsigned int, flags)
{
struct iovec iovstack[UIO_FASTIOV];
struct iovec *iov = iovstack;
struct iov_iter iter;
ssize_t error;
struct fd f;
int type;
if (unlikely(flags & ~SPLICE_F_ALL))
return -EINVAL;
f = fdget(fd);
error = vmsplice_type(f, &type);
if (error)
return error;
error = import_iovec(type, uiov, nr_segs,
ARRAY_SIZE(iovstack), &iov, &iter);
if (error < 0)
goto out_fdput;
if (!iov_iter_count(&iter))
error = 0;
else if (type == ITER_SOURCE)
error = vmsplice_to_pipe(f.file, &iter, flags);
else
error = vmsplice_to_user(f.file, &iter, flags);
kfree(iov);
out_fdput:
fdput(f);
return error;
}
SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
int, fd_out, loff_t __user *, off_out,
size_t, len, unsigned int, flags)
{
struct fd in, out;
ssize_t error;
if (unlikely(!len))
return 0;
if (unlikely(flags & ~SPLICE_F_ALL))
return -EINVAL;
error = -EBADF;
in = fdget(fd_in);
if (in.file) {
out = fdget(fd_out);
if (out.file) {
error = __do_splice(in.file, off_in, out.file, off_out,
len, flags);
fdput(out);
}
fdput(in);
}
return error;
}
/*
* Make sure there's data to read. Wait for input if we can, otherwise
* return an appropriate error.
*/
static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
{
int ret;
/*
* Check the pipe occupancy without the inode lock first. This function
* is speculative anyways, so missing one is ok.
*/
if (!pipe_empty(pipe->head, pipe->tail))
return 0;
ret = 0;
pipe_lock(pipe);
while (pipe_empty(pipe->head, pipe->tail)) {
if (signal_pending(current)) {
ret = -ERESTARTSYS;
break;
}
if (!pipe->writers)
break;
if (flags & SPLICE_F_NONBLOCK) {
ret = -EAGAIN;
break;
}
pipe_wait_readable(pipe);
}
pipe_unlock(pipe);
return ret;
}
/*
* Make sure there's writeable room. Wait for room if we can, otherwise
* return an appropriate error.
*/
static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
{
int ret;
/*
* Check pipe occupancy without the inode lock first. This function
* is speculative anyways, so missing one is ok.
*/
if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
return 0;
ret = 0;
pipe_lock(pipe);
while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
if (!pipe->readers) {
send_sig(SIGPIPE, current, 0);
ret = -EPIPE;
break;
}
if (flags & SPLICE_F_NONBLOCK) {
ret = -EAGAIN;
break;
}
if (signal_pending(current)) {
ret = -ERESTARTSYS;
break;
}
pipe_wait_writable(pipe);
}
pipe_unlock(pipe);
return ret;
}
/*
* Splice contents of ipipe to opipe.
*/
static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
struct pipe_inode_info *opipe,
size_t len, unsigned int flags)
{
struct pipe_buffer *ibuf, *obuf;
unsigned int i_head, o_head;
unsigned int i_tail, o_tail;
unsigned int i_mask, o_mask;
int ret = 0;
bool input_wakeup = false;
retry:
ret = ipipe_prep(ipipe, flags);
if (ret)
return ret;
ret = opipe_prep(opipe, flags);
if (ret)
return ret;
/*
* Potential ABBA deadlock, work around it by ordering lock
* grabbing by pipe info address. Otherwise two different processes
* could deadlock (one doing tee from A -> B, the other from B -> A).
*/
pipe_double_lock(ipipe, opipe);
i_tail = ipipe->tail;
i_mask = ipipe->ring_size - 1;
o_head = opipe->head;
o_mask = opipe->ring_size - 1;
do {
size_t o_len;
if (!opipe->readers) {
send_sig(SIGPIPE, current, 0);
if (!ret)
ret = -EPIPE;
break;
}
i_head = ipipe->head;
o_tail = opipe->tail;
if (pipe_empty(i_head, i_tail) && !ipipe->writers)
break;
/*
* Cannot make any progress, because either the input
* pipe is empty or the output pipe is full.
*/
if (pipe_empty(i_head, i_tail) ||
pipe_full(o_head, o_tail, opipe->max_usage)) {
/* Already processed some buffers, break */
if (ret)
break;
if (flags & SPLICE_F_NONBLOCK) {
ret = -EAGAIN;
break;
}
/*
* We raced with another reader/writer and haven't
* managed to process any buffers. A zero return
* value means EOF, so retry instead.
*/
pipe_unlock(ipipe);
pipe_unlock(opipe);
goto retry;
}
ibuf = &ipipe->bufs[i_tail & i_mask];
obuf = &opipe->bufs[o_head & o_mask];
if (len >= ibuf->len) {
/*
* Simply move the whole buffer from ipipe to opipe
*/
*obuf = *ibuf;
ibuf->ops = NULL;
i_tail++;
ipipe->tail = i_tail;
input_wakeup = true;
o_len = obuf->len;
o_head++;
opipe->head = o_head;
} else {
/*
* Get a reference to this pipe buffer,
* so we can copy the contents over.
*/
if (!pipe_buf_get(ipipe, ibuf)) {
if (ret == 0)
ret = -EFAULT;
break;
}
*obuf = *ibuf;
/*
* Don't inherit the gift and merge flags, we need to
* prevent multiple steals of this page.
*/
obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
obuf->len = len;
ibuf->offset += len;
ibuf->len -= len;
o_len = len;
o_head++;
opipe->head = o_head;
}
ret += o_len;
len -= o_len;
} while (len);
pipe_unlock(ipipe);
pipe_unlock(opipe);
/*
* If we put data in the output pipe, wakeup any potential readers.
*/
if (ret > 0)
wakeup_pipe_readers(opipe);
if (input_wakeup)
wakeup_pipe_writers(ipipe);
return ret;
}
/*
* Link contents of ipipe to opipe.
*/
static ssize_t link_pipe(struct pipe_inode_info *ipipe,
struct pipe_inode_info *opipe,
size_t len, unsigned int flags)
{
struct pipe_buffer *ibuf, *obuf;
unsigned int i_head, o_head;
unsigned int i_tail, o_tail;
unsigned int i_mask, o_mask;
ssize_t ret = 0;
/*
* Potential ABBA deadlock, work around it by ordering lock
* grabbing by pipe info address. Otherwise two different processes
* could deadlock (one doing tee from A -> B, the other from B -> A).
*/
pipe_double_lock(ipipe, opipe);
i_tail = ipipe->tail;
i_mask = ipipe->ring_size - 1;
o_head = opipe->head;
o_mask = opipe->ring_size - 1;
do {
if (!opipe->readers) {
send_sig(SIGPIPE, current, 0);
if (!ret)
ret = -EPIPE;
break;
}
i_head = ipipe->head;
o_tail = opipe->tail;
/*
* If we have iterated all input buffers or run out of
* output room, break.
*/
if (pipe_empty(i_head, i_tail) ||
pipe_full(o_head, o_tail, opipe->max_usage))
break;
ibuf = &ipipe->bufs[i_tail & i_mask];
obuf = &opipe->bufs[o_head & o_mask];
/*
* Get a reference to this pipe buffer,
* so we can copy the contents over.
*/
if (!pipe_buf_get(ipipe, ibuf)) {
if (ret == 0)
ret = -EFAULT;
break;
}
*obuf = *ibuf;
/*
* Don't inherit the gift and merge flag, we need to prevent
* multiple steals of this page.
*/
obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
if (obuf->len > len)
obuf->len = len;
ret += obuf->len;
len -= obuf->len;
o_head++;
opipe->head = o_head;
i_tail++;
} while (len);
pipe_unlock(ipipe);
pipe_unlock(opipe);
/*
* If we put data in the output pipe, wakeup any potential readers.
*/
if (ret > 0)
wakeup_pipe_readers(opipe);
return ret;
}
/*
* This is a tee(1) implementation that works on pipes. It doesn't copy
* any data, it simply references the 'in' pages on the 'out' pipe.
* The 'flags' used are the SPLICE_F_* variants, currently the only
* applicable one is SPLICE_F_NONBLOCK.
*/
ssize_t do_tee(struct file *in, struct file *out, size_t len,
unsigned int flags)
{
struct pipe_inode_info *ipipe = get_pipe_info(in, true);
struct pipe_inode_info *opipe = get_pipe_info(out, true);
ssize_t ret = -EINVAL;
if (unlikely(!(in->f_mode & FMODE_READ) ||
!(out->f_mode & FMODE_WRITE)))
return -EBADF;
/*
* Duplicate the contents of ipipe to opipe without actually
* copying the data.
*/
if (ipipe && opipe && ipipe != opipe) {
if ((in->f_flags | out->f_flags) & O_NONBLOCK)
flags |= SPLICE_F_NONBLOCK;
/*
* Keep going, unless we encounter an error. The ipipe/opipe
* ordering doesn't really matter.
*/
ret = ipipe_prep(ipipe, flags);
if (!ret) {
ret = opipe_prep(opipe, flags);
if (!ret)
ret = link_pipe(ipipe, opipe, len, flags);
}
}
if (ret > 0) {
fsnotify_access(in);
fsnotify_modify(out);
}
return ret;
}
SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
{
struct fd in, out;
ssize_t error;
if (unlikely(flags & ~SPLICE_F_ALL))
return -EINVAL;
if (unlikely(!len))
return 0;
error = -EBADF;
in = fdget(fdin);
if (in.file) {
out = fdget(fdout);
if (out.file) {
error = do_tee(in.file, out.file, len, flags);
fdput(out);
}
fdput(in);
}
return error;
}