833 lines
21 KiB
C
833 lines
21 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2013 Fusion IO. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/pagemap.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sizes.h>
|
|
#include "btrfs-tests.h"
|
|
#include "../ctree.h"
|
|
#include "../extent_io.h"
|
|
#include "../disk-io.h"
|
|
#include "../btrfs_inode.h"
|
|
|
|
#define PROCESS_UNLOCK (1 << 0)
|
|
#define PROCESS_RELEASE (1 << 1)
|
|
#define PROCESS_TEST_LOCKED (1 << 2)
|
|
|
|
static noinline int process_page_range(struct inode *inode, u64 start, u64 end,
|
|
unsigned long flags)
|
|
{
|
|
int ret;
|
|
struct folio_batch fbatch;
|
|
unsigned long index = start >> PAGE_SHIFT;
|
|
unsigned long end_index = end >> PAGE_SHIFT;
|
|
int i;
|
|
int count = 0;
|
|
int loops = 0;
|
|
|
|
folio_batch_init(&fbatch);
|
|
|
|
while (index <= end_index) {
|
|
ret = filemap_get_folios_contig(inode->i_mapping, &index,
|
|
end_index, &fbatch);
|
|
for (i = 0; i < ret; i++) {
|
|
struct folio *folio = fbatch.folios[i];
|
|
|
|
if (flags & PROCESS_TEST_LOCKED &&
|
|
!folio_test_locked(folio))
|
|
count++;
|
|
if (flags & PROCESS_UNLOCK && folio_test_locked(folio))
|
|
folio_unlock(folio);
|
|
if (flags & PROCESS_RELEASE)
|
|
folio_put(folio);
|
|
}
|
|
folio_batch_release(&fbatch);
|
|
cond_resched();
|
|
loops++;
|
|
if (loops > 100000) {
|
|
printk(KERN_ERR
|
|
"stuck in a loop, start %llu, end %llu, ret %d\n",
|
|
start, end, ret);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
#define STATE_FLAG_STR_LEN 256
|
|
|
|
#define PRINT_ONE_FLAG(state, dest, cur, name) \
|
|
({ \
|
|
if (state->state & EXTENT_##name) \
|
|
cur += scnprintf(dest + cur, STATE_FLAG_STR_LEN - cur, \
|
|
"%s" #name, cur == 0 ? "" : "|"); \
|
|
})
|
|
|
|
static void extent_flag_to_str(const struct extent_state *state, char *dest)
|
|
{
|
|
int cur = 0;
|
|
|
|
dest[0] = 0;
|
|
PRINT_ONE_FLAG(state, dest, cur, DIRTY);
|
|
PRINT_ONE_FLAG(state, dest, cur, UPTODATE);
|
|
PRINT_ONE_FLAG(state, dest, cur, LOCKED);
|
|
PRINT_ONE_FLAG(state, dest, cur, NEW);
|
|
PRINT_ONE_FLAG(state, dest, cur, DELALLOC);
|
|
PRINT_ONE_FLAG(state, dest, cur, DEFRAG);
|
|
PRINT_ONE_FLAG(state, dest, cur, BOUNDARY);
|
|
PRINT_ONE_FLAG(state, dest, cur, NODATASUM);
|
|
PRINT_ONE_FLAG(state, dest, cur, CLEAR_META_RESV);
|
|
PRINT_ONE_FLAG(state, dest, cur, NEED_WAIT);
|
|
PRINT_ONE_FLAG(state, dest, cur, NORESERVE);
|
|
PRINT_ONE_FLAG(state, dest, cur, QGROUP_RESERVED);
|
|
PRINT_ONE_FLAG(state, dest, cur, CLEAR_DATA_RESV);
|
|
}
|
|
|
|
static void dump_extent_io_tree(const struct extent_io_tree *tree)
|
|
{
|
|
struct rb_node *node;
|
|
char flags_str[STATE_FLAG_STR_LEN];
|
|
|
|
node = rb_first(&tree->state);
|
|
test_msg("io tree content:");
|
|
while (node) {
|
|
struct extent_state *state;
|
|
|
|
state = rb_entry(node, struct extent_state, rb_node);
|
|
extent_flag_to_str(state, flags_str);
|
|
test_msg(" start=%llu len=%llu flags=%s", state->start,
|
|
state->end + 1 - state->start, flags_str);
|
|
node = rb_next(node);
|
|
}
|
|
}
|
|
|
|
static int test_find_delalloc(u32 sectorsize, u32 nodesize)
|
|
{
|
|
struct btrfs_fs_info *fs_info;
|
|
struct btrfs_root *root = NULL;
|
|
struct inode *inode = NULL;
|
|
struct extent_io_tree *tmp;
|
|
struct page *page;
|
|
struct page *locked_page = NULL;
|
|
unsigned long index = 0;
|
|
/* In this test we need at least 2 file extents at its maximum size */
|
|
u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
|
|
u64 total_dirty = 2 * max_bytes;
|
|
u64 start, end, test_start;
|
|
bool found;
|
|
int ret = -EINVAL;
|
|
|
|
test_msg("running find delalloc tests");
|
|
|
|
fs_info = btrfs_alloc_dummy_fs_info(nodesize, sectorsize);
|
|
if (!fs_info) {
|
|
test_std_err(TEST_ALLOC_FS_INFO);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
root = btrfs_alloc_dummy_root(fs_info);
|
|
if (IS_ERR(root)) {
|
|
test_std_err(TEST_ALLOC_ROOT);
|
|
ret = PTR_ERR(root);
|
|
goto out;
|
|
}
|
|
|
|
inode = btrfs_new_test_inode();
|
|
if (!inode) {
|
|
test_std_err(TEST_ALLOC_INODE);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
tmp = &BTRFS_I(inode)->io_tree;
|
|
BTRFS_I(inode)->root = root;
|
|
|
|
/*
|
|
* Passing NULL as we don't have fs_info but tracepoints are not used
|
|
* at this point
|
|
*/
|
|
extent_io_tree_init(NULL, tmp, IO_TREE_SELFTEST);
|
|
|
|
/*
|
|
* First go through and create and mark all of our pages dirty, we pin
|
|
* everything to make sure our pages don't get evicted and screw up our
|
|
* test.
|
|
*/
|
|
for (index = 0; index < (total_dirty >> PAGE_SHIFT); index++) {
|
|
page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL);
|
|
if (!page) {
|
|
test_err("failed to allocate test page");
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
SetPageDirty(page);
|
|
if (index) {
|
|
unlock_page(page);
|
|
} else {
|
|
get_page(page);
|
|
locked_page = page;
|
|
}
|
|
}
|
|
|
|
/* Test this scenario
|
|
* |--- delalloc ---|
|
|
* |--- search ---|
|
|
*/
|
|
set_extent_bit(tmp, 0, sectorsize - 1, EXTENT_DELALLOC, NULL);
|
|
start = 0;
|
|
end = start + PAGE_SIZE - 1;
|
|
found = find_lock_delalloc_range(inode, locked_page, &start,
|
|
&end);
|
|
if (!found) {
|
|
test_err("should have found at least one delalloc");
|
|
goto out_bits;
|
|
}
|
|
if (start != 0 || end != (sectorsize - 1)) {
|
|
test_err("expected start 0 end %u, got start %llu end %llu",
|
|
sectorsize - 1, start, end);
|
|
goto out_bits;
|
|
}
|
|
unlock_extent(tmp, start, end, NULL);
|
|
unlock_page(locked_page);
|
|
put_page(locked_page);
|
|
|
|
/*
|
|
* Test this scenario
|
|
*
|
|
* |--- delalloc ---|
|
|
* |--- search ---|
|
|
*/
|
|
test_start = SZ_64M;
|
|
locked_page = find_lock_page(inode->i_mapping,
|
|
test_start >> PAGE_SHIFT);
|
|
if (!locked_page) {
|
|
test_err("couldn't find the locked page");
|
|
goto out_bits;
|
|
}
|
|
set_extent_bit(tmp, sectorsize, max_bytes - 1, EXTENT_DELALLOC, NULL);
|
|
start = test_start;
|
|
end = start + PAGE_SIZE - 1;
|
|
found = find_lock_delalloc_range(inode, locked_page, &start,
|
|
&end);
|
|
if (!found) {
|
|
test_err("couldn't find delalloc in our range");
|
|
goto out_bits;
|
|
}
|
|
if (start != test_start || end != max_bytes - 1) {
|
|
test_err("expected start %llu end %llu, got start %llu, end %llu",
|
|
test_start, max_bytes - 1, start, end);
|
|
goto out_bits;
|
|
}
|
|
if (process_page_range(inode, start, end,
|
|
PROCESS_TEST_LOCKED | PROCESS_UNLOCK)) {
|
|
test_err("there were unlocked pages in the range");
|
|
goto out_bits;
|
|
}
|
|
unlock_extent(tmp, start, end, NULL);
|
|
/* locked_page was unlocked above */
|
|
put_page(locked_page);
|
|
|
|
/*
|
|
* Test this scenario
|
|
* |--- delalloc ---|
|
|
* |--- search ---|
|
|
*/
|
|
test_start = max_bytes + sectorsize;
|
|
locked_page = find_lock_page(inode->i_mapping, test_start >>
|
|
PAGE_SHIFT);
|
|
if (!locked_page) {
|
|
test_err("couldn't find the locked page");
|
|
goto out_bits;
|
|
}
|
|
start = test_start;
|
|
end = start + PAGE_SIZE - 1;
|
|
found = find_lock_delalloc_range(inode, locked_page, &start,
|
|
&end);
|
|
if (found) {
|
|
test_err("found range when we shouldn't have");
|
|
goto out_bits;
|
|
}
|
|
if (end != test_start + PAGE_SIZE - 1) {
|
|
test_err("did not return the proper end offset");
|
|
goto out_bits;
|
|
}
|
|
|
|
/*
|
|
* Test this scenario
|
|
* [------- delalloc -------|
|
|
* [max_bytes]|-- search--|
|
|
*
|
|
* We are re-using our test_start from above since it works out well.
|
|
*/
|
|
set_extent_bit(tmp, max_bytes, total_dirty - 1, EXTENT_DELALLOC, NULL);
|
|
start = test_start;
|
|
end = start + PAGE_SIZE - 1;
|
|
found = find_lock_delalloc_range(inode, locked_page, &start,
|
|
&end);
|
|
if (!found) {
|
|
test_err("didn't find our range");
|
|
goto out_bits;
|
|
}
|
|
if (start != test_start || end != total_dirty - 1) {
|
|
test_err("expected start %llu end %llu, got start %llu end %llu",
|
|
test_start, total_dirty - 1, start, end);
|
|
goto out_bits;
|
|
}
|
|
if (process_page_range(inode, start, end,
|
|
PROCESS_TEST_LOCKED | PROCESS_UNLOCK)) {
|
|
test_err("pages in range were not all locked");
|
|
goto out_bits;
|
|
}
|
|
unlock_extent(tmp, start, end, NULL);
|
|
|
|
/*
|
|
* Now to test where we run into a page that is no longer dirty in the
|
|
* range we want to find.
|
|
*/
|
|
page = find_get_page(inode->i_mapping,
|
|
(max_bytes + SZ_1M) >> PAGE_SHIFT);
|
|
if (!page) {
|
|
test_err("couldn't find our page");
|
|
goto out_bits;
|
|
}
|
|
ClearPageDirty(page);
|
|
put_page(page);
|
|
|
|
/* We unlocked it in the previous test */
|
|
lock_page(locked_page);
|
|
start = test_start;
|
|
end = start + PAGE_SIZE - 1;
|
|
/*
|
|
* Currently if we fail to find dirty pages in the delalloc range we
|
|
* will adjust max_bytes down to PAGE_SIZE and then re-search. If
|
|
* this changes at any point in the future we will need to fix this
|
|
* tests expected behavior.
|
|
*/
|
|
found = find_lock_delalloc_range(inode, locked_page, &start,
|
|
&end);
|
|
if (!found) {
|
|
test_err("didn't find our range");
|
|
goto out_bits;
|
|
}
|
|
if (start != test_start && end != test_start + PAGE_SIZE - 1) {
|
|
test_err("expected start %llu end %llu, got start %llu end %llu",
|
|
test_start, test_start + PAGE_SIZE - 1, start, end);
|
|
goto out_bits;
|
|
}
|
|
if (process_page_range(inode, start, end, PROCESS_TEST_LOCKED |
|
|
PROCESS_UNLOCK)) {
|
|
test_err("pages in range were not all locked");
|
|
goto out_bits;
|
|
}
|
|
ret = 0;
|
|
out_bits:
|
|
if (ret)
|
|
dump_extent_io_tree(tmp);
|
|
clear_extent_bits(tmp, 0, total_dirty - 1, (unsigned)-1);
|
|
out:
|
|
if (locked_page)
|
|
put_page(locked_page);
|
|
process_page_range(inode, 0, total_dirty - 1,
|
|
PROCESS_UNLOCK | PROCESS_RELEASE);
|
|
iput(inode);
|
|
btrfs_free_dummy_root(root);
|
|
btrfs_free_dummy_fs_info(fs_info);
|
|
return ret;
|
|
}
|
|
|
|
static int check_eb_bitmap(unsigned long *bitmap, struct extent_buffer *eb)
|
|
{
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < eb->len * BITS_PER_BYTE; i++) {
|
|
int bit, bit1;
|
|
|
|
bit = !!test_bit(i, bitmap);
|
|
bit1 = !!extent_buffer_test_bit(eb, 0, i);
|
|
if (bit1 != bit) {
|
|
u8 has;
|
|
u8 expect;
|
|
|
|
read_extent_buffer(eb, &has, i / BITS_PER_BYTE, 1);
|
|
expect = bitmap_get_value8(bitmap, ALIGN(i, BITS_PER_BYTE));
|
|
|
|
test_err(
|
|
"bits do not match, start byte 0 bit %lu, byte %lu has 0x%02x expect 0x%02x",
|
|
i, i / BITS_PER_BYTE, has, expect);
|
|
return -EINVAL;
|
|
}
|
|
|
|
bit1 = !!extent_buffer_test_bit(eb, i / BITS_PER_BYTE,
|
|
i % BITS_PER_BYTE);
|
|
if (bit1 != bit) {
|
|
u8 has;
|
|
u8 expect;
|
|
|
|
read_extent_buffer(eb, &has, i / BITS_PER_BYTE, 1);
|
|
expect = bitmap_get_value8(bitmap, ALIGN(i, BITS_PER_BYTE));
|
|
|
|
test_err(
|
|
"bits do not match, start byte %lu bit %lu, byte %lu has 0x%02x expect 0x%02x",
|
|
i / BITS_PER_BYTE, i % BITS_PER_BYTE,
|
|
i / BITS_PER_BYTE, has, expect);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int test_bitmap_set(const char *name, unsigned long *bitmap,
|
|
struct extent_buffer *eb,
|
|
unsigned long byte_start, unsigned long bit_start,
|
|
unsigned long bit_len)
|
|
{
|
|
int ret;
|
|
|
|
bitmap_set(bitmap, byte_start * BITS_PER_BYTE + bit_start, bit_len);
|
|
extent_buffer_bitmap_set(eb, byte_start, bit_start, bit_len);
|
|
ret = check_eb_bitmap(bitmap, eb);
|
|
if (ret < 0)
|
|
test_err("%s test failed", name);
|
|
return ret;
|
|
}
|
|
|
|
static int test_bitmap_clear(const char *name, unsigned long *bitmap,
|
|
struct extent_buffer *eb,
|
|
unsigned long byte_start, unsigned long bit_start,
|
|
unsigned long bit_len)
|
|
{
|
|
int ret;
|
|
|
|
bitmap_clear(bitmap, byte_start * BITS_PER_BYTE + bit_start, bit_len);
|
|
extent_buffer_bitmap_clear(eb, byte_start, bit_start, bit_len);
|
|
ret = check_eb_bitmap(bitmap, eb);
|
|
if (ret < 0)
|
|
test_err("%s test failed", name);
|
|
return ret;
|
|
}
|
|
static int __test_eb_bitmaps(unsigned long *bitmap, struct extent_buffer *eb)
|
|
{
|
|
unsigned long i, j;
|
|
unsigned long byte_len = eb->len;
|
|
u32 x;
|
|
int ret;
|
|
|
|
ret = test_bitmap_clear("clear all run 1", bitmap, eb, 0, 0,
|
|
byte_len * BITS_PER_BYTE);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = test_bitmap_set("set all", bitmap, eb, 0, 0, byte_len * BITS_PER_BYTE);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = test_bitmap_clear("clear all run 2", bitmap, eb, 0, 0,
|
|
byte_len * BITS_PER_BYTE);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = test_bitmap_set("same byte set", bitmap, eb, 0, 2, 4);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = test_bitmap_clear("same byte partial clear", bitmap, eb, 0, 4, 1);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = test_bitmap_set("cross byte set", bitmap, eb, 2, 4, 8);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = test_bitmap_set("cross multi byte set", bitmap, eb, 4, 4, 24);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = test_bitmap_clear("cross byte clear", bitmap, eb, 2, 6, 4);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = test_bitmap_clear("cross multi byte clear", bitmap, eb, 4, 6, 20);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Straddling pages test */
|
|
if (byte_len > PAGE_SIZE) {
|
|
ret = test_bitmap_set("cross page set", bitmap, eb,
|
|
PAGE_SIZE - sizeof(long) / 2, 0,
|
|
sizeof(long) * BITS_PER_BYTE);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = test_bitmap_set("cross page set all", bitmap, eb, 0, 0,
|
|
byte_len * BITS_PER_BYTE);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = test_bitmap_clear("cross page clear", bitmap, eb,
|
|
PAGE_SIZE - sizeof(long) / 2, 0,
|
|
sizeof(long) * BITS_PER_BYTE);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Generate a wonky pseudo-random bit pattern for the sake of not using
|
|
* something repetitive that could miss some hypothetical off-by-n bug.
|
|
*/
|
|
x = 0;
|
|
ret = test_bitmap_clear("clear all run 3", bitmap, eb, 0, 0,
|
|
byte_len * BITS_PER_BYTE);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
for (i = 0; i < byte_len * BITS_PER_BYTE / 32; i++) {
|
|
x = (0x19660dULL * (u64)x + 0x3c6ef35fULL) & 0xffffffffU;
|
|
for (j = 0; j < 32; j++) {
|
|
if (x & (1U << j)) {
|
|
bitmap_set(bitmap, i * 32 + j, 1);
|
|
extent_buffer_bitmap_set(eb, 0, i * 32 + j, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
ret = check_eb_bitmap(bitmap, eb);
|
|
if (ret) {
|
|
test_err("random bit pattern failed");
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int test_eb_bitmaps(u32 sectorsize, u32 nodesize)
|
|
{
|
|
struct btrfs_fs_info *fs_info;
|
|
unsigned long *bitmap = NULL;
|
|
struct extent_buffer *eb = NULL;
|
|
int ret;
|
|
|
|
test_msg("running extent buffer bitmap tests");
|
|
|
|
fs_info = btrfs_alloc_dummy_fs_info(nodesize, sectorsize);
|
|
if (!fs_info) {
|
|
test_std_err(TEST_ALLOC_FS_INFO);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
bitmap = kmalloc(nodesize, GFP_KERNEL);
|
|
if (!bitmap) {
|
|
test_err("couldn't allocate test bitmap");
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
eb = __alloc_dummy_extent_buffer(fs_info, 0, nodesize);
|
|
if (!eb) {
|
|
test_std_err(TEST_ALLOC_ROOT);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
ret = __test_eb_bitmaps(bitmap, eb);
|
|
if (ret)
|
|
goto out;
|
|
|
|
free_extent_buffer(eb);
|
|
|
|
/*
|
|
* Test again for case where the tree block is sectorsize aligned but
|
|
* not nodesize aligned.
|
|
*/
|
|
eb = __alloc_dummy_extent_buffer(fs_info, sectorsize, nodesize);
|
|
if (!eb) {
|
|
test_std_err(TEST_ALLOC_ROOT);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
ret = __test_eb_bitmaps(bitmap, eb);
|
|
out:
|
|
free_extent_buffer(eb);
|
|
kfree(bitmap);
|
|
btrfs_free_dummy_fs_info(fs_info);
|
|
return ret;
|
|
}
|
|
|
|
static int test_find_first_clear_extent_bit(void)
|
|
{
|
|
struct extent_io_tree tree;
|
|
u64 start, end;
|
|
int ret = -EINVAL;
|
|
|
|
test_msg("running find_first_clear_extent_bit test");
|
|
|
|
extent_io_tree_init(NULL, &tree, IO_TREE_SELFTEST);
|
|
|
|
/* Test correct handling of empty tree */
|
|
find_first_clear_extent_bit(&tree, 0, &start, &end, CHUNK_TRIMMED);
|
|
if (start != 0 || end != -1) {
|
|
test_err(
|
|
"error getting a range from completely empty tree: start %llu end %llu",
|
|
start, end);
|
|
goto out;
|
|
}
|
|
/*
|
|
* Set 1M-4M alloc/discard and 32M-64M thus leaving a hole between
|
|
* 4M-32M
|
|
*/
|
|
set_extent_bit(&tree, SZ_1M, SZ_4M - 1,
|
|
CHUNK_TRIMMED | CHUNK_ALLOCATED, NULL);
|
|
|
|
find_first_clear_extent_bit(&tree, SZ_512K, &start, &end,
|
|
CHUNK_TRIMMED | CHUNK_ALLOCATED);
|
|
|
|
if (start != 0 || end != SZ_1M - 1) {
|
|
test_err("error finding beginning range: start %llu end %llu",
|
|
start, end);
|
|
goto out;
|
|
}
|
|
|
|
/* Now add 32M-64M so that we have a hole between 4M-32M */
|
|
set_extent_bit(&tree, SZ_32M, SZ_64M - 1,
|
|
CHUNK_TRIMMED | CHUNK_ALLOCATED, NULL);
|
|
|
|
/*
|
|
* Request first hole starting at 12M, we should get 4M-32M
|
|
*/
|
|
find_first_clear_extent_bit(&tree, 12 * SZ_1M, &start, &end,
|
|
CHUNK_TRIMMED | CHUNK_ALLOCATED);
|
|
|
|
if (start != SZ_4M || end != SZ_32M - 1) {
|
|
test_err("error finding trimmed range: start %llu end %llu",
|
|
start, end);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Search in the middle of allocated range, should get the next one
|
|
* available, which happens to be unallocated -> 4M-32M
|
|
*/
|
|
find_first_clear_extent_bit(&tree, SZ_2M, &start, &end,
|
|
CHUNK_TRIMMED | CHUNK_ALLOCATED);
|
|
|
|
if (start != SZ_4M || end != SZ_32M - 1) {
|
|
test_err("error finding next unalloc range: start %llu end %llu",
|
|
start, end);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Set 64M-72M with CHUNK_ALLOC flag, then search for CHUNK_TRIMMED flag
|
|
* being unset in this range, we should get the entry in range 64M-72M
|
|
*/
|
|
set_extent_bit(&tree, SZ_64M, SZ_64M + SZ_8M - 1, CHUNK_ALLOCATED, NULL);
|
|
find_first_clear_extent_bit(&tree, SZ_64M + SZ_1M, &start, &end,
|
|
CHUNK_TRIMMED);
|
|
|
|
if (start != SZ_64M || end != SZ_64M + SZ_8M - 1) {
|
|
test_err("error finding exact range: start %llu end %llu",
|
|
start, end);
|
|
goto out;
|
|
}
|
|
|
|
find_first_clear_extent_bit(&tree, SZ_64M - SZ_8M, &start, &end,
|
|
CHUNK_TRIMMED);
|
|
|
|
/*
|
|
* Search in the middle of set range whose immediate neighbour doesn't
|
|
* have the bits set so it must be returned
|
|
*/
|
|
if (start != SZ_64M || end != SZ_64M + SZ_8M - 1) {
|
|
test_err("error finding next alloc range: start %llu end %llu",
|
|
start, end);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Search beyond any known range, shall return after last known range
|
|
* and end should be -1
|
|
*/
|
|
find_first_clear_extent_bit(&tree, -1, &start, &end, CHUNK_TRIMMED);
|
|
if (start != SZ_64M + SZ_8M || end != -1) {
|
|
test_err(
|
|
"error handling beyond end of range search: start %llu end %llu",
|
|
start, end);
|
|
goto out;
|
|
}
|
|
|
|
ret = 0;
|
|
out:
|
|
if (ret)
|
|
dump_extent_io_tree(&tree);
|
|
clear_extent_bits(&tree, 0, (u64)-1, CHUNK_TRIMMED | CHUNK_ALLOCATED);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void dump_eb_and_memory_contents(struct extent_buffer *eb, void *memory,
|
|
const char *test_name)
|
|
{
|
|
for (int i = 0; i < eb->len; i++) {
|
|
struct page *page = folio_page(eb->folios[i >> PAGE_SHIFT], 0);
|
|
void *addr = page_address(page) + offset_in_page(i);
|
|
|
|
if (memcmp(addr, memory + i, 1) != 0) {
|
|
test_err("%s failed", test_name);
|
|
test_err("eb and memory diffs at byte %u, eb has 0x%02x memory has 0x%02x",
|
|
i, *(u8 *)addr, *(u8 *)(memory + i));
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int verify_eb_and_memory(struct extent_buffer *eb, void *memory,
|
|
const char *test_name)
|
|
{
|
|
for (int i = 0; i < (eb->len >> PAGE_SHIFT); i++) {
|
|
void *eb_addr = folio_address(eb->folios[i]);
|
|
|
|
if (memcmp(memory + (i << PAGE_SHIFT), eb_addr, PAGE_SIZE) != 0) {
|
|
dump_eb_and_memory_contents(eb, memory, test_name);
|
|
return -EUCLEAN;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Init both memory and extent buffer contents to the same randomly generated
|
|
* contents.
|
|
*/
|
|
static void init_eb_and_memory(struct extent_buffer *eb, void *memory)
|
|
{
|
|
get_random_bytes(memory, eb->len);
|
|
write_extent_buffer(eb, memory, 0, eb->len);
|
|
}
|
|
|
|
static int test_eb_mem_ops(u32 sectorsize, u32 nodesize)
|
|
{
|
|
struct btrfs_fs_info *fs_info;
|
|
struct extent_buffer *eb = NULL;
|
|
void *memory = NULL;
|
|
int ret;
|
|
|
|
test_msg("running extent buffer memory operation tests");
|
|
|
|
fs_info = btrfs_alloc_dummy_fs_info(nodesize, sectorsize);
|
|
if (!fs_info) {
|
|
test_std_err(TEST_ALLOC_FS_INFO);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memory = kvzalloc(nodesize, GFP_KERNEL);
|
|
if (!memory) {
|
|
test_err("failed to allocate memory");
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
eb = __alloc_dummy_extent_buffer(fs_info, SZ_1M, nodesize);
|
|
if (!eb) {
|
|
test_std_err(TEST_ALLOC_EXTENT_BUFFER);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
init_eb_and_memory(eb, memory);
|
|
ret = verify_eb_and_memory(eb, memory, "full eb write");
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
memcpy(memory, memory + 16, 16);
|
|
memcpy_extent_buffer(eb, 0, 16, 16);
|
|
ret = verify_eb_and_memory(eb, memory, "same page non-overlapping memcpy 1");
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
memcpy(memory, memory + 2048, 16);
|
|
memcpy_extent_buffer(eb, 0, 2048, 16);
|
|
ret = verify_eb_and_memory(eb, memory, "same page non-overlapping memcpy 2");
|
|
if (ret < 0)
|
|
goto out;
|
|
memcpy(memory, memory + 2048, 2048);
|
|
memcpy_extent_buffer(eb, 0, 2048, 2048);
|
|
ret = verify_eb_and_memory(eb, memory, "same page non-overlapping memcpy 3");
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
memmove(memory + 512, memory + 256, 512);
|
|
memmove_extent_buffer(eb, 512, 256, 512);
|
|
ret = verify_eb_and_memory(eb, memory, "same page overlapping memcpy 1");
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
memmove(memory + 2048, memory + 512, 2048);
|
|
memmove_extent_buffer(eb, 2048, 512, 2048);
|
|
ret = verify_eb_and_memory(eb, memory, "same page overlapping memcpy 2");
|
|
if (ret < 0)
|
|
goto out;
|
|
memmove(memory + 512, memory + 2048, 2048);
|
|
memmove_extent_buffer(eb, 512, 2048, 2048);
|
|
ret = verify_eb_and_memory(eb, memory, "same page overlapping memcpy 3");
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
if (nodesize > PAGE_SIZE) {
|
|
memcpy(memory, memory + 4096 - 128, 256);
|
|
memcpy_extent_buffer(eb, 0, 4096 - 128, 256);
|
|
ret = verify_eb_and_memory(eb, memory, "cross page non-overlapping memcpy 1");
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
memcpy(memory + 4096 - 128, memory + 4096 + 128, 256);
|
|
memcpy_extent_buffer(eb, 4096 - 128, 4096 + 128, 256);
|
|
ret = verify_eb_and_memory(eb, memory, "cross page non-overlapping memcpy 2");
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
memmove(memory + 4096 - 128, memory + 4096 - 64, 256);
|
|
memmove_extent_buffer(eb, 4096 - 128, 4096 - 64, 256);
|
|
ret = verify_eb_and_memory(eb, memory, "cross page overlapping memcpy 1");
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
memmove(memory + 4096 - 64, memory + 4096 - 128, 256);
|
|
memmove_extent_buffer(eb, 4096 - 64, 4096 - 128, 256);
|
|
ret = verify_eb_and_memory(eb, memory, "cross page overlapping memcpy 2");
|
|
if (ret < 0)
|
|
goto out;
|
|
}
|
|
out:
|
|
free_extent_buffer(eb);
|
|
kvfree(memory);
|
|
btrfs_free_dummy_fs_info(fs_info);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_test_extent_io(u32 sectorsize, u32 nodesize)
|
|
{
|
|
int ret;
|
|
|
|
test_msg("running extent I/O tests");
|
|
|
|
ret = test_find_delalloc(sectorsize, nodesize);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = test_find_first_clear_extent_bit();
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = test_eb_bitmaps(sectorsize, nodesize);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = test_eb_mem_ops(sectorsize, nodesize);
|
|
out:
|
|
return ret;
|
|
}
|