1425 lines
35 KiB
C
1425 lines
35 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* ARM CoreSight Architecture PMU driver.
|
|
*
|
|
* This driver adds support for uncore PMU based on ARM CoreSight Performance
|
|
* Monitoring Unit Architecture. The PMU is accessible via MMIO registers and
|
|
* like other uncore PMUs, it does not support process specific events and
|
|
* cannot be used in sampling mode.
|
|
*
|
|
* This code is based on other uncore PMUs like ARM DSU PMU. It provides a
|
|
* generic implementation to operate the PMU according to CoreSight PMU
|
|
* architecture and ACPI ARM PMU table (APMT) documents below:
|
|
* - ARM CoreSight PMU architecture document number: ARM IHI 0091 A.a-00bet0.
|
|
* - APMT document number: ARM DEN0117.
|
|
*
|
|
* The user should refer to the vendor technical documentation to get details
|
|
* about the supported events.
|
|
*
|
|
* Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
*
|
|
*/
|
|
|
|
#include <linux/acpi.h>
|
|
#include <linux/cacheinfo.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io-64-nonatomic-lo-hi.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/platform_device.h>
|
|
|
|
#include "arm_cspmu.h"
|
|
|
|
#define PMUNAME "arm_cspmu"
|
|
#define DRVNAME "arm-cs-arch-pmu"
|
|
|
|
#define ARM_CSPMU_CPUMASK_ATTR(_name, _config) \
|
|
ARM_CSPMU_EXT_ATTR(_name, arm_cspmu_cpumask_show, \
|
|
(unsigned long)_config)
|
|
|
|
/*
|
|
* CoreSight PMU Arch register offsets.
|
|
*/
|
|
#define PMEVCNTR_LO 0x0
|
|
#define PMEVCNTR_HI 0x4
|
|
#define PMEVTYPER 0x400
|
|
#define PMCCFILTR 0x47C
|
|
#define PMEVFILTR 0xA00
|
|
#define PMCNTENSET 0xC00
|
|
#define PMCNTENCLR 0xC20
|
|
#define PMINTENSET 0xC40
|
|
#define PMINTENCLR 0xC60
|
|
#define PMOVSCLR 0xC80
|
|
#define PMOVSSET 0xCC0
|
|
#define PMCFGR 0xE00
|
|
#define PMCR 0xE04
|
|
#define PMIIDR 0xE08
|
|
|
|
/* PMCFGR register field */
|
|
#define PMCFGR_NCG GENMASK(31, 28)
|
|
#define PMCFGR_HDBG BIT(24)
|
|
#define PMCFGR_TRO BIT(23)
|
|
#define PMCFGR_SS BIT(22)
|
|
#define PMCFGR_FZO BIT(21)
|
|
#define PMCFGR_MSI BIT(20)
|
|
#define PMCFGR_UEN BIT(19)
|
|
#define PMCFGR_NA BIT(17)
|
|
#define PMCFGR_EX BIT(16)
|
|
#define PMCFGR_CCD BIT(15)
|
|
#define PMCFGR_CC BIT(14)
|
|
#define PMCFGR_SIZE GENMASK(13, 8)
|
|
#define PMCFGR_N GENMASK(7, 0)
|
|
|
|
/* PMCR register field */
|
|
#define PMCR_TRO BIT(11)
|
|
#define PMCR_HDBG BIT(10)
|
|
#define PMCR_FZO BIT(9)
|
|
#define PMCR_NA BIT(8)
|
|
#define PMCR_DP BIT(5)
|
|
#define PMCR_X BIT(4)
|
|
#define PMCR_D BIT(3)
|
|
#define PMCR_C BIT(2)
|
|
#define PMCR_P BIT(1)
|
|
#define PMCR_E BIT(0)
|
|
|
|
/* Each SET/CLR register supports up to 32 counters. */
|
|
#define ARM_CSPMU_SET_CLR_COUNTER_SHIFT 5
|
|
#define ARM_CSPMU_SET_CLR_COUNTER_NUM \
|
|
(1 << ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
|
|
|
|
/* Convert counter idx into SET/CLR register number. */
|
|
#define COUNTER_TO_SET_CLR_ID(idx) \
|
|
(idx >> ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
|
|
|
|
/* Convert counter idx into SET/CLR register bit. */
|
|
#define COUNTER_TO_SET_CLR_BIT(idx) \
|
|
(idx & (ARM_CSPMU_SET_CLR_COUNTER_NUM - 1))
|
|
|
|
#define ARM_CSPMU_ACTIVE_CPU_MASK 0x0
|
|
#define ARM_CSPMU_ASSOCIATED_CPU_MASK 0x1
|
|
|
|
/* Check and use default if implementer doesn't provide attribute callback */
|
|
#define CHECK_DEFAULT_IMPL_OPS(ops, callback) \
|
|
do { \
|
|
if (!ops->callback) \
|
|
ops->callback = arm_cspmu_ ## callback; \
|
|
} while (0)
|
|
|
|
/*
|
|
* Maximum poll count for reading counter value using high-low-high sequence.
|
|
*/
|
|
#define HILOHI_MAX_POLL 1000
|
|
|
|
static unsigned long arm_cspmu_cpuhp_state;
|
|
|
|
static DEFINE_MUTEX(arm_cspmu_lock);
|
|
|
|
static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu,
|
|
struct hw_perf_event *hwc, u32 filter);
|
|
|
|
static struct acpi_apmt_node *arm_cspmu_apmt_node(struct device *dev)
|
|
{
|
|
return *(struct acpi_apmt_node **)dev_get_platdata(dev);
|
|
}
|
|
|
|
/*
|
|
* In CoreSight PMU architecture, all of the MMIO registers are 32-bit except
|
|
* counter register. The counter register can be implemented as 32-bit or 64-bit
|
|
* register depending on the value of PMCFGR.SIZE field. For 64-bit access,
|
|
* single-copy 64-bit atomic support is implementation defined. APMT node flag
|
|
* is used to identify if the PMU supports 64-bit single copy atomic. If 64-bit
|
|
* single copy atomic is not supported, the driver treats the register as a pair
|
|
* of 32-bit register.
|
|
*/
|
|
|
|
/*
|
|
* Read 64-bit register as a pair of 32-bit registers using hi-lo-hi sequence.
|
|
*/
|
|
static u64 read_reg64_hilohi(const void __iomem *addr, u32 max_poll_count)
|
|
{
|
|
u32 val_lo, val_hi;
|
|
u64 val;
|
|
|
|
/* Use high-low-high sequence to avoid tearing */
|
|
do {
|
|
if (max_poll_count-- == 0) {
|
|
pr_err("ARM CSPMU: timeout hi-low-high sequence\n");
|
|
return 0;
|
|
}
|
|
|
|
val_hi = readl(addr + 4);
|
|
val_lo = readl(addr);
|
|
} while (val_hi != readl(addr + 4));
|
|
|
|
val = (((u64)val_hi << 32) | val_lo);
|
|
|
|
return val;
|
|
}
|
|
|
|
/* Check if cycle counter is supported. */
|
|
static inline bool supports_cycle_counter(const struct arm_cspmu *cspmu)
|
|
{
|
|
return (cspmu->pmcfgr & PMCFGR_CC);
|
|
}
|
|
|
|
/* Get counter size, which is (PMCFGR_SIZE + 1). */
|
|
static inline u32 counter_size(const struct arm_cspmu *cspmu)
|
|
{
|
|
return FIELD_GET(PMCFGR_SIZE, cspmu->pmcfgr) + 1;
|
|
}
|
|
|
|
/* Get counter mask. */
|
|
static inline u64 counter_mask(const struct arm_cspmu *cspmu)
|
|
{
|
|
return GENMASK_ULL(counter_size(cspmu) - 1, 0);
|
|
}
|
|
|
|
/* Check if counter is implemented as 64-bit register. */
|
|
static inline bool use_64b_counter_reg(const struct arm_cspmu *cspmu)
|
|
{
|
|
return (counter_size(cspmu) > 32);
|
|
}
|
|
|
|
ssize_t arm_cspmu_sysfs_event_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct perf_pmu_events_attr *pmu_attr;
|
|
|
|
pmu_attr = container_of(attr, typeof(*pmu_attr), attr);
|
|
return sysfs_emit(buf, "event=0x%llx\n", pmu_attr->id);
|
|
}
|
|
EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_event_show);
|
|
|
|
/* Default event list. */
|
|
static struct attribute *arm_cspmu_event_attrs[] = {
|
|
ARM_CSPMU_EVENT_ATTR(cycles, ARM_CSPMU_EVT_CYCLES_DEFAULT),
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute **
|
|
arm_cspmu_get_event_attrs(const struct arm_cspmu *cspmu)
|
|
{
|
|
struct attribute **attrs;
|
|
|
|
attrs = devm_kmemdup(cspmu->dev, arm_cspmu_event_attrs,
|
|
sizeof(arm_cspmu_event_attrs), GFP_KERNEL);
|
|
|
|
return attrs;
|
|
}
|
|
|
|
static umode_t
|
|
arm_cspmu_event_attr_is_visible(struct kobject *kobj,
|
|
struct attribute *attr, int unused)
|
|
{
|
|
struct device *dev = kobj_to_dev(kobj);
|
|
struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
|
|
struct perf_pmu_events_attr *eattr;
|
|
|
|
eattr = container_of(attr, typeof(*eattr), attr.attr);
|
|
|
|
/* Hide cycle event if not supported */
|
|
if (!supports_cycle_counter(cspmu) &&
|
|
eattr->id == ARM_CSPMU_EVT_CYCLES_DEFAULT)
|
|
return 0;
|
|
|
|
return attr->mode;
|
|
}
|
|
|
|
ssize_t arm_cspmu_sysfs_format_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct dev_ext_attribute *eattr =
|
|
container_of(attr, struct dev_ext_attribute, attr);
|
|
return sysfs_emit(buf, "%s\n", (char *)eattr->var);
|
|
}
|
|
EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_format_show);
|
|
|
|
static struct attribute *arm_cspmu_format_attrs[] = {
|
|
ARM_CSPMU_FORMAT_EVENT_ATTR,
|
|
ARM_CSPMU_FORMAT_FILTER_ATTR,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute **
|
|
arm_cspmu_get_format_attrs(const struct arm_cspmu *cspmu)
|
|
{
|
|
struct attribute **attrs;
|
|
|
|
attrs = devm_kmemdup(cspmu->dev, arm_cspmu_format_attrs,
|
|
sizeof(arm_cspmu_format_attrs), GFP_KERNEL);
|
|
|
|
return attrs;
|
|
}
|
|
|
|
static u32 arm_cspmu_event_type(const struct perf_event *event)
|
|
{
|
|
return event->attr.config & ARM_CSPMU_EVENT_MASK;
|
|
}
|
|
|
|
static bool arm_cspmu_is_cycle_counter_event(const struct perf_event *event)
|
|
{
|
|
return (event->attr.config == ARM_CSPMU_EVT_CYCLES_DEFAULT);
|
|
}
|
|
|
|
static u32 arm_cspmu_event_filter(const struct perf_event *event)
|
|
{
|
|
return event->attr.config1 & ARM_CSPMU_FILTER_MASK;
|
|
}
|
|
|
|
static ssize_t arm_cspmu_identifier_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *page)
|
|
{
|
|
struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
|
|
|
|
return sysfs_emit(page, "%s\n", cspmu->identifier);
|
|
}
|
|
|
|
static struct device_attribute arm_cspmu_identifier_attr =
|
|
__ATTR(identifier, 0444, arm_cspmu_identifier_show, NULL);
|
|
|
|
static struct attribute *arm_cspmu_identifier_attrs[] = {
|
|
&arm_cspmu_identifier_attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group arm_cspmu_identifier_attr_group = {
|
|
.attrs = arm_cspmu_identifier_attrs,
|
|
};
|
|
|
|
static const char *arm_cspmu_get_identifier(const struct arm_cspmu *cspmu)
|
|
{
|
|
const char *identifier =
|
|
devm_kasprintf(cspmu->dev, GFP_KERNEL, "%x",
|
|
cspmu->impl.pmiidr);
|
|
return identifier;
|
|
}
|
|
|
|
static const char *arm_cspmu_type_str[ACPI_APMT_NODE_TYPE_COUNT] = {
|
|
"mc",
|
|
"smmu",
|
|
"pcie",
|
|
"acpi",
|
|
"cache",
|
|
};
|
|
|
|
static const char *arm_cspmu_get_name(const struct arm_cspmu *cspmu)
|
|
{
|
|
struct device *dev;
|
|
struct acpi_apmt_node *apmt_node;
|
|
u8 pmu_type;
|
|
char *name;
|
|
char acpi_hid_string[ACPI_ID_LEN] = { 0 };
|
|
static atomic_t pmu_idx[ACPI_APMT_NODE_TYPE_COUNT] = { 0 };
|
|
|
|
dev = cspmu->dev;
|
|
apmt_node = arm_cspmu_apmt_node(dev);
|
|
pmu_type = apmt_node->type;
|
|
|
|
if (pmu_type >= ACPI_APMT_NODE_TYPE_COUNT) {
|
|
dev_err(dev, "unsupported PMU type-%u\n", pmu_type);
|
|
return NULL;
|
|
}
|
|
|
|
if (pmu_type == ACPI_APMT_NODE_TYPE_ACPI) {
|
|
memcpy(acpi_hid_string,
|
|
&apmt_node->inst_primary,
|
|
sizeof(apmt_node->inst_primary));
|
|
name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%s_%u", PMUNAME,
|
|
arm_cspmu_type_str[pmu_type],
|
|
acpi_hid_string,
|
|
apmt_node->inst_secondary);
|
|
} else {
|
|
name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%d", PMUNAME,
|
|
arm_cspmu_type_str[pmu_type],
|
|
atomic_fetch_inc(&pmu_idx[pmu_type]));
|
|
}
|
|
|
|
return name;
|
|
}
|
|
|
|
static ssize_t arm_cspmu_cpumask_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct pmu *pmu = dev_get_drvdata(dev);
|
|
struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
|
|
struct dev_ext_attribute *eattr =
|
|
container_of(attr, struct dev_ext_attribute, attr);
|
|
unsigned long mask_id = (unsigned long)eattr->var;
|
|
const cpumask_t *cpumask;
|
|
|
|
switch (mask_id) {
|
|
case ARM_CSPMU_ACTIVE_CPU_MASK:
|
|
cpumask = &cspmu->active_cpu;
|
|
break;
|
|
case ARM_CSPMU_ASSOCIATED_CPU_MASK:
|
|
cpumask = &cspmu->associated_cpus;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
return cpumap_print_to_pagebuf(true, buf, cpumask);
|
|
}
|
|
|
|
static struct attribute *arm_cspmu_cpumask_attrs[] = {
|
|
ARM_CSPMU_CPUMASK_ATTR(cpumask, ARM_CSPMU_ACTIVE_CPU_MASK),
|
|
ARM_CSPMU_CPUMASK_ATTR(associated_cpus, ARM_CSPMU_ASSOCIATED_CPU_MASK),
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group arm_cspmu_cpumask_attr_group = {
|
|
.attrs = arm_cspmu_cpumask_attrs,
|
|
};
|
|
|
|
static struct arm_cspmu_impl_match impl_match[] = {
|
|
{
|
|
.module_name = "nvidia_cspmu",
|
|
.pmiidr_val = ARM_CSPMU_IMPL_ID_NVIDIA,
|
|
.pmiidr_mask = ARM_CSPMU_PMIIDR_IMPLEMENTER,
|
|
.module = NULL,
|
|
.impl_init_ops = NULL,
|
|
},
|
|
{
|
|
.module_name = "ampere_cspmu",
|
|
.pmiidr_val = ARM_CSPMU_IMPL_ID_AMPERE,
|
|
.pmiidr_mask = ARM_CSPMU_PMIIDR_IMPLEMENTER,
|
|
.module = NULL,
|
|
.impl_init_ops = NULL,
|
|
},
|
|
|
|
{0}
|
|
};
|
|
|
|
static struct arm_cspmu_impl_match *arm_cspmu_impl_match_get(u32 pmiidr)
|
|
{
|
|
struct arm_cspmu_impl_match *match = impl_match;
|
|
|
|
for (; match->pmiidr_val; match++) {
|
|
u32 mask = match->pmiidr_mask;
|
|
|
|
if ((match->pmiidr_val & mask) == (pmiidr & mask))
|
|
return match;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int arm_cspmu_init_impl_ops(struct arm_cspmu *cspmu)
|
|
{
|
|
int ret = 0;
|
|
struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
|
|
struct acpi_apmt_node *apmt_node = arm_cspmu_apmt_node(cspmu->dev);
|
|
struct arm_cspmu_impl_match *match;
|
|
|
|
/*
|
|
* Get PMU implementer and product id from APMT node.
|
|
* If APMT node doesn't have implementer/product id, try get it
|
|
* from PMIIDR.
|
|
*/
|
|
cspmu->impl.pmiidr =
|
|
(apmt_node->impl_id) ? apmt_node->impl_id :
|
|
readl(cspmu->base0 + PMIIDR);
|
|
|
|
/* Find implementer specific attribute ops. */
|
|
match = arm_cspmu_impl_match_get(cspmu->impl.pmiidr);
|
|
|
|
/* Load implementer module and initialize the callbacks. */
|
|
if (match) {
|
|
mutex_lock(&arm_cspmu_lock);
|
|
|
|
if (match->impl_init_ops) {
|
|
/* Prevent unload until PMU registration is done. */
|
|
if (try_module_get(match->module)) {
|
|
cspmu->impl.module = match->module;
|
|
cspmu->impl.match = match;
|
|
ret = match->impl_init_ops(cspmu);
|
|
if (ret)
|
|
module_put(match->module);
|
|
} else {
|
|
WARN(1, "arm_cspmu failed to get module: %s\n",
|
|
match->module_name);
|
|
ret = -EINVAL;
|
|
}
|
|
} else {
|
|
request_module_nowait(match->module_name);
|
|
ret = -EPROBE_DEFER;
|
|
}
|
|
|
|
mutex_unlock(&arm_cspmu_lock);
|
|
|
|
if (ret)
|
|
return ret;
|
|
} else
|
|
cspmu->impl.module = THIS_MODULE;
|
|
|
|
/* Use default callbacks if implementer doesn't provide one. */
|
|
CHECK_DEFAULT_IMPL_OPS(impl_ops, get_event_attrs);
|
|
CHECK_DEFAULT_IMPL_OPS(impl_ops, get_format_attrs);
|
|
CHECK_DEFAULT_IMPL_OPS(impl_ops, get_identifier);
|
|
CHECK_DEFAULT_IMPL_OPS(impl_ops, get_name);
|
|
CHECK_DEFAULT_IMPL_OPS(impl_ops, is_cycle_counter_event);
|
|
CHECK_DEFAULT_IMPL_OPS(impl_ops, event_type);
|
|
CHECK_DEFAULT_IMPL_OPS(impl_ops, event_filter);
|
|
CHECK_DEFAULT_IMPL_OPS(impl_ops, event_attr_is_visible);
|
|
CHECK_DEFAULT_IMPL_OPS(impl_ops, set_ev_filter);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct attribute_group *
|
|
arm_cspmu_alloc_event_attr_group(struct arm_cspmu *cspmu)
|
|
{
|
|
struct attribute_group *event_group;
|
|
struct device *dev = cspmu->dev;
|
|
const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
|
|
|
|
event_group =
|
|
devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
|
|
if (!event_group)
|
|
return NULL;
|
|
|
|
event_group->name = "events";
|
|
event_group->is_visible = impl_ops->event_attr_is_visible;
|
|
event_group->attrs = impl_ops->get_event_attrs(cspmu);
|
|
|
|
if (!event_group->attrs)
|
|
return NULL;
|
|
|
|
return event_group;
|
|
}
|
|
|
|
static struct attribute_group *
|
|
arm_cspmu_alloc_format_attr_group(struct arm_cspmu *cspmu)
|
|
{
|
|
struct attribute_group *format_group;
|
|
struct device *dev = cspmu->dev;
|
|
|
|
format_group =
|
|
devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
|
|
if (!format_group)
|
|
return NULL;
|
|
|
|
format_group->name = "format";
|
|
format_group->attrs = cspmu->impl.ops.get_format_attrs(cspmu);
|
|
|
|
if (!format_group->attrs)
|
|
return NULL;
|
|
|
|
return format_group;
|
|
}
|
|
|
|
static struct attribute_group **
|
|
arm_cspmu_alloc_attr_group(struct arm_cspmu *cspmu)
|
|
{
|
|
struct attribute_group **attr_groups = NULL;
|
|
struct device *dev = cspmu->dev;
|
|
const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
|
|
|
|
cspmu->identifier = impl_ops->get_identifier(cspmu);
|
|
cspmu->name = impl_ops->get_name(cspmu);
|
|
|
|
if (!cspmu->identifier || !cspmu->name)
|
|
return NULL;
|
|
|
|
attr_groups = devm_kcalloc(dev, 5, sizeof(struct attribute_group *),
|
|
GFP_KERNEL);
|
|
if (!attr_groups)
|
|
return NULL;
|
|
|
|
attr_groups[0] = arm_cspmu_alloc_event_attr_group(cspmu);
|
|
attr_groups[1] = arm_cspmu_alloc_format_attr_group(cspmu);
|
|
attr_groups[2] = &arm_cspmu_identifier_attr_group;
|
|
attr_groups[3] = &arm_cspmu_cpumask_attr_group;
|
|
|
|
if (!attr_groups[0] || !attr_groups[1])
|
|
return NULL;
|
|
|
|
return attr_groups;
|
|
}
|
|
|
|
static inline void arm_cspmu_reset_counters(struct arm_cspmu *cspmu)
|
|
{
|
|
u32 pmcr = 0;
|
|
|
|
pmcr |= PMCR_P;
|
|
pmcr |= PMCR_C;
|
|
writel(pmcr, cspmu->base0 + PMCR);
|
|
}
|
|
|
|
static inline void arm_cspmu_start_counters(struct arm_cspmu *cspmu)
|
|
{
|
|
writel(PMCR_E, cspmu->base0 + PMCR);
|
|
}
|
|
|
|
static inline void arm_cspmu_stop_counters(struct arm_cspmu *cspmu)
|
|
{
|
|
writel(0, cspmu->base0 + PMCR);
|
|
}
|
|
|
|
static void arm_cspmu_enable(struct pmu *pmu)
|
|
{
|
|
bool disabled;
|
|
struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
|
|
|
|
disabled = bitmap_empty(cspmu->hw_events.used_ctrs,
|
|
cspmu->num_logical_ctrs);
|
|
|
|
if (disabled)
|
|
return;
|
|
|
|
arm_cspmu_start_counters(cspmu);
|
|
}
|
|
|
|
static void arm_cspmu_disable(struct pmu *pmu)
|
|
{
|
|
struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
|
|
|
|
arm_cspmu_stop_counters(cspmu);
|
|
}
|
|
|
|
static int arm_cspmu_get_event_idx(struct arm_cspmu_hw_events *hw_events,
|
|
struct perf_event *event)
|
|
{
|
|
int idx, ret;
|
|
struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
|
|
|
|
if (supports_cycle_counter(cspmu)) {
|
|
if (cspmu->impl.ops.is_cycle_counter_event(event)) {
|
|
/* Search for available cycle counter. */
|
|
if (test_and_set_bit(cspmu->cycle_counter_logical_idx,
|
|
hw_events->used_ctrs))
|
|
return -EAGAIN;
|
|
|
|
return cspmu->cycle_counter_logical_idx;
|
|
}
|
|
|
|
/*
|
|
* Search a regular counter from the used counter bitmap.
|
|
* The cycle counter divides the bitmap into two parts. Search
|
|
* the first then second half to exclude the cycle counter bit.
|
|
*/
|
|
idx = find_first_zero_bit(hw_events->used_ctrs,
|
|
cspmu->cycle_counter_logical_idx);
|
|
if (idx >= cspmu->cycle_counter_logical_idx) {
|
|
idx = find_next_zero_bit(
|
|
hw_events->used_ctrs,
|
|
cspmu->num_logical_ctrs,
|
|
cspmu->cycle_counter_logical_idx + 1);
|
|
}
|
|
} else {
|
|
idx = find_first_zero_bit(hw_events->used_ctrs,
|
|
cspmu->num_logical_ctrs);
|
|
}
|
|
|
|
if (idx >= cspmu->num_logical_ctrs)
|
|
return -EAGAIN;
|
|
|
|
if (cspmu->impl.ops.validate_event) {
|
|
ret = cspmu->impl.ops.validate_event(cspmu, event);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
set_bit(idx, hw_events->used_ctrs);
|
|
|
|
return idx;
|
|
}
|
|
|
|
static bool arm_cspmu_validate_event(struct pmu *pmu,
|
|
struct arm_cspmu_hw_events *hw_events,
|
|
struct perf_event *event)
|
|
{
|
|
if (is_software_event(event))
|
|
return true;
|
|
|
|
/* Reject groups spanning multiple HW PMUs. */
|
|
if (event->pmu != pmu)
|
|
return false;
|
|
|
|
return (arm_cspmu_get_event_idx(hw_events, event) >= 0);
|
|
}
|
|
|
|
/*
|
|
* Make sure the group of events can be scheduled at once
|
|
* on the PMU.
|
|
*/
|
|
static bool arm_cspmu_validate_group(struct perf_event *event)
|
|
{
|
|
struct perf_event *sibling, *leader = event->group_leader;
|
|
struct arm_cspmu_hw_events fake_hw_events;
|
|
|
|
if (event->group_leader == event)
|
|
return true;
|
|
|
|
memset(&fake_hw_events, 0, sizeof(fake_hw_events));
|
|
|
|
if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events, leader))
|
|
return false;
|
|
|
|
for_each_sibling_event(sibling, leader) {
|
|
if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events,
|
|
sibling))
|
|
return false;
|
|
}
|
|
|
|
return arm_cspmu_validate_event(event->pmu, &fake_hw_events, event);
|
|
}
|
|
|
|
static int arm_cspmu_event_init(struct perf_event *event)
|
|
{
|
|
struct arm_cspmu *cspmu;
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
cspmu = to_arm_cspmu(event->pmu);
|
|
|
|
if (event->attr.type != event->pmu->type)
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* Following other "uncore" PMUs, we do not support sampling mode or
|
|
* attach to a task (per-process mode).
|
|
*/
|
|
if (is_sampling_event(event)) {
|
|
dev_dbg(cspmu->pmu.dev,
|
|
"Can't support sampling events\n");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
if (event->cpu < 0 || event->attach_state & PERF_ATTACH_TASK) {
|
|
dev_dbg(cspmu->pmu.dev,
|
|
"Can't support per-task counters\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Make sure the CPU assignment is on one of the CPUs associated with
|
|
* this PMU.
|
|
*/
|
|
if (!cpumask_test_cpu(event->cpu, &cspmu->associated_cpus)) {
|
|
dev_dbg(cspmu->pmu.dev,
|
|
"Requested cpu is not associated with the PMU\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Enforce the current active CPU to handle the events in this PMU. */
|
|
event->cpu = cpumask_first(&cspmu->active_cpu);
|
|
if (event->cpu >= nr_cpu_ids)
|
|
return -EINVAL;
|
|
|
|
if (!arm_cspmu_validate_group(event))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* The logical counter id is tracked with hw_perf_event.extra_reg.idx.
|
|
* The physical counter id is tracked with hw_perf_event.idx.
|
|
* We don't assign an index until we actually place the event onto
|
|
* hardware. Use -1 to signify that we haven't decided where to put it
|
|
* yet.
|
|
*/
|
|
hwc->idx = -1;
|
|
hwc->extra_reg.idx = -1;
|
|
hwc->config = cspmu->impl.ops.event_type(event);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline u32 counter_offset(u32 reg_sz, u32 ctr_idx)
|
|
{
|
|
return (PMEVCNTR_LO + (reg_sz * ctr_idx));
|
|
}
|
|
|
|
static void arm_cspmu_write_counter(struct perf_event *event, u64 val)
|
|
{
|
|
u32 offset;
|
|
struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
|
|
|
|
if (use_64b_counter_reg(cspmu)) {
|
|
offset = counter_offset(sizeof(u64), event->hw.idx);
|
|
|
|
if (cspmu->has_atomic_dword)
|
|
writeq(val, cspmu->base1 + offset);
|
|
else
|
|
lo_hi_writeq(val, cspmu->base1 + offset);
|
|
} else {
|
|
offset = counter_offset(sizeof(u32), event->hw.idx);
|
|
|
|
writel(lower_32_bits(val), cspmu->base1 + offset);
|
|
}
|
|
}
|
|
|
|
static u64 arm_cspmu_read_counter(struct perf_event *event)
|
|
{
|
|
u32 offset;
|
|
const void __iomem *counter_addr;
|
|
struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
|
|
|
|
if (use_64b_counter_reg(cspmu)) {
|
|
offset = counter_offset(sizeof(u64), event->hw.idx);
|
|
counter_addr = cspmu->base1 + offset;
|
|
|
|
return cspmu->has_atomic_dword ?
|
|
readq(counter_addr) :
|
|
read_reg64_hilohi(counter_addr, HILOHI_MAX_POLL);
|
|
}
|
|
|
|
offset = counter_offset(sizeof(u32), event->hw.idx);
|
|
return readl(cspmu->base1 + offset);
|
|
}
|
|
|
|
/*
|
|
* arm_cspmu_set_event_period: Set the period for the counter.
|
|
*
|
|
* To handle cases of extreme interrupt latency, we program
|
|
* the counter with half of the max count for the counters.
|
|
*/
|
|
static void arm_cspmu_set_event_period(struct perf_event *event)
|
|
{
|
|
struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
|
|
u64 val = counter_mask(cspmu) >> 1ULL;
|
|
|
|
local64_set(&event->hw.prev_count, val);
|
|
arm_cspmu_write_counter(event, val);
|
|
}
|
|
|
|
static void arm_cspmu_enable_counter(struct arm_cspmu *cspmu, int idx)
|
|
{
|
|
u32 reg_id, reg_bit, inten_off, cnten_off;
|
|
|
|
reg_id = COUNTER_TO_SET_CLR_ID(idx);
|
|
reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
|
|
|
|
inten_off = PMINTENSET + (4 * reg_id);
|
|
cnten_off = PMCNTENSET + (4 * reg_id);
|
|
|
|
writel(BIT(reg_bit), cspmu->base0 + inten_off);
|
|
writel(BIT(reg_bit), cspmu->base0 + cnten_off);
|
|
}
|
|
|
|
static void arm_cspmu_disable_counter(struct arm_cspmu *cspmu, int idx)
|
|
{
|
|
u32 reg_id, reg_bit, inten_off, cnten_off;
|
|
|
|
reg_id = COUNTER_TO_SET_CLR_ID(idx);
|
|
reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
|
|
|
|
inten_off = PMINTENCLR + (4 * reg_id);
|
|
cnten_off = PMCNTENCLR + (4 * reg_id);
|
|
|
|
writel(BIT(reg_bit), cspmu->base0 + cnten_off);
|
|
writel(BIT(reg_bit), cspmu->base0 + inten_off);
|
|
}
|
|
|
|
static void arm_cspmu_event_update(struct perf_event *event)
|
|
{
|
|
struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
u64 delta, prev, now;
|
|
|
|
do {
|
|
prev = local64_read(&hwc->prev_count);
|
|
now = arm_cspmu_read_counter(event);
|
|
} while (local64_cmpxchg(&hwc->prev_count, prev, now) != prev);
|
|
|
|
delta = (now - prev) & counter_mask(cspmu);
|
|
local64_add(delta, &event->count);
|
|
}
|
|
|
|
static inline void arm_cspmu_set_event(struct arm_cspmu *cspmu,
|
|
struct hw_perf_event *hwc)
|
|
{
|
|
u32 offset = PMEVTYPER + (4 * hwc->idx);
|
|
|
|
writel(hwc->config, cspmu->base0 + offset);
|
|
}
|
|
|
|
static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu,
|
|
struct hw_perf_event *hwc,
|
|
u32 filter)
|
|
{
|
|
u32 offset = PMEVFILTR + (4 * hwc->idx);
|
|
|
|
writel(filter, cspmu->base0 + offset);
|
|
}
|
|
|
|
static inline void arm_cspmu_set_cc_filter(struct arm_cspmu *cspmu, u32 filter)
|
|
{
|
|
u32 offset = PMCCFILTR;
|
|
|
|
writel(filter, cspmu->base0 + offset);
|
|
}
|
|
|
|
static void arm_cspmu_start(struct perf_event *event, int pmu_flags)
|
|
{
|
|
struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
u32 filter;
|
|
|
|
/* We always reprogram the counter */
|
|
if (pmu_flags & PERF_EF_RELOAD)
|
|
WARN_ON(!(hwc->state & PERF_HES_UPTODATE));
|
|
|
|
arm_cspmu_set_event_period(event);
|
|
|
|
filter = cspmu->impl.ops.event_filter(event);
|
|
|
|
if (event->hw.extra_reg.idx == cspmu->cycle_counter_logical_idx) {
|
|
arm_cspmu_set_cc_filter(cspmu, filter);
|
|
} else {
|
|
arm_cspmu_set_event(cspmu, hwc);
|
|
cspmu->impl.ops.set_ev_filter(cspmu, hwc, filter);
|
|
}
|
|
|
|
hwc->state = 0;
|
|
|
|
arm_cspmu_enable_counter(cspmu, hwc->idx);
|
|
}
|
|
|
|
static void arm_cspmu_stop(struct perf_event *event, int pmu_flags)
|
|
{
|
|
struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
if (hwc->state & PERF_HES_STOPPED)
|
|
return;
|
|
|
|
arm_cspmu_disable_counter(cspmu, hwc->idx);
|
|
arm_cspmu_event_update(event);
|
|
|
|
hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
|
|
}
|
|
|
|
static inline u32 to_phys_idx(struct arm_cspmu *cspmu, u32 idx)
|
|
{
|
|
return (idx == cspmu->cycle_counter_logical_idx) ?
|
|
ARM_CSPMU_CYCLE_CNTR_IDX : idx;
|
|
}
|
|
|
|
static int arm_cspmu_add(struct perf_event *event, int flags)
|
|
{
|
|
struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
|
|
struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int idx;
|
|
|
|
if (WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(),
|
|
&cspmu->associated_cpus)))
|
|
return -ENOENT;
|
|
|
|
idx = arm_cspmu_get_event_idx(hw_events, event);
|
|
if (idx < 0)
|
|
return idx;
|
|
|
|
hw_events->events[idx] = event;
|
|
hwc->idx = to_phys_idx(cspmu, idx);
|
|
hwc->extra_reg.idx = idx;
|
|
hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
|
|
|
|
if (flags & PERF_EF_START)
|
|
arm_cspmu_start(event, PERF_EF_RELOAD);
|
|
|
|
/* Propagate changes to the userspace mapping. */
|
|
perf_event_update_userpage(event);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void arm_cspmu_del(struct perf_event *event, int flags)
|
|
{
|
|
struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
|
|
struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int idx = hwc->extra_reg.idx;
|
|
|
|
arm_cspmu_stop(event, PERF_EF_UPDATE);
|
|
|
|
hw_events->events[idx] = NULL;
|
|
|
|
clear_bit(idx, hw_events->used_ctrs);
|
|
|
|
perf_event_update_userpage(event);
|
|
}
|
|
|
|
static void arm_cspmu_read(struct perf_event *event)
|
|
{
|
|
arm_cspmu_event_update(event);
|
|
}
|
|
|
|
static struct arm_cspmu *arm_cspmu_alloc(struct platform_device *pdev)
|
|
{
|
|
struct acpi_apmt_node *apmt_node;
|
|
struct arm_cspmu *cspmu;
|
|
struct device *dev = &pdev->dev;
|
|
|
|
cspmu = devm_kzalloc(dev, sizeof(*cspmu), GFP_KERNEL);
|
|
if (!cspmu)
|
|
return NULL;
|
|
|
|
cspmu->dev = dev;
|
|
platform_set_drvdata(pdev, cspmu);
|
|
|
|
apmt_node = arm_cspmu_apmt_node(dev);
|
|
cspmu->has_atomic_dword = apmt_node->flags & ACPI_APMT_FLAGS_ATOMIC;
|
|
|
|
return cspmu;
|
|
}
|
|
|
|
static int arm_cspmu_init_mmio(struct arm_cspmu *cspmu)
|
|
{
|
|
struct device *dev;
|
|
struct platform_device *pdev;
|
|
|
|
dev = cspmu->dev;
|
|
pdev = to_platform_device(dev);
|
|
|
|
/* Base address for page 0. */
|
|
cspmu->base0 = devm_platform_ioremap_resource(pdev, 0);
|
|
if (IS_ERR(cspmu->base0)) {
|
|
dev_err(dev, "ioremap failed for page-0 resource\n");
|
|
return PTR_ERR(cspmu->base0);
|
|
}
|
|
|
|
/* Base address for page 1 if supported. Otherwise point to page 0. */
|
|
cspmu->base1 = cspmu->base0;
|
|
if (platform_get_resource(pdev, IORESOURCE_MEM, 1)) {
|
|
cspmu->base1 = devm_platform_ioremap_resource(pdev, 1);
|
|
if (IS_ERR(cspmu->base1)) {
|
|
dev_err(dev, "ioremap failed for page-1 resource\n");
|
|
return PTR_ERR(cspmu->base1);
|
|
}
|
|
}
|
|
|
|
cspmu->pmcfgr = readl(cspmu->base0 + PMCFGR);
|
|
|
|
cspmu->num_logical_ctrs = FIELD_GET(PMCFGR_N, cspmu->pmcfgr) + 1;
|
|
|
|
cspmu->cycle_counter_logical_idx = ARM_CSPMU_MAX_HW_CNTRS;
|
|
|
|
if (supports_cycle_counter(cspmu)) {
|
|
/*
|
|
* The last logical counter is mapped to cycle counter if
|
|
* there is a gap between regular and cycle counter. Otherwise,
|
|
* logical and physical have 1-to-1 mapping.
|
|
*/
|
|
cspmu->cycle_counter_logical_idx =
|
|
(cspmu->num_logical_ctrs <= ARM_CSPMU_CYCLE_CNTR_IDX) ?
|
|
cspmu->num_logical_ctrs - 1 :
|
|
ARM_CSPMU_CYCLE_CNTR_IDX;
|
|
}
|
|
|
|
cspmu->num_set_clr_reg =
|
|
DIV_ROUND_UP(cspmu->num_logical_ctrs,
|
|
ARM_CSPMU_SET_CLR_COUNTER_NUM);
|
|
|
|
cspmu->hw_events.events =
|
|
devm_kcalloc(dev, cspmu->num_logical_ctrs,
|
|
sizeof(*cspmu->hw_events.events), GFP_KERNEL);
|
|
|
|
if (!cspmu->hw_events.events)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int arm_cspmu_get_reset_overflow(struct arm_cspmu *cspmu,
|
|
u32 *pmovs)
|
|
{
|
|
int i;
|
|
u32 pmovclr_offset = PMOVSCLR;
|
|
u32 has_overflowed = 0;
|
|
|
|
for (i = 0; i < cspmu->num_set_clr_reg; ++i) {
|
|
pmovs[i] = readl(cspmu->base1 + pmovclr_offset);
|
|
has_overflowed |= pmovs[i];
|
|
writel(pmovs[i], cspmu->base1 + pmovclr_offset);
|
|
pmovclr_offset += sizeof(u32);
|
|
}
|
|
|
|
return has_overflowed != 0;
|
|
}
|
|
|
|
static irqreturn_t arm_cspmu_handle_irq(int irq_num, void *dev)
|
|
{
|
|
int idx, has_overflowed;
|
|
struct perf_event *event;
|
|
struct arm_cspmu *cspmu = dev;
|
|
DECLARE_BITMAP(pmovs, ARM_CSPMU_MAX_HW_CNTRS);
|
|
bool handled = false;
|
|
|
|
arm_cspmu_stop_counters(cspmu);
|
|
|
|
has_overflowed = arm_cspmu_get_reset_overflow(cspmu, (u32 *)pmovs);
|
|
if (!has_overflowed)
|
|
goto done;
|
|
|
|
for_each_set_bit(idx, cspmu->hw_events.used_ctrs,
|
|
cspmu->num_logical_ctrs) {
|
|
event = cspmu->hw_events.events[idx];
|
|
|
|
if (!event)
|
|
continue;
|
|
|
|
if (!test_bit(event->hw.idx, pmovs))
|
|
continue;
|
|
|
|
arm_cspmu_event_update(event);
|
|
arm_cspmu_set_event_period(event);
|
|
|
|
handled = true;
|
|
}
|
|
|
|
done:
|
|
arm_cspmu_start_counters(cspmu);
|
|
return IRQ_RETVAL(handled);
|
|
}
|
|
|
|
static int arm_cspmu_request_irq(struct arm_cspmu *cspmu)
|
|
{
|
|
int irq, ret;
|
|
struct device *dev;
|
|
struct platform_device *pdev;
|
|
|
|
dev = cspmu->dev;
|
|
pdev = to_platform_device(dev);
|
|
|
|
/* Skip IRQ request if the PMU does not support overflow interrupt. */
|
|
irq = platform_get_irq_optional(pdev, 0);
|
|
if (irq < 0)
|
|
return irq == -ENXIO ? 0 : irq;
|
|
|
|
ret = devm_request_irq(dev, irq, arm_cspmu_handle_irq,
|
|
IRQF_NOBALANCING | IRQF_NO_THREAD, dev_name(dev),
|
|
cspmu);
|
|
if (ret) {
|
|
dev_err(dev, "Could not request IRQ %d\n", irq);
|
|
return ret;
|
|
}
|
|
|
|
cspmu->irq = irq;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if defined(CONFIG_ACPI) && defined(CONFIG_ARM64)
|
|
#include <acpi/processor.h>
|
|
|
|
static inline int arm_cspmu_find_cpu_container(int cpu, u32 container_uid)
|
|
{
|
|
struct device *cpu_dev;
|
|
struct acpi_device *acpi_dev;
|
|
|
|
cpu_dev = get_cpu_device(cpu);
|
|
if (!cpu_dev)
|
|
return -ENODEV;
|
|
|
|
acpi_dev = ACPI_COMPANION(cpu_dev);
|
|
while (acpi_dev) {
|
|
if (acpi_dev_hid_uid_match(acpi_dev, ACPI_PROCESSOR_CONTAINER_HID, container_uid))
|
|
return 0;
|
|
|
|
acpi_dev = acpi_dev_parent(acpi_dev);
|
|
}
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu)
|
|
{
|
|
struct acpi_apmt_node *apmt_node;
|
|
int affinity_flag;
|
|
int cpu;
|
|
|
|
apmt_node = arm_cspmu_apmt_node(cspmu->dev);
|
|
affinity_flag = apmt_node->flags & ACPI_APMT_FLAGS_AFFINITY;
|
|
|
|
if (affinity_flag == ACPI_APMT_FLAGS_AFFINITY_PROC) {
|
|
for_each_possible_cpu(cpu) {
|
|
if (apmt_node->proc_affinity ==
|
|
get_acpi_id_for_cpu(cpu)) {
|
|
cpumask_set_cpu(cpu, &cspmu->associated_cpus);
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
for_each_possible_cpu(cpu) {
|
|
if (arm_cspmu_find_cpu_container(
|
|
cpu, apmt_node->proc_affinity))
|
|
continue;
|
|
|
|
cpumask_set_cpu(cpu, &cspmu->associated_cpus);
|
|
}
|
|
}
|
|
|
|
if (cpumask_empty(&cspmu->associated_cpus)) {
|
|
dev_dbg(cspmu->dev, "No cpu associated with the PMU\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
#endif
|
|
|
|
static int arm_cspmu_get_cpus(struct arm_cspmu *cspmu)
|
|
{
|
|
return arm_cspmu_acpi_get_cpus(cspmu);
|
|
}
|
|
|
|
static int arm_cspmu_register_pmu(struct arm_cspmu *cspmu)
|
|
{
|
|
int ret, capabilities;
|
|
struct attribute_group **attr_groups;
|
|
|
|
attr_groups = arm_cspmu_alloc_attr_group(cspmu);
|
|
if (!attr_groups)
|
|
return -ENOMEM;
|
|
|
|
ret = cpuhp_state_add_instance(arm_cspmu_cpuhp_state,
|
|
&cspmu->cpuhp_node);
|
|
if (ret)
|
|
return ret;
|
|
|
|
capabilities = PERF_PMU_CAP_NO_EXCLUDE;
|
|
if (cspmu->irq == 0)
|
|
capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
|
|
|
|
cspmu->pmu = (struct pmu){
|
|
.task_ctx_nr = perf_invalid_context,
|
|
.module = cspmu->impl.module,
|
|
.pmu_enable = arm_cspmu_enable,
|
|
.pmu_disable = arm_cspmu_disable,
|
|
.event_init = arm_cspmu_event_init,
|
|
.add = arm_cspmu_add,
|
|
.del = arm_cspmu_del,
|
|
.start = arm_cspmu_start,
|
|
.stop = arm_cspmu_stop,
|
|
.read = arm_cspmu_read,
|
|
.attr_groups = (const struct attribute_group **)attr_groups,
|
|
.capabilities = capabilities,
|
|
};
|
|
|
|
/* Hardware counter init */
|
|
arm_cspmu_stop_counters(cspmu);
|
|
arm_cspmu_reset_counters(cspmu);
|
|
|
|
ret = perf_pmu_register(&cspmu->pmu, cspmu->name, -1);
|
|
if (ret) {
|
|
cpuhp_state_remove_instance(arm_cspmu_cpuhp_state,
|
|
&cspmu->cpuhp_node);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int arm_cspmu_device_probe(struct platform_device *pdev)
|
|
{
|
|
int ret;
|
|
struct arm_cspmu *cspmu;
|
|
|
|
cspmu = arm_cspmu_alloc(pdev);
|
|
if (!cspmu)
|
|
return -ENOMEM;
|
|
|
|
ret = arm_cspmu_init_mmio(cspmu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = arm_cspmu_request_irq(cspmu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = arm_cspmu_get_cpus(cspmu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = arm_cspmu_init_impl_ops(cspmu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = arm_cspmu_register_pmu(cspmu);
|
|
|
|
/* Matches arm_cspmu_init_impl_ops() above. */
|
|
if (cspmu->impl.module != THIS_MODULE)
|
|
module_put(cspmu->impl.module);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int arm_cspmu_device_remove(struct platform_device *pdev)
|
|
{
|
|
struct arm_cspmu *cspmu = platform_get_drvdata(pdev);
|
|
|
|
perf_pmu_unregister(&cspmu->pmu);
|
|
cpuhp_state_remove_instance(arm_cspmu_cpuhp_state, &cspmu->cpuhp_node);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct platform_device_id arm_cspmu_id[] = {
|
|
{DRVNAME, 0},
|
|
{ },
|
|
};
|
|
MODULE_DEVICE_TABLE(platform, arm_cspmu_id);
|
|
|
|
static struct platform_driver arm_cspmu_driver = {
|
|
.driver = {
|
|
.name = DRVNAME,
|
|
.suppress_bind_attrs = true,
|
|
},
|
|
.probe = arm_cspmu_device_probe,
|
|
.remove = arm_cspmu_device_remove,
|
|
.id_table = arm_cspmu_id,
|
|
};
|
|
|
|
static void arm_cspmu_set_active_cpu(int cpu, struct arm_cspmu *cspmu)
|
|
{
|
|
cpumask_set_cpu(cpu, &cspmu->active_cpu);
|
|
if (cspmu->irq)
|
|
WARN_ON(irq_set_affinity(cspmu->irq, &cspmu->active_cpu));
|
|
}
|
|
|
|
static int arm_cspmu_cpu_online(unsigned int cpu, struct hlist_node *node)
|
|
{
|
|
struct arm_cspmu *cspmu =
|
|
hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
|
|
|
|
if (!cpumask_test_cpu(cpu, &cspmu->associated_cpus))
|
|
return 0;
|
|
|
|
/* If the PMU is already managed, there is nothing to do */
|
|
if (!cpumask_empty(&cspmu->active_cpu))
|
|
return 0;
|
|
|
|
/* Use this CPU for event counting */
|
|
arm_cspmu_set_active_cpu(cpu, cspmu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int arm_cspmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
|
|
{
|
|
int dst;
|
|
struct cpumask online_supported;
|
|
|
|
struct arm_cspmu *cspmu =
|
|
hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
|
|
|
|
/* Nothing to do if this CPU doesn't own the PMU */
|
|
if (!cpumask_test_and_clear_cpu(cpu, &cspmu->active_cpu))
|
|
return 0;
|
|
|
|
/* Choose a new CPU to migrate ownership of the PMU to */
|
|
cpumask_and(&online_supported, &cspmu->associated_cpus,
|
|
cpu_online_mask);
|
|
dst = cpumask_any_but(&online_supported, cpu);
|
|
if (dst >= nr_cpu_ids)
|
|
return 0;
|
|
|
|
/* Use this CPU for event counting */
|
|
perf_pmu_migrate_context(&cspmu->pmu, cpu, dst);
|
|
arm_cspmu_set_active_cpu(dst, cspmu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init arm_cspmu_init(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
|
|
"perf/arm/cspmu:online",
|
|
arm_cspmu_cpu_online,
|
|
arm_cspmu_cpu_teardown);
|
|
if (ret < 0)
|
|
return ret;
|
|
arm_cspmu_cpuhp_state = ret;
|
|
return platform_driver_register(&arm_cspmu_driver);
|
|
}
|
|
|
|
static void __exit arm_cspmu_exit(void)
|
|
{
|
|
platform_driver_unregister(&arm_cspmu_driver);
|
|
cpuhp_remove_multi_state(arm_cspmu_cpuhp_state);
|
|
}
|
|
|
|
int arm_cspmu_impl_register(const struct arm_cspmu_impl_match *impl_match)
|
|
{
|
|
struct arm_cspmu_impl_match *match;
|
|
int ret = 0;
|
|
|
|
match = arm_cspmu_impl_match_get(impl_match->pmiidr_val);
|
|
|
|
if (match) {
|
|
mutex_lock(&arm_cspmu_lock);
|
|
|
|
if (!match->impl_init_ops) {
|
|
match->module = impl_match->module;
|
|
match->impl_init_ops = impl_match->impl_init_ops;
|
|
} else {
|
|
/* Broken match table may contain non-unique entries */
|
|
WARN(1, "arm_cspmu backend already registered for module: %s, pmiidr: 0x%x, mask: 0x%x\n",
|
|
match->module_name,
|
|
match->pmiidr_val,
|
|
match->pmiidr_mask);
|
|
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
mutex_unlock(&arm_cspmu_lock);
|
|
|
|
if (!ret)
|
|
ret = driver_attach(&arm_cspmu_driver.driver);
|
|
} else {
|
|
pr_err("arm_cspmu reg failed, unable to find a match for pmiidr: 0x%x\n",
|
|
impl_match->pmiidr_val);
|
|
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(arm_cspmu_impl_register);
|
|
|
|
static int arm_cspmu_match_device(struct device *dev, const void *match)
|
|
{
|
|
struct arm_cspmu *cspmu = platform_get_drvdata(to_platform_device(dev));
|
|
|
|
return (cspmu && cspmu->impl.match == match) ? 1 : 0;
|
|
}
|
|
|
|
void arm_cspmu_impl_unregister(const struct arm_cspmu_impl_match *impl_match)
|
|
{
|
|
struct device *dev;
|
|
struct arm_cspmu_impl_match *match;
|
|
|
|
match = arm_cspmu_impl_match_get(impl_match->pmiidr_val);
|
|
|
|
if (WARN_ON(!match))
|
|
return;
|
|
|
|
/* Unbind the driver from all matching backend devices. */
|
|
while ((dev = driver_find_device(&arm_cspmu_driver.driver, NULL,
|
|
match, arm_cspmu_match_device)))
|
|
device_release_driver(dev);
|
|
|
|
mutex_lock(&arm_cspmu_lock);
|
|
|
|
match->module = NULL;
|
|
match->impl_init_ops = NULL;
|
|
|
|
mutex_unlock(&arm_cspmu_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(arm_cspmu_impl_unregister);
|
|
|
|
module_init(arm_cspmu_init);
|
|
module_exit(arm_cspmu_exit);
|
|
|
|
MODULE_LICENSE("GPL v2");
|