mirror_ubuntu-kernels/drivers/fpga/fpga-mgr.c

995 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* FPGA Manager Core
*
* Copyright (C) 2013-2015 Altera Corporation
* Copyright (C) 2017 Intel Corporation
*
* With code from the mailing list:
* Copyright (C) 2013 Xilinx, Inc.
*/
#include <linux/firmware.h>
#include <linux/fpga/fpga-mgr.h>
#include <linux/idr.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/scatterlist.h>
#include <linux/highmem.h>
static DEFINE_IDA(fpga_mgr_ida);
static const struct class fpga_mgr_class;
struct fpga_mgr_devres {
struct fpga_manager *mgr;
};
static inline void fpga_mgr_fpga_remove(struct fpga_manager *mgr)
{
if (mgr->mops->fpga_remove)
mgr->mops->fpga_remove(mgr);
}
static inline enum fpga_mgr_states fpga_mgr_state(struct fpga_manager *mgr)
{
if (mgr->mops->state)
return mgr->mops->state(mgr);
return FPGA_MGR_STATE_UNKNOWN;
}
static inline u64 fpga_mgr_status(struct fpga_manager *mgr)
{
if (mgr->mops->status)
return mgr->mops->status(mgr);
return 0;
}
static inline int fpga_mgr_write(struct fpga_manager *mgr, const char *buf, size_t count)
{
if (mgr->mops->write)
return mgr->mops->write(mgr, buf, count);
return -EOPNOTSUPP;
}
/*
* After all the FPGA image has been written, do the device specific steps to
* finish and set the FPGA into operating mode.
*/
static inline int fpga_mgr_write_complete(struct fpga_manager *mgr,
struct fpga_image_info *info)
{
int ret = 0;
mgr->state = FPGA_MGR_STATE_WRITE_COMPLETE;
if (mgr->mops->write_complete)
ret = mgr->mops->write_complete(mgr, info);
if (ret) {
dev_err(&mgr->dev, "Error after writing image data to FPGA\n");
mgr->state = FPGA_MGR_STATE_WRITE_COMPLETE_ERR;
return ret;
}
mgr->state = FPGA_MGR_STATE_OPERATING;
return 0;
}
static inline int fpga_mgr_parse_header(struct fpga_manager *mgr,
struct fpga_image_info *info,
const char *buf, size_t count)
{
if (mgr->mops->parse_header)
return mgr->mops->parse_header(mgr, info, buf, count);
return 0;
}
static inline int fpga_mgr_write_init(struct fpga_manager *mgr,
struct fpga_image_info *info,
const char *buf, size_t count)
{
if (mgr->mops->write_init)
return mgr->mops->write_init(mgr, info, buf, count);
return 0;
}
static inline int fpga_mgr_write_sg(struct fpga_manager *mgr,
struct sg_table *sgt)
{
if (mgr->mops->write_sg)
return mgr->mops->write_sg(mgr, sgt);
return -EOPNOTSUPP;
}
/**
* fpga_image_info_alloc - Allocate an FPGA image info struct
* @dev: owning device
*
* Return: struct fpga_image_info or NULL
*/
struct fpga_image_info *fpga_image_info_alloc(struct device *dev)
{
struct fpga_image_info *info;
get_device(dev);
info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
if (!info) {
put_device(dev);
return NULL;
}
info->dev = dev;
return info;
}
EXPORT_SYMBOL_GPL(fpga_image_info_alloc);
/**
* fpga_image_info_free - Free an FPGA image info struct
* @info: FPGA image info struct to free
*/
void fpga_image_info_free(struct fpga_image_info *info)
{
struct device *dev;
if (!info)
return;
dev = info->dev;
if (info->firmware_name)
devm_kfree(dev, info->firmware_name);
devm_kfree(dev, info);
put_device(dev);
}
EXPORT_SYMBOL_GPL(fpga_image_info_free);
/*
* Call the low level driver's parse_header function with entire FPGA image
* buffer on the input. This will set info->header_size and info->data_size.
*/
static int fpga_mgr_parse_header_mapped(struct fpga_manager *mgr,
struct fpga_image_info *info,
const char *buf, size_t count)
{
int ret;
mgr->state = FPGA_MGR_STATE_PARSE_HEADER;
ret = fpga_mgr_parse_header(mgr, info, buf, count);
if (info->header_size + info->data_size > count) {
dev_err(&mgr->dev, "Bitstream data outruns FPGA image\n");
ret = -EINVAL;
}
if (ret) {
dev_err(&mgr->dev, "Error while parsing FPGA image header\n");
mgr->state = FPGA_MGR_STATE_PARSE_HEADER_ERR;
}
return ret;
}
/*
* Call the low level driver's parse_header function with first fragment of
* scattered FPGA image on the input. If header fits first fragment,
* parse_header will set info->header_size and info->data_size. If it is not,
* parse_header will set desired size to info->header_size and -EAGAIN will be
* returned.
*/
static int fpga_mgr_parse_header_sg_first(struct fpga_manager *mgr,
struct fpga_image_info *info,
struct sg_table *sgt)
{
struct sg_mapping_iter miter;
int ret;
mgr->state = FPGA_MGR_STATE_PARSE_HEADER;
sg_miter_start(&miter, sgt->sgl, sgt->nents, SG_MITER_FROM_SG);
if (sg_miter_next(&miter) &&
miter.length >= info->header_size)
ret = fpga_mgr_parse_header(mgr, info, miter.addr, miter.length);
else
ret = -EAGAIN;
sg_miter_stop(&miter);
if (ret && ret != -EAGAIN) {
dev_err(&mgr->dev, "Error while parsing FPGA image header\n");
mgr->state = FPGA_MGR_STATE_PARSE_HEADER_ERR;
}
return ret;
}
/*
* Copy scattered FPGA image fragments to temporary buffer and call the
* low level driver's parse_header function. This should be called after
* fpga_mgr_parse_header_sg_first() returned -EAGAIN. In case of success,
* pointer to the newly allocated image header copy will be returned and
* its size will be set into *ret_size. Returned buffer needs to be freed.
*/
static void *fpga_mgr_parse_header_sg(struct fpga_manager *mgr,
struct fpga_image_info *info,
struct sg_table *sgt, size_t *ret_size)
{
size_t len, new_header_size, header_size = 0;
char *new_buf, *buf = NULL;
int ret;
do {
new_header_size = info->header_size;
if (new_header_size <= header_size) {
dev_err(&mgr->dev, "Requested invalid header size\n");
ret = -EFAULT;
break;
}
new_buf = krealloc(buf, new_header_size, GFP_KERNEL);
if (!new_buf) {
ret = -ENOMEM;
break;
}
buf = new_buf;
len = sg_pcopy_to_buffer(sgt->sgl, sgt->nents,
buf + header_size,
new_header_size - header_size,
header_size);
if (len != new_header_size - header_size) {
ret = -EFAULT;
break;
}
header_size = new_header_size;
ret = fpga_mgr_parse_header(mgr, info, buf, header_size);
} while (ret == -EAGAIN);
if (ret) {
dev_err(&mgr->dev, "Error while parsing FPGA image header\n");
mgr->state = FPGA_MGR_STATE_PARSE_HEADER_ERR;
kfree(buf);
buf = ERR_PTR(ret);
}
*ret_size = header_size;
return buf;
}
/*
* Call the low level driver's write_init function. This will do the
* device-specific things to get the FPGA into the state where it is ready to
* receive an FPGA image. The low level driver gets to see at least first
* info->header_size bytes in the buffer. If info->header_size is 0,
* write_init will not get any bytes of image buffer.
*/
static int fpga_mgr_write_init_buf(struct fpga_manager *mgr,
struct fpga_image_info *info,
const char *buf, size_t count)
{
size_t header_size = info->header_size;
int ret;
mgr->state = FPGA_MGR_STATE_WRITE_INIT;
if (header_size > count)
ret = -EINVAL;
else if (!header_size)
ret = fpga_mgr_write_init(mgr, info, NULL, 0);
else
ret = fpga_mgr_write_init(mgr, info, buf, count);
if (ret) {
dev_err(&mgr->dev, "Error preparing FPGA for writing\n");
mgr->state = FPGA_MGR_STATE_WRITE_INIT_ERR;
return ret;
}
return 0;
}
static int fpga_mgr_prepare_sg(struct fpga_manager *mgr,
struct fpga_image_info *info,
struct sg_table *sgt)
{
struct sg_mapping_iter miter;
size_t len;
char *buf;
int ret;
/* Short path. Low level driver don't care about image header. */
if (!mgr->mops->initial_header_size && !mgr->mops->parse_header)
return fpga_mgr_write_init_buf(mgr, info, NULL, 0);
/*
* First try to use miter to map the first fragment to access the
* header, this is the typical path.
*/
ret = fpga_mgr_parse_header_sg_first(mgr, info, sgt);
/* If 0, header fits first fragment, call write_init on it */
if (!ret) {
sg_miter_start(&miter, sgt->sgl, sgt->nents, SG_MITER_FROM_SG);
if (sg_miter_next(&miter)) {
ret = fpga_mgr_write_init_buf(mgr, info, miter.addr,
miter.length);
sg_miter_stop(&miter);
return ret;
}
sg_miter_stop(&miter);
/*
* If -EAGAIN, more sg buffer is needed,
* otherwise an error has occurred.
*/
} else if (ret != -EAGAIN) {
return ret;
}
/*
* Copy the fragments into temporary memory.
* Copying is done inside fpga_mgr_parse_header_sg().
*/
buf = fpga_mgr_parse_header_sg(mgr, info, sgt, &len);
if (IS_ERR(buf))
return PTR_ERR(buf);
ret = fpga_mgr_write_init_buf(mgr, info, buf, len);
kfree(buf);
return ret;
}
/**
* fpga_mgr_buf_load_sg - load fpga from image in buffer from a scatter list
* @mgr: fpga manager
* @info: fpga image specific information
* @sgt: scatterlist table
*
* Step the low level fpga manager through the device-specific steps of getting
* an FPGA ready to be configured, writing the image to it, then doing whatever
* post-configuration steps necessary. This code assumes the caller got the
* mgr pointer from of_fpga_mgr_get() or fpga_mgr_get() and checked that it is
* not an error code.
*
* This is the preferred entry point for FPGA programming, it does not require
* any contiguous kernel memory.
*
* Return: 0 on success, negative error code otherwise.
*/
static int fpga_mgr_buf_load_sg(struct fpga_manager *mgr,
struct fpga_image_info *info,
struct sg_table *sgt)
{
int ret;
ret = fpga_mgr_prepare_sg(mgr, info, sgt);
if (ret)
return ret;
/* Write the FPGA image to the FPGA. */
mgr->state = FPGA_MGR_STATE_WRITE;
if (mgr->mops->write_sg) {
ret = fpga_mgr_write_sg(mgr, sgt);
} else {
size_t length, count = 0, data_size = info->data_size;
struct sg_mapping_iter miter;
sg_miter_start(&miter, sgt->sgl, sgt->nents, SG_MITER_FROM_SG);
if (mgr->mops->skip_header &&
!sg_miter_skip(&miter, info->header_size)) {
ret = -EINVAL;
goto out;
}
while (sg_miter_next(&miter)) {
if (data_size)
length = min(miter.length, data_size - count);
else
length = miter.length;
ret = fpga_mgr_write(mgr, miter.addr, length);
if (ret)
break;
count += length;
if (data_size && count >= data_size)
break;
}
sg_miter_stop(&miter);
}
out:
if (ret) {
dev_err(&mgr->dev, "Error while writing image data to FPGA\n");
mgr->state = FPGA_MGR_STATE_WRITE_ERR;
return ret;
}
return fpga_mgr_write_complete(mgr, info);
}
static int fpga_mgr_buf_load_mapped(struct fpga_manager *mgr,
struct fpga_image_info *info,
const char *buf, size_t count)
{
int ret;
ret = fpga_mgr_parse_header_mapped(mgr, info, buf, count);
if (ret)
return ret;
ret = fpga_mgr_write_init_buf(mgr, info, buf, count);
if (ret)
return ret;
if (mgr->mops->skip_header) {
buf += info->header_size;
count -= info->header_size;
}
if (info->data_size)
count = info->data_size;
/*
* Write the FPGA image to the FPGA.
*/
mgr->state = FPGA_MGR_STATE_WRITE;
ret = fpga_mgr_write(mgr, buf, count);
if (ret) {
dev_err(&mgr->dev, "Error while writing image data to FPGA\n");
mgr->state = FPGA_MGR_STATE_WRITE_ERR;
return ret;
}
return fpga_mgr_write_complete(mgr, info);
}
/**
* fpga_mgr_buf_load - load fpga from image in buffer
* @mgr: fpga manager
* @info: fpga image info
* @buf: buffer contain fpga image
* @count: byte count of buf
*
* Step the low level fpga manager through the device-specific steps of getting
* an FPGA ready to be configured, writing the image to it, then doing whatever
* post-configuration steps necessary. This code assumes the caller got the
* mgr pointer from of_fpga_mgr_get() and checked that it is not an error code.
*
* Return: 0 on success, negative error code otherwise.
*/
static int fpga_mgr_buf_load(struct fpga_manager *mgr,
struct fpga_image_info *info,
const char *buf, size_t count)
{
struct page **pages;
struct sg_table sgt;
const void *p;
int nr_pages;
int index;
int rc;
/*
* This is just a fast path if the caller has already created a
* contiguous kernel buffer and the driver doesn't require SG, non-SG
* drivers will still work on the slow path.
*/
if (mgr->mops->write)
return fpga_mgr_buf_load_mapped(mgr, info, buf, count);
/*
* Convert the linear kernel pointer into a sg_table of pages for use
* by the driver.
*/
nr_pages = DIV_ROUND_UP((unsigned long)buf + count, PAGE_SIZE) -
(unsigned long)buf / PAGE_SIZE;
pages = kmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
if (!pages)
return -ENOMEM;
p = buf - offset_in_page(buf);
for (index = 0; index < nr_pages; index++) {
if (is_vmalloc_addr(p))
pages[index] = vmalloc_to_page(p);
else
pages[index] = kmap_to_page((void *)p);
if (!pages[index]) {
kfree(pages);
return -EFAULT;
}
p += PAGE_SIZE;
}
/*
* The temporary pages list is used to code share the merging algorithm
* in sg_alloc_table_from_pages
*/
rc = sg_alloc_table_from_pages(&sgt, pages, index, offset_in_page(buf),
count, GFP_KERNEL);
kfree(pages);
if (rc)
return rc;
rc = fpga_mgr_buf_load_sg(mgr, info, &sgt);
sg_free_table(&sgt);
return rc;
}
/**
* fpga_mgr_firmware_load - request firmware and load to fpga
* @mgr: fpga manager
* @info: fpga image specific information
* @image_name: name of image file on the firmware search path
*
* Request an FPGA image using the firmware class, then write out to the FPGA.
* Update the state before each step to provide info on what step failed if
* there is a failure. This code assumes the caller got the mgr pointer
* from of_fpga_mgr_get() or fpga_mgr_get() and checked that it is not an error
* code.
*
* Return: 0 on success, negative error code otherwise.
*/
static int fpga_mgr_firmware_load(struct fpga_manager *mgr,
struct fpga_image_info *info,
const char *image_name)
{
struct device *dev = &mgr->dev;
const struct firmware *fw;
int ret;
dev_info(dev, "writing %s to %s\n", image_name, mgr->name);
mgr->state = FPGA_MGR_STATE_FIRMWARE_REQ;
ret = request_firmware(&fw, image_name, dev);
if (ret) {
mgr->state = FPGA_MGR_STATE_FIRMWARE_REQ_ERR;
dev_err(dev, "Error requesting firmware %s\n", image_name);
return ret;
}
ret = fpga_mgr_buf_load(mgr, info, fw->data, fw->size);
release_firmware(fw);
return ret;
}
/**
* fpga_mgr_load - load FPGA from scatter/gather table, buffer, or firmware
* @mgr: fpga manager
* @info: fpga image information.
*
* Load the FPGA from an image which is indicated in @info. If successful, the
* FPGA ends up in operating mode.
*
* Return: 0 on success, negative error code otherwise.
*/
int fpga_mgr_load(struct fpga_manager *mgr, struct fpga_image_info *info)
{
info->header_size = mgr->mops->initial_header_size;
if (info->sgt)
return fpga_mgr_buf_load_sg(mgr, info, info->sgt);
if (info->buf && info->count)
return fpga_mgr_buf_load(mgr, info, info->buf, info->count);
if (info->firmware_name)
return fpga_mgr_firmware_load(mgr, info, info->firmware_name);
return -EINVAL;
}
EXPORT_SYMBOL_GPL(fpga_mgr_load);
static const char * const state_str[] = {
[FPGA_MGR_STATE_UNKNOWN] = "unknown",
[FPGA_MGR_STATE_POWER_OFF] = "power off",
[FPGA_MGR_STATE_POWER_UP] = "power up",
[FPGA_MGR_STATE_RESET] = "reset",
/* requesting FPGA image from firmware */
[FPGA_MGR_STATE_FIRMWARE_REQ] = "firmware request",
[FPGA_MGR_STATE_FIRMWARE_REQ_ERR] = "firmware request error",
/* Parse FPGA image header */
[FPGA_MGR_STATE_PARSE_HEADER] = "parse header",
[FPGA_MGR_STATE_PARSE_HEADER_ERR] = "parse header error",
/* Preparing FPGA to receive image */
[FPGA_MGR_STATE_WRITE_INIT] = "write init",
[FPGA_MGR_STATE_WRITE_INIT_ERR] = "write init error",
/* Writing image to FPGA */
[FPGA_MGR_STATE_WRITE] = "write",
[FPGA_MGR_STATE_WRITE_ERR] = "write error",
/* Finishing configuration after image has been written */
[FPGA_MGR_STATE_WRITE_COMPLETE] = "write complete",
[FPGA_MGR_STATE_WRITE_COMPLETE_ERR] = "write complete error",
/* FPGA reports to be in normal operating mode */
[FPGA_MGR_STATE_OPERATING] = "operating",
};
static ssize_t name_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct fpga_manager *mgr = to_fpga_manager(dev);
return sprintf(buf, "%s\n", mgr->name);
}
static ssize_t state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct fpga_manager *mgr = to_fpga_manager(dev);
return sprintf(buf, "%s\n", state_str[mgr->state]);
}
static ssize_t status_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct fpga_manager *mgr = to_fpga_manager(dev);
u64 status;
int len = 0;
status = fpga_mgr_status(mgr);
if (status & FPGA_MGR_STATUS_OPERATION_ERR)
len += sprintf(buf + len, "reconfig operation error\n");
if (status & FPGA_MGR_STATUS_CRC_ERR)
len += sprintf(buf + len, "reconfig CRC error\n");
if (status & FPGA_MGR_STATUS_INCOMPATIBLE_IMAGE_ERR)
len += sprintf(buf + len, "reconfig incompatible image\n");
if (status & FPGA_MGR_STATUS_IP_PROTOCOL_ERR)
len += sprintf(buf + len, "reconfig IP protocol error\n");
if (status & FPGA_MGR_STATUS_FIFO_OVERFLOW_ERR)
len += sprintf(buf + len, "reconfig fifo overflow error\n");
return len;
}
static DEVICE_ATTR_RO(name);
static DEVICE_ATTR_RO(state);
static DEVICE_ATTR_RO(status);
static struct attribute *fpga_mgr_attrs[] = {
&dev_attr_name.attr,
&dev_attr_state.attr,
&dev_attr_status.attr,
NULL,
};
ATTRIBUTE_GROUPS(fpga_mgr);
static struct fpga_manager *__fpga_mgr_get(struct device *dev)
{
struct fpga_manager *mgr;
mgr = to_fpga_manager(dev);
if (!try_module_get(dev->parent->driver->owner))
goto err_dev;
return mgr;
err_dev:
put_device(dev);
return ERR_PTR(-ENODEV);
}
static int fpga_mgr_dev_match(struct device *dev, const void *data)
{
return dev->parent == data;
}
/**
* fpga_mgr_get - Given a device, get a reference to an fpga mgr.
* @dev: parent device that fpga mgr was registered with
*
* Return: fpga manager struct or IS_ERR() condition containing error code.
*/
struct fpga_manager *fpga_mgr_get(struct device *dev)
{
struct device *mgr_dev = class_find_device(&fpga_mgr_class, NULL, dev,
fpga_mgr_dev_match);
if (!mgr_dev)
return ERR_PTR(-ENODEV);
return __fpga_mgr_get(mgr_dev);
}
EXPORT_SYMBOL_GPL(fpga_mgr_get);
/**
* of_fpga_mgr_get - Given a device node, get a reference to an fpga mgr.
*
* @node: device node
*
* Return: fpga manager struct or IS_ERR() condition containing error code.
*/
struct fpga_manager *of_fpga_mgr_get(struct device_node *node)
{
struct device *dev;
dev = class_find_device_by_of_node(&fpga_mgr_class, node);
if (!dev)
return ERR_PTR(-ENODEV);
return __fpga_mgr_get(dev);
}
EXPORT_SYMBOL_GPL(of_fpga_mgr_get);
/**
* fpga_mgr_put - release a reference to an fpga manager
* @mgr: fpga manager structure
*/
void fpga_mgr_put(struct fpga_manager *mgr)
{
module_put(mgr->dev.parent->driver->owner);
put_device(&mgr->dev);
}
EXPORT_SYMBOL_GPL(fpga_mgr_put);
/**
* fpga_mgr_lock - Lock FPGA manager for exclusive use
* @mgr: fpga manager
*
* Given a pointer to FPGA Manager (from fpga_mgr_get() or
* of_fpga_mgr_put()) attempt to get the mutex. The user should call
* fpga_mgr_lock() and verify that it returns 0 before attempting to
* program the FPGA. Likewise, the user should call fpga_mgr_unlock
* when done programming the FPGA.
*
* Return: 0 for success or -EBUSY
*/
int fpga_mgr_lock(struct fpga_manager *mgr)
{
if (!mutex_trylock(&mgr->ref_mutex)) {
dev_err(&mgr->dev, "FPGA manager is in use.\n");
return -EBUSY;
}
return 0;
}
EXPORT_SYMBOL_GPL(fpga_mgr_lock);
/**
* fpga_mgr_unlock - Unlock FPGA manager after done programming
* @mgr: fpga manager
*/
void fpga_mgr_unlock(struct fpga_manager *mgr)
{
mutex_unlock(&mgr->ref_mutex);
}
EXPORT_SYMBOL_GPL(fpga_mgr_unlock);
/**
* fpga_mgr_register_full - create and register an FPGA Manager device
* @parent: fpga manager device from pdev
* @info: parameters for fpga manager
*
* The caller of this function is responsible for calling fpga_mgr_unregister().
* Using devm_fpga_mgr_register_full() instead is recommended.
*
* Return: pointer to struct fpga_manager pointer or ERR_PTR()
*/
struct fpga_manager *
fpga_mgr_register_full(struct device *parent, const struct fpga_manager_info *info)
{
const struct fpga_manager_ops *mops = info->mops;
struct fpga_manager *mgr;
int id, ret;
if (!mops) {
dev_err(parent, "Attempt to register without fpga_manager_ops\n");
return ERR_PTR(-EINVAL);
}
if (!info->name || !strlen(info->name)) {
dev_err(parent, "Attempt to register with no name!\n");
return ERR_PTR(-EINVAL);
}
mgr = kzalloc(sizeof(*mgr), GFP_KERNEL);
if (!mgr)
return ERR_PTR(-ENOMEM);
id = ida_alloc(&fpga_mgr_ida, GFP_KERNEL);
if (id < 0) {
ret = id;
goto error_kfree;
}
mutex_init(&mgr->ref_mutex);
mgr->name = info->name;
mgr->mops = info->mops;
mgr->priv = info->priv;
mgr->compat_id = info->compat_id;
mgr->dev.class = &fpga_mgr_class;
mgr->dev.groups = mops->groups;
mgr->dev.parent = parent;
mgr->dev.of_node = parent->of_node;
mgr->dev.id = id;
ret = dev_set_name(&mgr->dev, "fpga%d", id);
if (ret)
goto error_device;
/*
* Initialize framework state by requesting low level driver read state
* from device. FPGA may be in reset mode or may have been programmed
* by bootloader or EEPROM.
*/
mgr->state = fpga_mgr_state(mgr);
ret = device_register(&mgr->dev);
if (ret) {
put_device(&mgr->dev);
return ERR_PTR(ret);
}
return mgr;
error_device:
ida_free(&fpga_mgr_ida, id);
error_kfree:
kfree(mgr);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(fpga_mgr_register_full);
/**
* fpga_mgr_register - create and register an FPGA Manager device
* @parent: fpga manager device from pdev
* @name: fpga manager name
* @mops: pointer to structure of fpga manager ops
* @priv: fpga manager private data
*
* The caller of this function is responsible for calling fpga_mgr_unregister().
* Using devm_fpga_mgr_register() instead is recommended. This simple
* version of the register function should be sufficient for most users. The
* fpga_mgr_register_full() function is available for users that need to pass
* additional, optional parameters.
*
* Return: pointer to struct fpga_manager pointer or ERR_PTR()
*/
struct fpga_manager *
fpga_mgr_register(struct device *parent, const char *name,
const struct fpga_manager_ops *mops, void *priv)
{
struct fpga_manager_info info = { 0 };
info.name = name;
info.mops = mops;
info.priv = priv;
return fpga_mgr_register_full(parent, &info);
}
EXPORT_SYMBOL_GPL(fpga_mgr_register);
/**
* fpga_mgr_unregister - unregister an FPGA manager
* @mgr: fpga manager struct
*
* This function is intended for use in an FPGA manager driver's remove function.
*/
void fpga_mgr_unregister(struct fpga_manager *mgr)
{
dev_info(&mgr->dev, "%s %s\n", __func__, mgr->name);
/*
* If the low level driver provides a method for putting fpga into
* a desired state upon unregister, do it.
*/
fpga_mgr_fpga_remove(mgr);
device_unregister(&mgr->dev);
}
EXPORT_SYMBOL_GPL(fpga_mgr_unregister);
static void devm_fpga_mgr_unregister(struct device *dev, void *res)
{
struct fpga_mgr_devres *dr = res;
fpga_mgr_unregister(dr->mgr);
}
/**
* devm_fpga_mgr_register_full - resource managed variant of fpga_mgr_register()
* @parent: fpga manager device from pdev
* @info: parameters for fpga manager
*
* Return: fpga manager pointer on success, negative error code otherwise.
*
* This is the devres variant of fpga_mgr_register_full() for which the unregister
* function will be called automatically when the managing device is detached.
*/
struct fpga_manager *
devm_fpga_mgr_register_full(struct device *parent, const struct fpga_manager_info *info)
{
struct fpga_mgr_devres *dr;
struct fpga_manager *mgr;
dr = devres_alloc(devm_fpga_mgr_unregister, sizeof(*dr), GFP_KERNEL);
if (!dr)
return ERR_PTR(-ENOMEM);
mgr = fpga_mgr_register_full(parent, info);
if (IS_ERR(mgr)) {
devres_free(dr);
return mgr;
}
dr->mgr = mgr;
devres_add(parent, dr);
return mgr;
}
EXPORT_SYMBOL_GPL(devm_fpga_mgr_register_full);
/**
* devm_fpga_mgr_register - resource managed variant of fpga_mgr_register()
* @parent: fpga manager device from pdev
* @name: fpga manager name
* @mops: pointer to structure of fpga manager ops
* @priv: fpga manager private data
*
* Return: fpga manager pointer on success, negative error code otherwise.
*
* This is the devres variant of fpga_mgr_register() for which the
* unregister function will be called automatically when the managing
* device is detached.
*/
struct fpga_manager *
devm_fpga_mgr_register(struct device *parent, const char *name,
const struct fpga_manager_ops *mops, void *priv)
{
struct fpga_manager_info info = { 0 };
info.name = name;
info.mops = mops;
info.priv = priv;
return devm_fpga_mgr_register_full(parent, &info);
}
EXPORT_SYMBOL_GPL(devm_fpga_mgr_register);
static void fpga_mgr_dev_release(struct device *dev)
{
struct fpga_manager *mgr = to_fpga_manager(dev);
ida_free(&fpga_mgr_ida, mgr->dev.id);
kfree(mgr);
}
static const struct class fpga_mgr_class = {
.name = "fpga_manager",
.dev_groups = fpga_mgr_groups,
.dev_release = fpga_mgr_dev_release,
};
static int __init fpga_mgr_class_init(void)
{
pr_info("FPGA manager framework\n");
return class_register(&fpga_mgr_class);
}
static void __exit fpga_mgr_class_exit(void)
{
class_unregister(&fpga_mgr_class);
ida_destroy(&fpga_mgr_ida);
}
MODULE_AUTHOR("Alan Tull <atull@kernel.org>");
MODULE_DESCRIPTION("FPGA manager framework");
MODULE_LICENSE("GPL v2");
subsys_initcall(fpga_mgr_class_init);
module_exit(fpga_mgr_class_exit);