283 lines
7.6 KiB
C
283 lines
7.6 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* EFI stub implementation that is shared by arm and arm64 architectures.
|
|
* This should be #included by the EFI stub implementation files.
|
|
*
|
|
* Copyright (C) 2013,2014 Linaro Limited
|
|
* Roy Franz <roy.franz@linaro.org
|
|
* Copyright (C) 2013 Red Hat, Inc.
|
|
* Mark Salter <msalter@redhat.com>
|
|
*/
|
|
|
|
#include <linux/efi.h>
|
|
#include <asm/efi.h>
|
|
|
|
#include "efistub.h"
|
|
|
|
/*
|
|
* This is the base address at which to start allocating virtual memory ranges
|
|
* for UEFI Runtime Services.
|
|
*
|
|
* For ARM/ARM64:
|
|
* This is in the low TTBR0 range so that we can use
|
|
* any allocation we choose, and eliminate the risk of a conflict after kexec.
|
|
* The value chosen is the largest non-zero power of 2 suitable for this purpose
|
|
* both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
|
|
* be mapped efficiently.
|
|
* Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
|
|
* map everything below 1 GB. (512 MB is a reasonable upper bound for the
|
|
* entire footprint of the UEFI runtime services memory regions)
|
|
*
|
|
* For RISC-V:
|
|
* There is no specific reason for which, this address (512MB) can't be used
|
|
* EFI runtime virtual address for RISC-V. It also helps to use EFI runtime
|
|
* services on both RV32/RV64. Keep the same runtime virtual address for RISC-V
|
|
* as well to minimize the code churn.
|
|
*/
|
|
#define EFI_RT_VIRTUAL_BASE SZ_512M
|
|
|
|
/*
|
|
* Some architectures map the EFI regions into the kernel's linear map using a
|
|
* fixed offset.
|
|
*/
|
|
#ifndef EFI_RT_VIRTUAL_OFFSET
|
|
#define EFI_RT_VIRTUAL_OFFSET 0
|
|
#endif
|
|
|
|
static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
|
|
static bool flat_va_mapping = (EFI_RT_VIRTUAL_OFFSET != 0);
|
|
|
|
void __weak free_screen_info(struct screen_info *si)
|
|
{
|
|
}
|
|
|
|
static struct screen_info *setup_graphics(void)
|
|
{
|
|
efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
|
|
efi_status_t status;
|
|
unsigned long size;
|
|
void **gop_handle = NULL;
|
|
struct screen_info *si = NULL;
|
|
|
|
size = 0;
|
|
status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
|
|
&gop_proto, NULL, &size, gop_handle);
|
|
if (status == EFI_BUFFER_TOO_SMALL) {
|
|
si = alloc_screen_info();
|
|
if (!si)
|
|
return NULL;
|
|
status = efi_setup_gop(si, &gop_proto, size);
|
|
if (status != EFI_SUCCESS) {
|
|
free_screen_info(si);
|
|
return NULL;
|
|
}
|
|
}
|
|
return si;
|
|
}
|
|
|
|
static void install_memreserve_table(void)
|
|
{
|
|
struct linux_efi_memreserve *rsv;
|
|
efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID;
|
|
efi_status_t status;
|
|
|
|
status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv),
|
|
(void **)&rsv);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to allocate memreserve entry!\n");
|
|
return;
|
|
}
|
|
|
|
rsv->next = 0;
|
|
rsv->size = 0;
|
|
atomic_set(&rsv->count, 0);
|
|
|
|
status = efi_bs_call(install_configuration_table,
|
|
&memreserve_table_guid, rsv);
|
|
if (status != EFI_SUCCESS)
|
|
efi_err("Failed to install memreserve config table!\n");
|
|
}
|
|
|
|
static u32 get_supported_rt_services(void)
|
|
{
|
|
const efi_rt_properties_table_t *rt_prop_table;
|
|
u32 supported = EFI_RT_SUPPORTED_ALL;
|
|
|
|
rt_prop_table = get_efi_config_table(EFI_RT_PROPERTIES_TABLE_GUID);
|
|
if (rt_prop_table)
|
|
supported &= rt_prop_table->runtime_services_supported;
|
|
|
|
return supported;
|
|
}
|
|
|
|
efi_status_t efi_handle_cmdline(efi_loaded_image_t *image, char **cmdline_ptr)
|
|
{
|
|
int cmdline_size = 0;
|
|
efi_status_t status;
|
|
char *cmdline;
|
|
|
|
/*
|
|
* Get the command line from EFI, using the LOADED_IMAGE
|
|
* protocol. We are going to copy the command line into the
|
|
* device tree, so this can be allocated anywhere.
|
|
*/
|
|
cmdline = efi_convert_cmdline(image, &cmdline_size);
|
|
if (!cmdline) {
|
|
efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n");
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
|
|
IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
|
|
cmdline_size == 0) {
|
|
status = efi_parse_options(CONFIG_CMDLINE);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to parse options\n");
|
|
goto fail_free_cmdline;
|
|
}
|
|
}
|
|
|
|
if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0) {
|
|
status = efi_parse_options(cmdline);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_err("Failed to parse options\n");
|
|
goto fail_free_cmdline;
|
|
}
|
|
}
|
|
|
|
*cmdline_ptr = cmdline;
|
|
return EFI_SUCCESS;
|
|
|
|
fail_free_cmdline:
|
|
efi_bs_call(free_pool, cmdline_ptr);
|
|
return status;
|
|
}
|
|
|
|
efi_status_t efi_stub_common(efi_handle_t handle,
|
|
efi_loaded_image_t *image,
|
|
unsigned long image_addr,
|
|
char *cmdline_ptr)
|
|
{
|
|
struct screen_info *si;
|
|
efi_status_t status;
|
|
|
|
status = check_platform_features();
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
si = setup_graphics();
|
|
|
|
efi_retrieve_eventlog();
|
|
|
|
/* Ask the firmware to clear memory on unclean shutdown */
|
|
efi_enable_reset_attack_mitigation();
|
|
|
|
efi_load_initrd(image, ULONG_MAX, efi_get_max_initrd_addr(image_addr),
|
|
NULL);
|
|
|
|
efi_random_get_seed();
|
|
|
|
/* force efi_novamap if SetVirtualAddressMap() is unsupported */
|
|
efi_novamap |= !(get_supported_rt_services() &
|
|
EFI_RT_SUPPORTED_SET_VIRTUAL_ADDRESS_MAP);
|
|
|
|
install_memreserve_table();
|
|
|
|
status = efi_boot_kernel(handle, image, image_addr, cmdline_ptr);
|
|
|
|
free_screen_info(si);
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* efi_allocate_virtmap() - create a pool allocation for the virtmap
|
|
*
|
|
* Create an allocation that is of sufficient size to hold all the memory
|
|
* descriptors that will be passed to SetVirtualAddressMap() to inform the
|
|
* firmware about the virtual mapping that will be used under the OS to call
|
|
* into the firmware.
|
|
*/
|
|
efi_status_t efi_alloc_virtmap(efi_memory_desc_t **virtmap,
|
|
unsigned long *desc_size, u32 *desc_ver)
|
|
{
|
|
unsigned long size, mmap_key;
|
|
efi_status_t status;
|
|
|
|
/*
|
|
* Use the size of the current memory map as an upper bound for the
|
|
* size of the buffer we need to pass to SetVirtualAddressMap() to
|
|
* cover all EFI_MEMORY_RUNTIME regions.
|
|
*/
|
|
size = 0;
|
|
status = efi_bs_call(get_memory_map, &size, NULL, &mmap_key, desc_size,
|
|
desc_ver);
|
|
if (status != EFI_BUFFER_TOO_SMALL)
|
|
return EFI_LOAD_ERROR;
|
|
|
|
return efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
|
|
(void **)virtmap);
|
|
}
|
|
|
|
/*
|
|
* efi_get_virtmap() - create a virtual mapping for the EFI memory map
|
|
*
|
|
* This function populates the virt_addr fields of all memory region descriptors
|
|
* in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
|
|
* are also copied to @runtime_map, and their total count is returned in @count.
|
|
*/
|
|
void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
|
|
unsigned long desc_size, efi_memory_desc_t *runtime_map,
|
|
int *count)
|
|
{
|
|
u64 efi_virt_base = virtmap_base;
|
|
efi_memory_desc_t *in, *out = runtime_map;
|
|
int l;
|
|
|
|
*count = 0;
|
|
|
|
for (l = 0; l < map_size; l += desc_size) {
|
|
u64 paddr, size;
|
|
|
|
in = (void *)memory_map + l;
|
|
if (!(in->attribute & EFI_MEMORY_RUNTIME))
|
|
continue;
|
|
|
|
paddr = in->phys_addr;
|
|
size = in->num_pages * EFI_PAGE_SIZE;
|
|
|
|
in->virt_addr = in->phys_addr + EFI_RT_VIRTUAL_OFFSET;
|
|
if (efi_novamap) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Make the mapping compatible with 64k pages: this allows
|
|
* a 4k page size kernel to kexec a 64k page size kernel and
|
|
* vice versa.
|
|
*/
|
|
if (!flat_va_mapping) {
|
|
|
|
paddr = round_down(in->phys_addr, SZ_64K);
|
|
size += in->phys_addr - paddr;
|
|
|
|
/*
|
|
* Avoid wasting memory on PTEs by choosing a virtual
|
|
* base that is compatible with section mappings if this
|
|
* region has the appropriate size and physical
|
|
* alignment. (Sections are 2 MB on 4k granule kernels)
|
|
*/
|
|
if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
|
|
efi_virt_base = round_up(efi_virt_base, SZ_2M);
|
|
else
|
|
efi_virt_base = round_up(efi_virt_base, SZ_64K);
|
|
|
|
in->virt_addr += efi_virt_base - paddr;
|
|
efi_virt_base += size;
|
|
}
|
|
|
|
memcpy(out, in, desc_size);
|
|
out = (void *)out + desc_size;
|
|
++*count;
|
|
}
|
|
}
|