mirror_ubuntu-kernels/crypto/aria_generic.c

318 lines
7.5 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Cryptographic API.
*
* ARIA Cipher Algorithm.
*
* Documentation of ARIA can be found in RFC 5794.
* Copyright (c) 2022 Taehee Yoo <ap420073@gmail.com>
*
* Information for ARIA
* http://210.104.33.10/ARIA/index-e.html (English)
* http://seed.kisa.or.kr/ (Korean)
*
* Public domain version is distributed above.
*/
#include <crypto/aria.h>
static const u32 key_rc[20] = {
0x517cc1b7, 0x27220a94, 0xfe13abe8, 0xfa9a6ee0,
0x6db14acc, 0x9e21c820, 0xff28b1d5, 0xef5de2b0,
0xdb92371d, 0x2126e970, 0x03249775, 0x04e8c90e,
0x517cc1b7, 0x27220a94, 0xfe13abe8, 0xfa9a6ee0,
0x6db14acc, 0x9e21c820, 0xff28b1d5, 0xef5de2b0
};
static void aria_set_encrypt_key(struct aria_ctx *ctx, const u8 *in_key,
unsigned int key_len)
{
const __be32 *key = (const __be32 *)in_key;
u32 w0[4], w1[4], w2[4], w3[4];
u32 reg0, reg1, reg2, reg3;
const u32 *ck;
int rkidx = 0;
ck = &key_rc[(key_len - 16) / 2];
w0[0] = be32_to_cpu(key[0]);
w0[1] = be32_to_cpu(key[1]);
w0[2] = be32_to_cpu(key[2]);
w0[3] = be32_to_cpu(key[3]);
reg0 = w0[0] ^ ck[0];
reg1 = w0[1] ^ ck[1];
reg2 = w0[2] ^ ck[2];
reg3 = w0[3] ^ ck[3];
aria_subst_diff_odd(&reg0, &reg1, &reg2, &reg3);
if (key_len > 16) {
w1[0] = be32_to_cpu(key[4]);
w1[1] = be32_to_cpu(key[5]);
if (key_len > 24) {
w1[2] = be32_to_cpu(key[6]);
w1[3] = be32_to_cpu(key[7]);
} else {
w1[2] = 0;
w1[3] = 0;
}
} else {
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
}
w1[0] ^= reg0;
w1[1] ^= reg1;
w1[2] ^= reg2;
w1[3] ^= reg3;
reg0 = w1[0];
reg1 = w1[1];
reg2 = w1[2];
reg3 = w1[3];
reg0 ^= ck[4];
reg1 ^= ck[5];
reg2 ^= ck[6];
reg3 ^= ck[7];
aria_subst_diff_even(&reg0, &reg1, &reg2, &reg3);
reg0 ^= w0[0];
reg1 ^= w0[1];
reg2 ^= w0[2];
reg3 ^= w0[3];
w2[0] = reg0;
w2[1] = reg1;
w2[2] = reg2;
w2[3] = reg3;
reg0 ^= ck[8];
reg1 ^= ck[9];
reg2 ^= ck[10];
reg3 ^= ck[11];
aria_subst_diff_odd(&reg0, &reg1, &reg2, &reg3);
w3[0] = reg0 ^ w1[0];
w3[1] = reg1 ^ w1[1];
w3[2] = reg2 ^ w1[2];
w3[3] = reg3 ^ w1[3];
aria_gsrk(ctx->enc_key[rkidx], w0, w1, 19);
rkidx++;
aria_gsrk(ctx->enc_key[rkidx], w1, w2, 19);
rkidx++;
aria_gsrk(ctx->enc_key[rkidx], w2, w3, 19);
rkidx++;
aria_gsrk(ctx->enc_key[rkidx], w3, w0, 19);
rkidx++;
aria_gsrk(ctx->enc_key[rkidx], w0, w1, 31);
rkidx++;
aria_gsrk(ctx->enc_key[rkidx], w1, w2, 31);
rkidx++;
aria_gsrk(ctx->enc_key[rkidx], w2, w3, 31);
rkidx++;
aria_gsrk(ctx->enc_key[rkidx], w3, w0, 31);
rkidx++;
aria_gsrk(ctx->enc_key[rkidx], w0, w1, 67);
rkidx++;
aria_gsrk(ctx->enc_key[rkidx], w1, w2, 67);
rkidx++;
aria_gsrk(ctx->enc_key[rkidx], w2, w3, 67);
rkidx++;
aria_gsrk(ctx->enc_key[rkidx], w3, w0, 67);
rkidx++;
aria_gsrk(ctx->enc_key[rkidx], w0, w1, 97);
if (key_len > 16) {
rkidx++;
aria_gsrk(ctx->enc_key[rkidx], w1, w2, 97);
rkidx++;
aria_gsrk(ctx->enc_key[rkidx], w2, w3, 97);
if (key_len > 24) {
rkidx++;
aria_gsrk(ctx->enc_key[rkidx], w3, w0, 97);
rkidx++;
aria_gsrk(ctx->enc_key[rkidx], w0, w1, 109);
}
}
}
static void aria_set_decrypt_key(struct aria_ctx *ctx)
{
int i;
for (i = 0; i < 4; i++) {
ctx->dec_key[0][i] = ctx->enc_key[ctx->rounds][i];
ctx->dec_key[ctx->rounds][i] = ctx->enc_key[0][i];
}
for (i = 1; i < ctx->rounds; i++) {
ctx->dec_key[i][0] = aria_m(ctx->enc_key[ctx->rounds - i][0]);
ctx->dec_key[i][1] = aria_m(ctx->enc_key[ctx->rounds - i][1]);
ctx->dec_key[i][2] = aria_m(ctx->enc_key[ctx->rounds - i][2]);
ctx->dec_key[i][3] = aria_m(ctx->enc_key[ctx->rounds - i][3]);
aria_diff_word(&ctx->dec_key[i][0], &ctx->dec_key[i][1],
&ctx->dec_key[i][2], &ctx->dec_key[i][3]);
aria_diff_byte(&ctx->dec_key[i][1],
&ctx->dec_key[i][2], &ctx->dec_key[i][3]);
aria_diff_word(&ctx->dec_key[i][0], &ctx->dec_key[i][1],
&ctx->dec_key[i][2], &ctx->dec_key[i][3]);
}
}
int aria_set_key(struct crypto_tfm *tfm, const u8 *in_key, unsigned int key_len)
{
struct aria_ctx *ctx = crypto_tfm_ctx(tfm);
if (key_len != 16 && key_len != 24 && key_len != 32)
return -EINVAL;
BUILD_BUG_ON(sizeof(ctx->enc_key) != 272);
BUILD_BUG_ON(sizeof(ctx->dec_key) != 272);
BUILD_BUG_ON(sizeof(int) != sizeof(ctx->rounds));
ctx->key_length = key_len;
ctx->rounds = (key_len + 32) / 4;
aria_set_encrypt_key(ctx, in_key, key_len);
aria_set_decrypt_key(ctx);
return 0;
}
EXPORT_SYMBOL_GPL(aria_set_key);
static void __aria_crypt(struct aria_ctx *ctx, u8 *out, const u8 *in,
u32 key[][ARIA_RD_KEY_WORDS])
{
const __be32 *src = (const __be32 *)in;
__be32 *dst = (__be32 *)out;
u32 reg0, reg1, reg2, reg3;
int rounds, rkidx = 0;
rounds = ctx->rounds;
reg0 = be32_to_cpu(src[0]);
reg1 = be32_to_cpu(src[1]);
reg2 = be32_to_cpu(src[2]);
reg3 = be32_to_cpu(src[3]);
aria_add_round_key(key[rkidx], &reg0, &reg1, &reg2, &reg3);
rkidx++;
aria_subst_diff_odd(&reg0, &reg1, &reg2, &reg3);
aria_add_round_key(key[rkidx], &reg0, &reg1, &reg2, &reg3);
rkidx++;
while ((rounds -= 2) > 0) {
aria_subst_diff_even(&reg0, &reg1, &reg2, &reg3);
aria_add_round_key(key[rkidx], &reg0, &reg1, &reg2, &reg3);
rkidx++;
aria_subst_diff_odd(&reg0, &reg1, &reg2, &reg3);
aria_add_round_key(key[rkidx], &reg0, &reg1, &reg2, &reg3);
rkidx++;
}
reg0 = key[rkidx][0] ^ make_u32((u8)(x1[get_u8(reg0, 0)]),
(u8)(x2[get_u8(reg0, 1)] >> 8),
(u8)(s1[get_u8(reg0, 2)]),
(u8)(s2[get_u8(reg0, 3)]));
reg1 = key[rkidx][1] ^ make_u32((u8)(x1[get_u8(reg1, 0)]),
(u8)(x2[get_u8(reg1, 1)] >> 8),
(u8)(s1[get_u8(reg1, 2)]),
(u8)(s2[get_u8(reg1, 3)]));
reg2 = key[rkidx][2] ^ make_u32((u8)(x1[get_u8(reg2, 0)]),
(u8)(x2[get_u8(reg2, 1)] >> 8),
(u8)(s1[get_u8(reg2, 2)]),
(u8)(s2[get_u8(reg2, 3)]));
reg3 = key[rkidx][3] ^ make_u32((u8)(x1[get_u8(reg3, 0)]),
(u8)(x2[get_u8(reg3, 1)] >> 8),
(u8)(s1[get_u8(reg3, 2)]),
(u8)(s2[get_u8(reg3, 3)]));
dst[0] = cpu_to_be32(reg0);
dst[1] = cpu_to_be32(reg1);
dst[2] = cpu_to_be32(reg2);
dst[3] = cpu_to_be32(reg3);
}
void aria_encrypt(void *_ctx, u8 *out, const u8 *in)
{
struct aria_ctx *ctx = (struct aria_ctx *)_ctx;
__aria_crypt(ctx, out, in, ctx->enc_key);
}
EXPORT_SYMBOL_GPL(aria_encrypt);
void aria_decrypt(void *_ctx, u8 *out, const u8 *in)
{
struct aria_ctx *ctx = (struct aria_ctx *)_ctx;
__aria_crypt(ctx, out, in, ctx->dec_key);
}
EXPORT_SYMBOL_GPL(aria_decrypt);
static void __aria_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
struct aria_ctx *ctx = crypto_tfm_ctx(tfm);
__aria_crypt(ctx, out, in, ctx->enc_key);
}
static void __aria_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
struct aria_ctx *ctx = crypto_tfm_ctx(tfm);
__aria_crypt(ctx, out, in, ctx->dec_key);
}
static struct crypto_alg aria_alg = {
.cra_name = "aria",
.cra_driver_name = "aria-generic",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = ARIA_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aria_ctx),
.cra_alignmask = 3,
.cra_module = THIS_MODULE,
.cra_u = {
.cipher = {
.cia_min_keysize = ARIA_MIN_KEY_SIZE,
.cia_max_keysize = ARIA_MAX_KEY_SIZE,
.cia_setkey = aria_set_key,
.cia_encrypt = __aria_encrypt,
.cia_decrypt = __aria_decrypt
}
}
};
static int __init aria_init(void)
{
return crypto_register_alg(&aria_alg);
}
static void __exit aria_fini(void)
{
crypto_unregister_alg(&aria_alg);
}
subsys_initcall(aria_init);
module_exit(aria_fini);
MODULE_DESCRIPTION("ARIA Cipher Algorithm");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Taehee Yoo <ap420073@gmail.com>");
MODULE_ALIAS_CRYPTO("aria");
MODULE_ALIAS_CRYPTO("aria-generic");