678 lines
16 KiB
C
678 lines
16 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
|
|
*
|
|
* SMP support for BMIPS
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/hotplug.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/io.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/linkage.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/irq.h>
|
|
|
|
#include <asm/time.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/bootinfo.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/mipsregs.h>
|
|
#include <asm/bmips.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/barrier.h>
|
|
#include <asm/cpu-features.h>
|
|
|
|
static int __maybe_unused max_cpus = 1;
|
|
|
|
/* these may be configured by the platform code */
|
|
int bmips_smp_enabled = 1;
|
|
int bmips_cpu_offset;
|
|
cpumask_t bmips_booted_mask;
|
|
unsigned long bmips_tp1_irqs = IE_IRQ1;
|
|
|
|
#define RESET_FROM_KSEG0 0x80080800
|
|
#define RESET_FROM_KSEG1 0xa0080800
|
|
|
|
static void bmips_set_reset_vec(int cpu, u32 val);
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
#include <asm/smp.h>
|
|
|
|
/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
|
|
unsigned long bmips_smp_boot_sp;
|
|
unsigned long bmips_smp_boot_gp;
|
|
|
|
static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
|
|
static void bmips5000_send_ipi_single(int cpu, unsigned int action);
|
|
static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
|
|
static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
|
|
|
|
/* SW interrupts 0,1 are used for interprocessor signaling */
|
|
#define IPI0_IRQ (MIPS_CPU_IRQ_BASE + 0)
|
|
#define IPI1_IRQ (MIPS_CPU_IRQ_BASE + 1)
|
|
|
|
#define CPUNUM(cpu, shift) (((cpu) + bmips_cpu_offset) << (shift))
|
|
#define ACTION_CLR_IPI(cpu, ipi) (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
|
|
#define ACTION_SET_IPI(cpu, ipi) (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
|
|
#define ACTION_BOOT_THREAD(cpu) (0x08 | CPUNUM(cpu, 0))
|
|
|
|
static void __init bmips_smp_setup(void)
|
|
{
|
|
int i, cpu = 1, boot_cpu = 0;
|
|
int cpu_hw_intr;
|
|
|
|
switch (current_cpu_type()) {
|
|
case CPU_BMIPS4350:
|
|
case CPU_BMIPS4380:
|
|
/* arbitration priority */
|
|
clear_c0_brcm_cmt_ctrl(0x30);
|
|
|
|
/* NBK and weak order flags */
|
|
set_c0_brcm_config_0(0x30000);
|
|
|
|
/* Find out if we are running on TP0 or TP1 */
|
|
boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
|
|
|
|
/*
|
|
* MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
|
|
* thread
|
|
* MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
|
|
* MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
|
|
*/
|
|
if (boot_cpu == 0)
|
|
cpu_hw_intr = 0x02;
|
|
else
|
|
cpu_hw_intr = 0x1d;
|
|
|
|
change_c0_brcm_cmt_intr(0xf8018000,
|
|
(cpu_hw_intr << 27) | (0x03 << 15));
|
|
|
|
/* single core, 2 threads (2 pipelines) */
|
|
max_cpus = 2;
|
|
|
|
break;
|
|
case CPU_BMIPS5000:
|
|
/* enable raceless SW interrupts */
|
|
set_c0_brcm_config(0x03 << 22);
|
|
|
|
/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
|
|
change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
|
|
|
|
/* N cores, 2 threads per core */
|
|
max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
|
|
|
|
/* clear any pending SW interrupts */
|
|
for (i = 0; i < max_cpus; i++) {
|
|
write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
|
|
write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
|
|
}
|
|
|
|
break;
|
|
default:
|
|
max_cpus = 1;
|
|
}
|
|
|
|
if (!bmips_smp_enabled)
|
|
max_cpus = 1;
|
|
|
|
/* this can be overridden by the BSP */
|
|
if (!board_ebase_setup)
|
|
board_ebase_setup = &bmips_ebase_setup;
|
|
|
|
if (max_cpus > 1) {
|
|
__cpu_number_map[boot_cpu] = 0;
|
|
__cpu_logical_map[0] = boot_cpu;
|
|
|
|
for (i = 0; i < max_cpus; i++) {
|
|
if (i != boot_cpu) {
|
|
__cpu_number_map[i] = cpu;
|
|
__cpu_logical_map[cpu] = i;
|
|
cpu++;
|
|
}
|
|
set_cpu_possible(i, 1);
|
|
set_cpu_present(i, 1);
|
|
}
|
|
} else {
|
|
__cpu_number_map[0] = boot_cpu;
|
|
__cpu_logical_map[0] = 0;
|
|
set_cpu_possible(0, 1);
|
|
set_cpu_present(0, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* IPI IRQ setup - runs on CPU0
|
|
*/
|
|
static void bmips_prepare_cpus(unsigned int max_cpus)
|
|
{
|
|
irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
|
|
|
|
switch (current_cpu_type()) {
|
|
case CPU_BMIPS4350:
|
|
case CPU_BMIPS4380:
|
|
bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
|
|
break;
|
|
case CPU_BMIPS5000:
|
|
bmips_ipi_interrupt = bmips5000_ipi_interrupt;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
|
|
IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
|
|
panic("Can't request IPI0 interrupt");
|
|
if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
|
|
IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
|
|
panic("Can't request IPI1 interrupt");
|
|
}
|
|
|
|
/*
|
|
* Tell the hardware to boot CPUx - runs on CPU0
|
|
*/
|
|
static int bmips_boot_secondary(int cpu, struct task_struct *idle)
|
|
{
|
|
bmips_smp_boot_sp = __KSTK_TOS(idle);
|
|
bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
|
|
mb();
|
|
|
|
/*
|
|
* Initial boot sequence for secondary CPU:
|
|
* bmips_reset_nmi_vec @ a000_0000 ->
|
|
* bmips_smp_entry ->
|
|
* plat_wired_tlb_setup (cached function call; optional) ->
|
|
* start_secondary (cached jump)
|
|
*
|
|
* Warm restart sequence:
|
|
* play_dead WAIT loop ->
|
|
* bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
|
|
* eret to play_dead ->
|
|
* bmips_secondary_reentry ->
|
|
* start_secondary
|
|
*/
|
|
|
|
pr_info("SMP: Booting CPU%d...\n", cpu);
|
|
|
|
if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
|
|
/* kseg1 might not exist if this CPU enabled XKS01 */
|
|
bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
|
|
|
|
switch (current_cpu_type()) {
|
|
case CPU_BMIPS4350:
|
|
case CPU_BMIPS4380:
|
|
bmips43xx_send_ipi_single(cpu, 0);
|
|
break;
|
|
case CPU_BMIPS5000:
|
|
bmips5000_send_ipi_single(cpu, 0);
|
|
break;
|
|
}
|
|
} else {
|
|
bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
|
|
|
|
switch (current_cpu_type()) {
|
|
case CPU_BMIPS4350:
|
|
case CPU_BMIPS4380:
|
|
/* Reset slave TP1 if booting from TP0 */
|
|
if (cpu_logical_map(cpu) == 1)
|
|
set_c0_brcm_cmt_ctrl(0x01);
|
|
break;
|
|
case CPU_BMIPS5000:
|
|
write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
|
|
break;
|
|
}
|
|
cpumask_set_cpu(cpu, &bmips_booted_mask);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Early setup - runs on secondary CPU after cache probe
|
|
*/
|
|
static void bmips_init_secondary(void)
|
|
{
|
|
bmips_cpu_setup();
|
|
|
|
switch (current_cpu_type()) {
|
|
case CPU_BMIPS4350:
|
|
case CPU_BMIPS4380:
|
|
clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
|
|
break;
|
|
case CPU_BMIPS5000:
|
|
write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
|
|
cpu_set_core(¤t_cpu_data, (read_c0_brcm_config() >> 25) & 3);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Late setup - runs on secondary CPU before entering the idle loop
|
|
*/
|
|
static void bmips_smp_finish(void)
|
|
{
|
|
pr_info("SMP: CPU%d is running\n", smp_processor_id());
|
|
|
|
/* make sure there won't be a timer interrupt for a little while */
|
|
write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
|
|
|
|
irq_enable_hazard();
|
|
set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
|
|
irq_enable_hazard();
|
|
}
|
|
|
|
/*
|
|
* BMIPS5000 raceless IPIs
|
|
*
|
|
* Each CPU has two inbound SW IRQs which are independent of all other CPUs.
|
|
* IPI0 is used for SMP_RESCHEDULE_YOURSELF
|
|
* IPI1 is used for SMP_CALL_FUNCTION
|
|
*/
|
|
|
|
static void bmips5000_send_ipi_single(int cpu, unsigned int action)
|
|
{
|
|
write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
|
|
}
|
|
|
|
static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
|
|
{
|
|
int action = irq - IPI0_IRQ;
|
|
|
|
write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
|
|
|
|
if (action == 0)
|
|
scheduler_ipi();
|
|
else
|
|
generic_smp_call_function_interrupt();
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void bmips5000_send_ipi_mask(const struct cpumask *mask,
|
|
unsigned int action)
|
|
{
|
|
unsigned int i;
|
|
|
|
for_each_cpu(i, mask)
|
|
bmips5000_send_ipi_single(i, action);
|
|
}
|
|
|
|
/*
|
|
* BMIPS43xx racey IPIs
|
|
*
|
|
* We use one inbound SW IRQ for each CPU.
|
|
*
|
|
* A spinlock must be held in order to keep CPUx from accidentally clearing
|
|
* an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy. The
|
|
* same spinlock is used to protect the action masks.
|
|
*/
|
|
|
|
static DEFINE_SPINLOCK(ipi_lock);
|
|
static DEFINE_PER_CPU(int, ipi_action_mask);
|
|
|
|
static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ipi_lock, flags);
|
|
set_c0_cause(cpu ? C_SW1 : C_SW0);
|
|
per_cpu(ipi_action_mask, cpu) |= action;
|
|
irq_enable_hazard();
|
|
spin_unlock_irqrestore(&ipi_lock, flags);
|
|
}
|
|
|
|
static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
|
|
{
|
|
unsigned long flags;
|
|
int action, cpu = irq - IPI0_IRQ;
|
|
|
|
spin_lock_irqsave(&ipi_lock, flags);
|
|
action = __this_cpu_read(ipi_action_mask);
|
|
per_cpu(ipi_action_mask, cpu) = 0;
|
|
clear_c0_cause(cpu ? C_SW1 : C_SW0);
|
|
spin_unlock_irqrestore(&ipi_lock, flags);
|
|
|
|
if (action & SMP_RESCHEDULE_YOURSELF)
|
|
scheduler_ipi();
|
|
if (action & SMP_CALL_FUNCTION)
|
|
generic_smp_call_function_interrupt();
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
|
|
unsigned int action)
|
|
{
|
|
unsigned int i;
|
|
|
|
for_each_cpu(i, mask)
|
|
bmips43xx_send_ipi_single(i, action);
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
|
|
static int bmips_cpu_disable(void)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
|
|
pr_info("SMP: CPU%d is offline\n", cpu);
|
|
|
|
set_cpu_online(cpu, false);
|
|
calculate_cpu_foreign_map();
|
|
irq_migrate_all_off_this_cpu();
|
|
clear_c0_status(IE_IRQ5);
|
|
|
|
local_flush_tlb_all();
|
|
local_flush_icache_range(0, ~0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bmips_cpu_die(unsigned int cpu)
|
|
{
|
|
}
|
|
|
|
void __ref play_dead(void)
|
|
{
|
|
idle_task_exit();
|
|
cpuhp_ap_report_dead();
|
|
|
|
/* flush data cache */
|
|
_dma_cache_wback_inv(0, ~0);
|
|
|
|
/*
|
|
* Wakeup is on SW0 or SW1; disable everything else
|
|
* Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
|
|
* IRQ handlers; this clears ST0_IE and returns immediately.
|
|
*/
|
|
clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
|
|
change_c0_status(
|
|
IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
|
|
IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
|
|
irq_disable_hazard();
|
|
|
|
/*
|
|
* wait for SW interrupt from bmips_boot_secondary(), then jump
|
|
* back to start_secondary()
|
|
*/
|
|
__asm__ __volatile__(
|
|
" wait\n"
|
|
" j bmips_secondary_reentry\n"
|
|
: : : "memory");
|
|
|
|
BUG();
|
|
}
|
|
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
const struct plat_smp_ops bmips43xx_smp_ops = {
|
|
.smp_setup = bmips_smp_setup,
|
|
.prepare_cpus = bmips_prepare_cpus,
|
|
.boot_secondary = bmips_boot_secondary,
|
|
.smp_finish = bmips_smp_finish,
|
|
.init_secondary = bmips_init_secondary,
|
|
.send_ipi_single = bmips43xx_send_ipi_single,
|
|
.send_ipi_mask = bmips43xx_send_ipi_mask,
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
.cpu_disable = bmips_cpu_disable,
|
|
.cpu_die = bmips_cpu_die,
|
|
#endif
|
|
#ifdef CONFIG_KEXEC_CORE
|
|
.kexec_nonboot_cpu = kexec_nonboot_cpu_jump,
|
|
#endif
|
|
};
|
|
|
|
const struct plat_smp_ops bmips5000_smp_ops = {
|
|
.smp_setup = bmips_smp_setup,
|
|
.prepare_cpus = bmips_prepare_cpus,
|
|
.boot_secondary = bmips_boot_secondary,
|
|
.smp_finish = bmips_smp_finish,
|
|
.init_secondary = bmips_init_secondary,
|
|
.send_ipi_single = bmips5000_send_ipi_single,
|
|
.send_ipi_mask = bmips5000_send_ipi_mask,
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
.cpu_disable = bmips_cpu_disable,
|
|
.cpu_die = bmips_cpu_die,
|
|
#endif
|
|
#ifdef CONFIG_KEXEC_CORE
|
|
.kexec_nonboot_cpu = kexec_nonboot_cpu_jump,
|
|
#endif
|
|
};
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/***********************************************************************
|
|
* BMIPS vector relocation
|
|
* This is primarily used for SMP boot, but it is applicable to some
|
|
* UP BMIPS systems as well.
|
|
***********************************************************************/
|
|
|
|
static void bmips_wr_vec(unsigned long dst, char *start, char *end)
|
|
{
|
|
memcpy((void *)dst, start, end - start);
|
|
dma_cache_wback(dst, end - start);
|
|
local_flush_icache_range(dst, dst + (end - start));
|
|
instruction_hazard();
|
|
}
|
|
|
|
static inline void bmips_nmi_handler_setup(void)
|
|
{
|
|
bmips_wr_vec(BMIPS_NMI_RESET_VEC, bmips_reset_nmi_vec,
|
|
bmips_reset_nmi_vec_end);
|
|
bmips_wr_vec(BMIPS_WARM_RESTART_VEC, bmips_smp_int_vec,
|
|
bmips_smp_int_vec_end);
|
|
}
|
|
|
|
struct reset_vec_info {
|
|
int cpu;
|
|
u32 val;
|
|
};
|
|
|
|
static void bmips_set_reset_vec_remote(void *vinfo)
|
|
{
|
|
struct reset_vec_info *info = vinfo;
|
|
int shift = info->cpu & 0x01 ? 16 : 0;
|
|
u32 mask = ~(0xffff << shift), val = info->val >> 16;
|
|
|
|
preempt_disable();
|
|
if (smp_processor_id() > 0) {
|
|
smp_call_function_single(0, &bmips_set_reset_vec_remote,
|
|
info, 1);
|
|
} else {
|
|
if (info->cpu & 0x02) {
|
|
/* BMIPS5200 "should" use mask/shift, but it's buggy */
|
|
bmips_write_zscm_reg(0xa0, (val << 16) | val);
|
|
bmips_read_zscm_reg(0xa0);
|
|
} else {
|
|
write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
|
|
(val << shift));
|
|
}
|
|
}
|
|
preempt_enable();
|
|
}
|
|
|
|
static void bmips_set_reset_vec(int cpu, u32 val)
|
|
{
|
|
struct reset_vec_info info;
|
|
|
|
if (current_cpu_type() == CPU_BMIPS5000) {
|
|
/* this needs to run from CPU0 (which is always online) */
|
|
info.cpu = cpu;
|
|
info.val = val;
|
|
bmips_set_reset_vec_remote(&info);
|
|
} else {
|
|
void __iomem *cbr = BMIPS_GET_CBR();
|
|
|
|
if (cpu == 0)
|
|
__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
|
|
else {
|
|
if (current_cpu_type() != CPU_BMIPS4380)
|
|
return;
|
|
__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
|
|
}
|
|
}
|
|
__sync();
|
|
back_to_back_c0_hazard();
|
|
}
|
|
|
|
void bmips_ebase_setup(void)
|
|
{
|
|
unsigned long new_ebase = ebase;
|
|
|
|
BUG_ON(ebase != CKSEG0);
|
|
|
|
switch (current_cpu_type()) {
|
|
case CPU_BMIPS4350:
|
|
/*
|
|
* BMIPS4350 cannot relocate the normal vectors, but it
|
|
* can relocate the BEV=1 vectors. So CPU1 starts up at
|
|
* the relocated BEV=1, IV=0 general exception vector @
|
|
* 0xa000_0380.
|
|
*
|
|
* set_uncached_handler() is used here because:
|
|
* - CPU1 will run this from uncached space
|
|
* - None of the cacheflush functions are set up yet
|
|
*/
|
|
set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
|
|
&bmips_smp_int_vec, 0x80);
|
|
__sync();
|
|
return;
|
|
case CPU_BMIPS3300:
|
|
case CPU_BMIPS4380:
|
|
/*
|
|
* 0x8000_0000: reset/NMI (initially in kseg1)
|
|
* 0x8000_0400: normal vectors
|
|
*/
|
|
new_ebase = 0x80000400;
|
|
bmips_set_reset_vec(0, RESET_FROM_KSEG0);
|
|
break;
|
|
case CPU_BMIPS5000:
|
|
/*
|
|
* 0x8000_0000: reset/NMI (initially in kseg1)
|
|
* 0x8000_1000: normal vectors
|
|
*/
|
|
new_ebase = 0x80001000;
|
|
bmips_set_reset_vec(0, RESET_FROM_KSEG0);
|
|
write_c0_ebase(new_ebase);
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
board_nmi_handler_setup = &bmips_nmi_handler_setup;
|
|
ebase = new_ebase;
|
|
}
|
|
|
|
asmlinkage void __weak plat_wired_tlb_setup(void)
|
|
{
|
|
/*
|
|
* Called when starting/restarting a secondary CPU.
|
|
* Kernel stacks and other important data might only be accessible
|
|
* once the wired entries are present.
|
|
*/
|
|
}
|
|
|
|
void bmips_cpu_setup(void)
|
|
{
|
|
void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
|
|
u32 __maybe_unused cfg;
|
|
|
|
switch (current_cpu_type()) {
|
|
case CPU_BMIPS3300:
|
|
/* Set BIU to async mode */
|
|
set_c0_brcm_bus_pll(BIT(22));
|
|
__sync();
|
|
|
|
/* put the BIU back in sync mode */
|
|
clear_c0_brcm_bus_pll(BIT(22));
|
|
|
|
/* clear BHTD to enable branch history table */
|
|
clear_c0_brcm_reset(BIT(16));
|
|
|
|
/* Flush and enable RAC */
|
|
cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
|
|
__raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
|
|
__raw_readl(cbr + BMIPS_RAC_CONFIG);
|
|
|
|
cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
|
|
__raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
|
|
__raw_readl(cbr + BMIPS_RAC_CONFIG);
|
|
|
|
cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
|
|
__raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
|
|
__raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
|
|
break;
|
|
|
|
case CPU_BMIPS4380:
|
|
/* CBG workaround for early BMIPS4380 CPUs */
|
|
switch (read_c0_prid()) {
|
|
case 0x2a040:
|
|
case 0x2a042:
|
|
case 0x2a044:
|
|
case 0x2a060:
|
|
cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
|
|
__raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
|
|
__raw_readl(cbr + BMIPS_L2_CONFIG);
|
|
}
|
|
|
|
/* clear BHTD to enable branch history table */
|
|
clear_c0_brcm_config_0(BIT(21));
|
|
|
|
/* XI/ROTR enable */
|
|
set_c0_brcm_config_0(BIT(23));
|
|
set_c0_brcm_cmt_ctrl(BIT(15));
|
|
break;
|
|
|
|
case CPU_BMIPS5000:
|
|
/* enable RDHWR, BRDHWR */
|
|
set_c0_brcm_config(BIT(17) | BIT(21));
|
|
|
|
/* Disable JTB */
|
|
__asm__ __volatile__(
|
|
" .set noreorder\n"
|
|
" li $8, 0x5a455048\n"
|
|
" .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */
|
|
" .word 0x4008b008\n" /* mfc0 t0, $22, 8 */
|
|
" li $9, 0x00008000\n"
|
|
" or $8, $8, $9\n"
|
|
" .word 0x4088b008\n" /* mtc0 t0, $22, 8 */
|
|
" sync\n"
|
|
" li $8, 0x0\n"
|
|
" .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */
|
|
" .set reorder\n"
|
|
: : : "$8", "$9");
|
|
|
|
/* XI enable */
|
|
set_c0_brcm_config(BIT(27));
|
|
|
|
/* enable MIPS32R2 ROR instruction for XI TLB handlers */
|
|
__asm__ __volatile__(
|
|
" li $8, 0x5a455048\n"
|
|
" .word 0x4088b00f\n" /* mtc0 $8, $22, 15 */
|
|
" nop; nop; nop\n"
|
|
" .word 0x4008b008\n" /* mfc0 $8, $22, 8 */
|
|
" lui $9, 0x0100\n"
|
|
" or $8, $9\n"
|
|
" .word 0x4088b008\n" /* mtc0 $8, $22, 8 */
|
|
: : : "$8", "$9");
|
|
break;
|
|
}
|
|
}
|