// SPDX-License-Identifier: GPL-2.0-or-later /* * PTP 1588 clock support * * Copyright (C) 2010 OMICRON electronics GmbH */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ptp_private.h" #define PTP_MAX_ALARMS 4 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT) #define PTP_PPS_EVENT PPS_CAPTUREASSERT #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC) struct class *ptp_class; /* private globals */ static dev_t ptp_devt; static DEFINE_IDA(ptp_clocks_map); /* time stamp event queue operations */ static inline int queue_free(struct timestamp_event_queue *q) { return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1; } static void enqueue_external_timestamp(struct timestamp_event_queue *queue, struct ptp_clock_event *src) { struct ptp_extts_event *dst; unsigned long flags; s64 seconds; u32 remainder; seconds = div_u64_rem(src->timestamp, 1000000000, &remainder); spin_lock_irqsave(&queue->lock, flags); dst = &queue->buf[queue->tail]; dst->index = src->index; dst->t.sec = seconds; dst->t.nsec = remainder; /* Both WRITE_ONCE() are paired with READ_ONCE() in queue_cnt() */ if (!queue_free(queue)) WRITE_ONCE(queue->head, (queue->head + 1) % PTP_MAX_TIMESTAMPS); WRITE_ONCE(queue->tail, (queue->tail + 1) % PTP_MAX_TIMESTAMPS); spin_unlock_irqrestore(&queue->lock, flags); } /* posix clock implementation */ static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp) { tp->tv_sec = 0; tp->tv_nsec = 1; return 0; } static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp) { struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock); if (ptp_clock_freerun(ptp)) { pr_err("ptp: physical clock is free running\n"); return -EBUSY; } return ptp->info->settime64(ptp->info, tp); } static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp) { struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock); int err; if (ptp->info->gettimex64) err = ptp->info->gettimex64(ptp->info, tp, NULL); else err = ptp->info->gettime64(ptp->info, tp); return err; } static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx) { struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock); struct ptp_clock_info *ops; int err = -EOPNOTSUPP; if (ptp_clock_freerun(ptp)) { pr_err("ptp: physical clock is free running\n"); return -EBUSY; } ops = ptp->info; if (tx->modes & ADJ_SETOFFSET) { struct timespec64 ts; ktime_t kt; s64 delta; ts.tv_sec = tx->time.tv_sec; ts.tv_nsec = tx->time.tv_usec; if (!(tx->modes & ADJ_NANO)) ts.tv_nsec *= 1000; if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC) return -EINVAL; kt = timespec64_to_ktime(ts); delta = ktime_to_ns(kt); err = ops->adjtime(ops, delta); } else if (tx->modes & ADJ_FREQUENCY) { long ppb = scaled_ppm_to_ppb(tx->freq); if (ppb > ops->max_adj || ppb < -ops->max_adj) return -ERANGE; err = ops->adjfine(ops, tx->freq); ptp->dialed_frequency = tx->freq; } else if (tx->modes & ADJ_OFFSET) { if (ops->adjphase) { s32 max_phase_adj = ops->getmaxphase(ops); s32 offset = tx->offset; if (!(tx->modes & ADJ_NANO)) offset *= NSEC_PER_USEC; if (offset > max_phase_adj || offset < -max_phase_adj) return -ERANGE; err = ops->adjphase(ops, offset); } } else if (tx->modes == 0) { tx->freq = ptp->dialed_frequency; err = 0; } return err; } static struct posix_clock_operations ptp_clock_ops = { .owner = THIS_MODULE, .clock_adjtime = ptp_clock_adjtime, .clock_gettime = ptp_clock_gettime, .clock_getres = ptp_clock_getres, .clock_settime = ptp_clock_settime, .ioctl = ptp_ioctl, .open = ptp_open, .release = ptp_release, .poll = ptp_poll, .read = ptp_read, }; static void ptp_clock_release(struct device *dev) { struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev); struct timestamp_event_queue *tsevq; unsigned long flags; /* Release the clock's resources. */ if (ptp->pps_source) pps_unregister_source(ptp->pps_source); ptp_cleanup_pin_groups(ptp); kfree(ptp->vclock_index); mutex_destroy(&ptp->pincfg_mux); mutex_destroy(&ptp->n_vclocks_mux); /* Delete first entry */ spin_lock_irqsave(&ptp->tsevqs_lock, flags); tsevq = list_first_entry(&ptp->tsevqs, struct timestamp_event_queue, qlist); list_del(&tsevq->qlist); spin_unlock_irqrestore(&ptp->tsevqs_lock, flags); bitmap_free(tsevq->mask); kfree(tsevq); debugfs_remove(ptp->debugfs_root); ida_free(&ptp_clocks_map, ptp->index); kfree(ptp); } static int ptp_getcycles64(struct ptp_clock_info *info, struct timespec64 *ts) { if (info->getcyclesx64) return info->getcyclesx64(info, ts, NULL); else return info->gettime64(info, ts); } static void ptp_aux_kworker(struct kthread_work *work) { struct ptp_clock *ptp = container_of(work, struct ptp_clock, aux_work.work); struct ptp_clock_info *info = ptp->info; long delay; delay = info->do_aux_work(info); if (delay >= 0) kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay); } /* public interface */ struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info, struct device *parent) { struct ptp_clock *ptp; struct timestamp_event_queue *queue = NULL; int err = 0, index, major = MAJOR(ptp_devt); char debugfsname[16]; size_t size; if (info->n_alarm > PTP_MAX_ALARMS) return ERR_PTR(-EINVAL); /* Initialize a clock structure. */ err = -ENOMEM; ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL); if (ptp == NULL) goto no_memory; index = ida_alloc_max(&ptp_clocks_map, MINORMASK, GFP_KERNEL); if (index < 0) { err = index; goto no_slot; } ptp->clock.ops = ptp_clock_ops; ptp->info = info; ptp->devid = MKDEV(major, index); ptp->index = index; INIT_LIST_HEAD(&ptp->tsevqs); queue = kzalloc(sizeof(*queue), GFP_KERNEL); if (!queue) goto no_memory_queue; list_add_tail(&queue->qlist, &ptp->tsevqs); spin_lock_init(&ptp->tsevqs_lock); queue->mask = bitmap_alloc(PTP_MAX_CHANNELS, GFP_KERNEL); if (!queue->mask) goto no_memory_bitmap; bitmap_set(queue->mask, 0, PTP_MAX_CHANNELS); spin_lock_init(&queue->lock); mutex_init(&ptp->pincfg_mux); mutex_init(&ptp->n_vclocks_mux); init_waitqueue_head(&ptp->tsev_wq); if (ptp->info->getcycles64 || ptp->info->getcyclesx64) { ptp->has_cycles = true; if (!ptp->info->getcycles64 && ptp->info->getcyclesx64) ptp->info->getcycles64 = ptp_getcycles64; } else { /* Free running cycle counter not supported, use time. */ ptp->info->getcycles64 = ptp_getcycles64; if (ptp->info->gettimex64) ptp->info->getcyclesx64 = ptp->info->gettimex64; if (ptp->info->getcrosststamp) ptp->info->getcrosscycles = ptp->info->getcrosststamp; } if (ptp->info->do_aux_work) { kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker); ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index); if (IS_ERR(ptp->kworker)) { err = PTR_ERR(ptp->kworker); pr_err("failed to create ptp aux_worker %d\n", err); goto kworker_err; } } /* PTP virtual clock is being registered under physical clock */ if (parent && parent->class && parent->class->name && strcmp(parent->class->name, "ptp") == 0) ptp->is_virtual_clock = true; if (!ptp->is_virtual_clock) { ptp->max_vclocks = PTP_DEFAULT_MAX_VCLOCKS; size = sizeof(int) * ptp->max_vclocks; ptp->vclock_index = kzalloc(size, GFP_KERNEL); if (!ptp->vclock_index) { err = -ENOMEM; goto no_mem_for_vclocks; } } err = ptp_populate_pin_groups(ptp); if (err) goto no_pin_groups; /* Register a new PPS source. */ if (info->pps) { struct pps_source_info pps; memset(&pps, 0, sizeof(pps)); snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index); pps.mode = PTP_PPS_MODE; pps.owner = info->owner; ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS); if (IS_ERR(ptp->pps_source)) { err = PTR_ERR(ptp->pps_source); pr_err("failed to register pps source\n"); goto no_pps; } ptp->pps_source->lookup_cookie = ptp; } /* Initialize a new device of our class in our clock structure. */ device_initialize(&ptp->dev); ptp->dev.devt = ptp->devid; ptp->dev.class = ptp_class; ptp->dev.parent = parent; ptp->dev.groups = ptp->pin_attr_groups; ptp->dev.release = ptp_clock_release; dev_set_drvdata(&ptp->dev, ptp); dev_set_name(&ptp->dev, "ptp%d", ptp->index); /* Create a posix clock and link it to the device. */ err = posix_clock_register(&ptp->clock, &ptp->dev); if (err) { if (ptp->pps_source) pps_unregister_source(ptp->pps_source); if (ptp->kworker) kthread_destroy_worker(ptp->kworker); put_device(&ptp->dev); pr_err("failed to create posix clock\n"); return ERR_PTR(err); } /* Debugfs initialization */ snprintf(debugfsname, sizeof(debugfsname), "ptp%d", ptp->index); ptp->debugfs_root = debugfs_create_dir(debugfsname, NULL); return ptp; no_pps: ptp_cleanup_pin_groups(ptp); no_pin_groups: kfree(ptp->vclock_index); no_mem_for_vclocks: if (ptp->kworker) kthread_destroy_worker(ptp->kworker); kworker_err: mutex_destroy(&ptp->pincfg_mux); mutex_destroy(&ptp->n_vclocks_mux); bitmap_free(queue->mask); no_memory_bitmap: list_del(&queue->qlist); kfree(queue); no_memory_queue: ida_free(&ptp_clocks_map, index); no_slot: kfree(ptp); no_memory: return ERR_PTR(err); } EXPORT_SYMBOL(ptp_clock_register); static int unregister_vclock(struct device *dev, void *data) { struct ptp_clock *ptp = dev_get_drvdata(dev); ptp_vclock_unregister(info_to_vclock(ptp->info)); return 0; } int ptp_clock_unregister(struct ptp_clock *ptp) { if (ptp_vclock_in_use(ptp)) { device_for_each_child(&ptp->dev, NULL, unregister_vclock); } ptp->defunct = 1; wake_up_interruptible(&ptp->tsev_wq); if (ptp->kworker) { kthread_cancel_delayed_work_sync(&ptp->aux_work); kthread_destroy_worker(ptp->kworker); } posix_clock_unregister(&ptp->clock); return 0; } EXPORT_SYMBOL(ptp_clock_unregister); void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event) { struct timestamp_event_queue *tsevq; struct pps_event_time evt; unsigned long flags; switch (event->type) { case PTP_CLOCK_ALARM: break; case PTP_CLOCK_EXTTS: /* Enqueue timestamp on selected queues */ spin_lock_irqsave(&ptp->tsevqs_lock, flags); list_for_each_entry(tsevq, &ptp->tsevqs, qlist) { if (test_bit((unsigned int)event->index, tsevq->mask)) enqueue_external_timestamp(tsevq, event); } spin_unlock_irqrestore(&ptp->tsevqs_lock, flags); wake_up_interruptible(&ptp->tsev_wq); break; case PTP_CLOCK_PPS: pps_get_ts(&evt); pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL); break; case PTP_CLOCK_PPSUSR: pps_event(ptp->pps_source, &event->pps_times, PTP_PPS_EVENT, NULL); break; } } EXPORT_SYMBOL(ptp_clock_event); int ptp_clock_index(struct ptp_clock *ptp) { return ptp->index; } EXPORT_SYMBOL(ptp_clock_index); int ptp_find_pin(struct ptp_clock *ptp, enum ptp_pin_function func, unsigned int chan) { struct ptp_pin_desc *pin = NULL; int i; for (i = 0; i < ptp->info->n_pins; i++) { if (ptp->info->pin_config[i].func == func && ptp->info->pin_config[i].chan == chan) { pin = &ptp->info->pin_config[i]; break; } } return pin ? i : -1; } EXPORT_SYMBOL(ptp_find_pin); int ptp_find_pin_unlocked(struct ptp_clock *ptp, enum ptp_pin_function func, unsigned int chan) { int result; mutex_lock(&ptp->pincfg_mux); result = ptp_find_pin(ptp, func, chan); mutex_unlock(&ptp->pincfg_mux); return result; } EXPORT_SYMBOL(ptp_find_pin_unlocked); int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay) { return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay); } EXPORT_SYMBOL(ptp_schedule_worker); void ptp_cancel_worker_sync(struct ptp_clock *ptp) { kthread_cancel_delayed_work_sync(&ptp->aux_work); } EXPORT_SYMBOL(ptp_cancel_worker_sync); /* module operations */ static void __exit ptp_exit(void) { class_destroy(ptp_class); unregister_chrdev_region(ptp_devt, MINORMASK + 1); ida_destroy(&ptp_clocks_map); } static int __init ptp_init(void) { int err; ptp_class = class_create("ptp"); if (IS_ERR(ptp_class)) { pr_err("ptp: failed to allocate class\n"); return PTR_ERR(ptp_class); } err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp"); if (err < 0) { pr_err("ptp: failed to allocate device region\n"); goto no_region; } ptp_class->dev_groups = ptp_groups; pr_info("PTP clock support registered\n"); return 0; no_region: class_destroy(ptp_class); return err; } subsys_initcall(ptp_init); module_exit(ptp_exit); MODULE_AUTHOR("Richard Cochran "); MODULE_DESCRIPTION("PTP clocks support"); MODULE_LICENSE("GPL");