/* SPDX-License-Identifier: GPL-2.0 */ /* * This file contains definitions from Hyper-V Hypervisor Top-Level Functional * Specification (TLFS): * https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs */ #ifndef _ASM_GENERIC_HYPERV_TLFS_H #define _ASM_GENERIC_HYPERV_TLFS_H #include #include #include /* * While not explicitly listed in the TLFS, Hyper-V always runs with a page size * of 4096. These definitions are used when communicating with Hyper-V using * guest physical pages and guest physical page addresses, since the guest page * size may not be 4096 on all architectures. */ #define HV_HYP_PAGE_SHIFT 12 #define HV_HYP_PAGE_SIZE BIT(HV_HYP_PAGE_SHIFT) #define HV_HYP_PAGE_MASK (~(HV_HYP_PAGE_SIZE - 1)) /* * Hyper-V provides two categories of flags relevant to guest VMs. The * "Features" category indicates specific functionality that is available * to guests on this particular instance of Hyper-V. The "Features" * are presented in four groups, each of which is 32 bits. The group A * and B definitions are common across architectures and are listed here. * However, not all flags are relevant on all architectures. * * Groups C and D vary across architectures and are listed in the * architecture specific portion of hyperv-tlfs.h. Some of these flags exist * on multiple architectures, but the bit positions are different so they * cannot appear in the generic portion of hyperv-tlfs.h. * * The "Enlightenments" category provides recommendations on whether to use * specific enlightenments that are available. The Enlighenments are a single * group of 32 bits, but they vary across architectures and are listed in * the architecture specific portion of hyperv-tlfs.h. */ /* * Group A Features. */ /* VP Runtime register available */ #define HV_MSR_VP_RUNTIME_AVAILABLE BIT(0) /* Partition Reference Counter available*/ #define HV_MSR_TIME_REF_COUNT_AVAILABLE BIT(1) /* Basic SynIC register available */ #define HV_MSR_SYNIC_AVAILABLE BIT(2) /* Synthetic Timer registers available */ #define HV_MSR_SYNTIMER_AVAILABLE BIT(3) /* Virtual APIC assist and VP assist page registers available */ #define HV_MSR_APIC_ACCESS_AVAILABLE BIT(4) /* Hypercall and Guest OS ID registers available*/ #define HV_MSR_HYPERCALL_AVAILABLE BIT(5) /* Access virtual processor index register available*/ #define HV_MSR_VP_INDEX_AVAILABLE BIT(6) /* Virtual system reset register available*/ #define HV_MSR_RESET_AVAILABLE BIT(7) /* Access statistics page registers available */ #define HV_MSR_STAT_PAGES_AVAILABLE BIT(8) /* Partition reference TSC register is available */ #define HV_MSR_REFERENCE_TSC_AVAILABLE BIT(9) /* Partition Guest IDLE register is available */ #define HV_MSR_GUEST_IDLE_AVAILABLE BIT(10) /* Partition local APIC and TSC frequency registers available */ #define HV_ACCESS_FREQUENCY_MSRS BIT(11) /* AccessReenlightenmentControls privilege */ #define HV_ACCESS_REENLIGHTENMENT BIT(13) /* AccessTscInvariantControls privilege */ #define HV_ACCESS_TSC_INVARIANT BIT(15) /* * Group B features. */ #define HV_CREATE_PARTITIONS BIT(0) #define HV_ACCESS_PARTITION_ID BIT(1) #define HV_ACCESS_MEMORY_POOL BIT(2) #define HV_ADJUST_MESSAGE_BUFFERS BIT(3) #define HV_POST_MESSAGES BIT(4) #define HV_SIGNAL_EVENTS BIT(5) #define HV_CREATE_PORT BIT(6) #define HV_CONNECT_PORT BIT(7) #define HV_ACCESS_STATS BIT(8) #define HV_DEBUGGING BIT(11) #define HV_CPU_MANAGEMENT BIT(12) #define HV_ENABLE_EXTENDED_HYPERCALLS BIT(20) #define HV_ISOLATION BIT(22) /* * TSC page layout. */ struct ms_hyperv_tsc_page { volatile u32 tsc_sequence; u32 reserved1; volatile u64 tsc_scale; volatile s64 tsc_offset; } __packed; union hv_reference_tsc_msr { u64 as_uint64; struct { u64 enable:1; u64 reserved:11; u64 pfn:52; } __packed; }; /* * The guest OS needs to register the guest ID with the hypervisor. * The guest ID is a 64 bit entity and the structure of this ID is * specified in the Hyper-V specification: * * msdn.microsoft.com/en-us/library/windows/hardware/ff542653%28v=vs.85%29.aspx * * While the current guideline does not specify how Linux guest ID(s) * need to be generated, our plan is to publish the guidelines for * Linux and other guest operating systems that currently are hosted * on Hyper-V. The implementation here conforms to this yet * unpublished guidelines. * * * Bit(s) * 63 - Indicates if the OS is Open Source or not; 1 is Open Source * 62:56 - Os Type; Linux is 0x100 * 55:48 - Distro specific identification * 47:16 - Linux kernel version number * 15:0 - Distro specific identification * * */ #define HV_LINUX_VENDOR_ID 0x80 /* Canonical */ /* * Crash notification flags. */ #define HV_CRASH_CTL_CRASH_NOTIFY_MSG BIT_ULL(62) #define HV_CRASH_CTL_CRASH_NOTIFY BIT_ULL(63) /* Declare the various hypercall operations. */ #define HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE 0x0002 #define HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST 0x0003 #define HVCALL_ENABLE_VP_VTL 0x000f #define HVCALL_NOTIFY_LONG_SPIN_WAIT 0x0008 #define HVCALL_SEND_IPI 0x000b #define HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX 0x0013 #define HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX 0x0014 #define HVCALL_SEND_IPI_EX 0x0015 #define HVCALL_GET_PARTITION_ID 0x0046 #define HVCALL_DEPOSIT_MEMORY 0x0048 #define HVCALL_CREATE_VP 0x004e #define HVCALL_GET_VP_REGISTERS 0x0050 #define HVCALL_SET_VP_REGISTERS 0x0051 #define HVCALL_POST_MESSAGE 0x005c #define HVCALL_SIGNAL_EVENT 0x005d #define HVCALL_POST_DEBUG_DATA 0x0069 #define HVCALL_RETRIEVE_DEBUG_DATA 0x006a #define HVCALL_RESET_DEBUG_SESSION 0x006b #define HVCALL_ADD_LOGICAL_PROCESSOR 0x0076 #define HVCALL_MAP_DEVICE_INTERRUPT 0x007c #define HVCALL_UNMAP_DEVICE_INTERRUPT 0x007d #define HVCALL_RETARGET_INTERRUPT 0x007e #define HVCALL_START_VP 0x0099 #define HVCALL_GET_VP_ID_FROM_APIC_ID 0x009a #define HVCALL_FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE 0x00af #define HVCALL_FLUSH_GUEST_PHYSICAL_ADDRESS_LIST 0x00b0 #define HVCALL_MODIFY_SPARSE_GPA_PAGE_HOST_VISIBILITY 0x00db #define HVCALL_MMIO_READ 0x0106 #define HVCALL_MMIO_WRITE 0x0107 /* Extended hypercalls */ #define HV_EXT_CALL_QUERY_CAPABILITIES 0x8001 #define HV_EXT_CALL_MEMORY_HEAT_HINT 0x8003 #define HV_FLUSH_ALL_PROCESSORS BIT(0) #define HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES BIT(1) #define HV_FLUSH_NON_GLOBAL_MAPPINGS_ONLY BIT(2) #define HV_FLUSH_USE_EXTENDED_RANGE_FORMAT BIT(3) /* Extended capability bits */ #define HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT BIT(8) enum HV_GENERIC_SET_FORMAT { HV_GENERIC_SET_SPARSE_4K, HV_GENERIC_SET_ALL, }; #define HV_PARTITION_ID_SELF ((u64)-1) #define HV_VP_INDEX_SELF ((u32)-2) #define HV_HYPERCALL_RESULT_MASK GENMASK_ULL(15, 0) #define HV_HYPERCALL_FAST_BIT BIT(16) #define HV_HYPERCALL_VARHEAD_OFFSET 17 #define HV_HYPERCALL_VARHEAD_MASK GENMASK_ULL(26, 17) #define HV_HYPERCALL_RSVD0_MASK GENMASK_ULL(31, 27) #define HV_HYPERCALL_NESTED BIT_ULL(31) #define HV_HYPERCALL_REP_COMP_OFFSET 32 #define HV_HYPERCALL_REP_COMP_1 BIT_ULL(32) #define HV_HYPERCALL_REP_COMP_MASK GENMASK_ULL(43, 32) #define HV_HYPERCALL_RSVD1_MASK GENMASK_ULL(47, 44) #define HV_HYPERCALL_REP_START_OFFSET 48 #define HV_HYPERCALL_REP_START_MASK GENMASK_ULL(59, 48) #define HV_HYPERCALL_RSVD2_MASK GENMASK_ULL(63, 60) #define HV_HYPERCALL_RSVD_MASK (HV_HYPERCALL_RSVD0_MASK | \ HV_HYPERCALL_RSVD1_MASK | \ HV_HYPERCALL_RSVD2_MASK) /* hypercall status code */ #define HV_STATUS_SUCCESS 0 #define HV_STATUS_INVALID_HYPERCALL_CODE 2 #define HV_STATUS_INVALID_HYPERCALL_INPUT 3 #define HV_STATUS_INVALID_ALIGNMENT 4 #define HV_STATUS_INVALID_PARAMETER 5 #define HV_STATUS_ACCESS_DENIED 6 #define HV_STATUS_OPERATION_DENIED 8 #define HV_STATUS_INSUFFICIENT_MEMORY 11 #define HV_STATUS_INVALID_PORT_ID 17 #define HV_STATUS_INVALID_CONNECTION_ID 18 #define HV_STATUS_INSUFFICIENT_BUFFERS 19 #define HV_STATUS_TIME_OUT 120 #define HV_STATUS_VTL_ALREADY_ENABLED 134 /* * The Hyper-V TimeRefCount register and the TSC * page provide a guest VM clock with 100ns tick rate */ #define HV_CLOCK_HZ (NSEC_PER_SEC/100) /* Define the number of synthetic interrupt sources. */ #define HV_SYNIC_SINT_COUNT (16) /* Define the expected SynIC version. */ #define HV_SYNIC_VERSION_1 (0x1) /* Valid SynIC vectors are 16-255. */ #define HV_SYNIC_FIRST_VALID_VECTOR (16) #define HV_SYNIC_CONTROL_ENABLE (1ULL << 0) #define HV_SYNIC_SIMP_ENABLE (1ULL << 0) #define HV_SYNIC_SIEFP_ENABLE (1ULL << 0) #define HV_SYNIC_SINT_MASKED (1ULL << 16) #define HV_SYNIC_SINT_AUTO_EOI (1ULL << 17) #define HV_SYNIC_SINT_VECTOR_MASK (0xFF) #define HV_SYNIC_STIMER_COUNT (4) /* Define synthetic interrupt controller message constants. */ #define HV_MESSAGE_SIZE (256) #define HV_MESSAGE_PAYLOAD_BYTE_COUNT (240) #define HV_MESSAGE_PAYLOAD_QWORD_COUNT (30) /* * Define hypervisor message types. Some of the message types * are x86/x64 specific, but there's no good way to separate * them out into the arch-specific version of hyperv-tlfs.h * because C doesn't provide a way to extend enum types. * Keeping them all in the arch neutral hyperv-tlfs.h seems * the least messy compromise. */ enum hv_message_type { HVMSG_NONE = 0x00000000, /* Memory access messages. */ HVMSG_UNMAPPED_GPA = 0x80000000, HVMSG_GPA_INTERCEPT = 0x80000001, /* Timer notification messages. */ HVMSG_TIMER_EXPIRED = 0x80000010, /* Error messages. */ HVMSG_INVALID_VP_REGISTER_VALUE = 0x80000020, HVMSG_UNRECOVERABLE_EXCEPTION = 0x80000021, HVMSG_UNSUPPORTED_FEATURE = 0x80000022, /* Trace buffer complete messages. */ HVMSG_EVENTLOG_BUFFERCOMPLETE = 0x80000040, /* Platform-specific processor intercept messages. */ HVMSG_X64_IOPORT_INTERCEPT = 0x80010000, HVMSG_X64_MSR_INTERCEPT = 0x80010001, HVMSG_X64_CPUID_INTERCEPT = 0x80010002, HVMSG_X64_EXCEPTION_INTERCEPT = 0x80010003, HVMSG_X64_APIC_EOI = 0x80010004, HVMSG_X64_LEGACY_FP_ERROR = 0x80010005 }; /* Define synthetic interrupt controller message flags. */ union hv_message_flags { __u8 asu8; struct { __u8 msg_pending:1; __u8 reserved:7; } __packed; }; /* Define port identifier type. */ union hv_port_id { __u32 asu32; struct { __u32 id:24; __u32 reserved:8; } __packed u; }; /* Define synthetic interrupt controller message header. */ struct hv_message_header { __u32 message_type; __u8 payload_size; union hv_message_flags message_flags; __u8 reserved[2]; union { __u64 sender; union hv_port_id port; }; } __packed; /* Define synthetic interrupt controller message format. */ struct hv_message { struct hv_message_header header; union { __u64 payload[HV_MESSAGE_PAYLOAD_QWORD_COUNT]; } u; } __packed; /* Define the synthetic interrupt message page layout. */ struct hv_message_page { struct hv_message sint_message[HV_SYNIC_SINT_COUNT]; } __packed; /* Define timer message payload structure. */ struct hv_timer_message_payload { __u32 timer_index; __u32 reserved; __u64 expiration_time; /* When the timer expired */ __u64 delivery_time; /* When the message was delivered */ } __packed; /* Define synthetic interrupt controller flag constants. */ #define HV_EVENT_FLAGS_COUNT (256 * 8) #define HV_EVENT_FLAGS_LONG_COUNT (256 / sizeof(unsigned long)) /* * Synthetic timer configuration. */ union hv_stimer_config { u64 as_uint64; struct { u64 enable:1; u64 periodic:1; u64 lazy:1; u64 auto_enable:1; u64 apic_vector:8; u64 direct_mode:1; u64 reserved_z0:3; u64 sintx:4; u64 reserved_z1:44; } __packed; }; /* Define the synthetic interrupt controller event flags format. */ union hv_synic_event_flags { unsigned long flags[HV_EVENT_FLAGS_LONG_COUNT]; }; /* Define SynIC control register. */ union hv_synic_scontrol { u64 as_uint64; struct { u64 enable:1; u64 reserved:63; } __packed; }; /* Define synthetic interrupt source. */ union hv_synic_sint { u64 as_uint64; struct { u64 vector:8; u64 reserved1:8; u64 masked:1; u64 auto_eoi:1; u64 polling:1; u64 reserved2:45; } __packed; }; /* Define the format of the SIMP register */ union hv_synic_simp { u64 as_uint64; struct { u64 simp_enabled:1; u64 preserved:11; u64 base_simp_gpa:52; } __packed; }; /* Define the format of the SIEFP register */ union hv_synic_siefp { u64 as_uint64; struct { u64 siefp_enabled:1; u64 preserved:11; u64 base_siefp_gpa:52; } __packed; }; struct hv_vpset { u64 format; u64 valid_bank_mask; u64 bank_contents[]; } __packed; /* The maximum number of sparse vCPU banks which can be encoded by 'struct hv_vpset' */ #define HV_MAX_SPARSE_VCPU_BANKS (64) /* The number of vCPUs in one sparse bank */ #define HV_VCPUS_PER_SPARSE_BANK (64) /* HvCallSendSyntheticClusterIpi hypercall */ struct hv_send_ipi { u32 vector; u32 reserved; u64 cpu_mask; } __packed; /* HvCallSendSyntheticClusterIpiEx hypercall */ struct hv_send_ipi_ex { u32 vector; u32 reserved; struct hv_vpset vp_set; } __packed; /* HvFlushGuestPhysicalAddressSpace hypercalls */ struct hv_guest_mapping_flush { u64 address_space; u64 flags; } __packed; /* * HV_MAX_FLUSH_PAGES = "additional_pages" + 1. It's limited * by the bitwidth of "additional_pages" in union hv_gpa_page_range. */ #define HV_MAX_FLUSH_PAGES (2048) #define HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB 0 #define HV_GPA_PAGE_RANGE_PAGE_SIZE_1GB 1 /* HvFlushGuestPhysicalAddressList, HvExtCallMemoryHeatHint hypercall */ union hv_gpa_page_range { u64 address_space; struct { u64 additional_pages:11; u64 largepage:1; u64 basepfn:52; } page; struct { u64 reserved:12; u64 page_size:1; u64 reserved1:8; u64 base_large_pfn:43; }; }; /* * All input flush parameters should be in single page. The max flush * count is equal with how many entries of union hv_gpa_page_range can * be populated into the input parameter page. */ #define HV_MAX_FLUSH_REP_COUNT ((HV_HYP_PAGE_SIZE - 2 * sizeof(u64)) / \ sizeof(union hv_gpa_page_range)) struct hv_guest_mapping_flush_list { u64 address_space; u64 flags; union hv_gpa_page_range gpa_list[HV_MAX_FLUSH_REP_COUNT]; }; /* HvFlushVirtualAddressSpace, HvFlushVirtualAddressList hypercalls */ struct hv_tlb_flush { u64 address_space; u64 flags; u64 processor_mask; u64 gva_list[]; } __packed; /* HvFlushVirtualAddressSpaceEx, HvFlushVirtualAddressListEx hypercalls */ struct hv_tlb_flush_ex { u64 address_space; u64 flags; struct hv_vpset hv_vp_set; u64 gva_list[]; } __packed; /* HvGetPartitionId hypercall (output only) */ struct hv_get_partition_id { u64 partition_id; } __packed; /* HvDepositMemory hypercall */ struct hv_deposit_memory { u64 partition_id; u64 gpa_page_list[]; } __packed; struct hv_proximity_domain_flags { u32 proximity_preferred : 1; u32 reserved : 30; u32 proximity_info_valid : 1; } __packed; /* Not a union in windows but useful for zeroing */ union hv_proximity_domain_info { struct { u32 domain_id; struct hv_proximity_domain_flags flags; }; u64 as_uint64; } __packed; struct hv_lp_startup_status { u64 hv_status; u64 substatus1; u64 substatus2; u64 substatus3; u64 substatus4; u64 substatus5; u64 substatus6; } __packed; /* HvAddLogicalProcessor hypercall */ struct hv_add_logical_processor_in { u32 lp_index; u32 apic_id; union hv_proximity_domain_info proximity_domain_info; u64 flags; } __packed; struct hv_add_logical_processor_out { struct hv_lp_startup_status startup_status; } __packed; enum HV_SUBNODE_TYPE { HvSubnodeAny = 0, HvSubnodeSocket = 1, HvSubnodeAmdNode = 2, HvSubnodeL3 = 3, HvSubnodeCount = 4, HvSubnodeInvalid = -1 }; /* HvCreateVp hypercall */ struct hv_create_vp { u64 partition_id; u32 vp_index; u8 padding[3]; u8 subnode_type; u64 subnode_id; union hv_proximity_domain_info proximity_domain_info; u64 flags; } __packed; enum hv_interrupt_source { HV_INTERRUPT_SOURCE_MSI = 1, /* MSI and MSI-X */ HV_INTERRUPT_SOURCE_IOAPIC, }; union hv_ioapic_rte { u64 as_uint64; struct { u32 vector:8; u32 delivery_mode:3; u32 destination_mode:1; u32 delivery_status:1; u32 interrupt_polarity:1; u32 remote_irr:1; u32 trigger_mode:1; u32 interrupt_mask:1; u32 reserved1:15; u32 reserved2:24; u32 destination_id:8; }; struct { u32 low_uint32; u32 high_uint32; }; } __packed; struct hv_interrupt_entry { u32 source; u32 reserved1; union { union hv_msi_entry msi_entry; union hv_ioapic_rte ioapic_rte; }; } __packed; /* * flags for hv_device_interrupt_target.flags */ #define HV_DEVICE_INTERRUPT_TARGET_MULTICAST 1 #define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET 2 struct hv_device_interrupt_target { u32 vector; u32 flags; union { u64 vp_mask; struct hv_vpset vp_set; }; } __packed; struct hv_retarget_device_interrupt { u64 partition_id; /* use "self" */ u64 device_id; struct hv_interrupt_entry int_entry; u64 reserved2; struct hv_device_interrupt_target int_target; } __packed __aligned(8); /* HvGetVpRegisters hypercall input with variable size reg name list*/ struct hv_get_vp_registers_input { struct { u64 partitionid; u32 vpindex; u8 inputvtl; u8 padding[3]; } header; struct input { u32 name0; u32 name1; } element[]; } __packed; /* HvGetVpRegisters returns an array of these output elements */ struct hv_get_vp_registers_output { union { struct { u32 a; u32 b; u32 c; u32 d; } as32 __packed; struct { u64 low; u64 high; } as64 __packed; }; }; /* HvSetVpRegisters hypercall with variable size reg name/value list*/ struct hv_set_vp_registers_input { struct { u64 partitionid; u32 vpindex; u8 inputvtl; u8 padding[3]; } header; struct { u32 name; u32 padding1; u64 padding2; u64 valuelow; u64 valuehigh; } element[]; } __packed; enum hv_device_type { HV_DEVICE_TYPE_LOGICAL = 0, HV_DEVICE_TYPE_PCI = 1, HV_DEVICE_TYPE_IOAPIC = 2, HV_DEVICE_TYPE_ACPI = 3, }; typedef u16 hv_pci_rid; typedef u16 hv_pci_segment; typedef u64 hv_logical_device_id; union hv_pci_bdf { u16 as_uint16; struct { u8 function:3; u8 device:5; u8 bus; }; } __packed; union hv_pci_bus_range { u16 as_uint16; struct { u8 subordinate_bus; u8 secondary_bus; }; } __packed; union hv_device_id { u64 as_uint64; struct { u64 reserved0:62; u64 device_type:2; }; /* HV_DEVICE_TYPE_LOGICAL */ struct { u64 id:62; u64 device_type:2; } logical; /* HV_DEVICE_TYPE_PCI */ struct { union { hv_pci_rid rid; union hv_pci_bdf bdf; }; hv_pci_segment segment; union hv_pci_bus_range shadow_bus_range; u16 phantom_function_bits:2; u16 source_shadow:1; u16 rsvdz0:11; u16 device_type:2; } pci; /* HV_DEVICE_TYPE_IOAPIC */ struct { u8 ioapic_id; u8 rsvdz0; u16 rsvdz1; u16 rsvdz2; u16 rsvdz3:14; u16 device_type:2; } ioapic; /* HV_DEVICE_TYPE_ACPI */ struct { u32 input_mapping_base; u32 input_mapping_count:30; u32 device_type:2; } acpi; } __packed; enum hv_interrupt_trigger_mode { HV_INTERRUPT_TRIGGER_MODE_EDGE = 0, HV_INTERRUPT_TRIGGER_MODE_LEVEL = 1, }; struct hv_device_interrupt_descriptor { u32 interrupt_type; u32 trigger_mode; u32 vector_count; u32 reserved; struct hv_device_interrupt_target target; } __packed; struct hv_input_map_device_interrupt { u64 partition_id; u64 device_id; u64 flags; struct hv_interrupt_entry logical_interrupt_entry; struct hv_device_interrupt_descriptor interrupt_descriptor; } __packed; struct hv_output_map_device_interrupt { struct hv_interrupt_entry interrupt_entry; } __packed; struct hv_input_unmap_device_interrupt { u64 partition_id; u64 device_id; struct hv_interrupt_entry interrupt_entry; } __packed; #define HV_SOURCE_SHADOW_NONE 0x0 #define HV_SOURCE_SHADOW_BRIDGE_BUS_RANGE 0x1 /* * The whole argument should fit in a page to be able to pass to the hypervisor * in one hypercall. */ #define HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES \ ((HV_HYP_PAGE_SIZE - sizeof(struct hv_memory_hint)) / \ sizeof(union hv_gpa_page_range)) /* HvExtCallMemoryHeatHint hypercall */ #define HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD 2 struct hv_memory_hint { u64 type:2; u64 reserved:62; union hv_gpa_page_range ranges[]; } __packed; /* Data structures for HVCALL_MMIO_READ and HVCALL_MMIO_WRITE */ #define HV_HYPERCALL_MMIO_MAX_DATA_LENGTH 64 struct hv_mmio_read_input { u64 gpa; u32 size; u32 reserved; } __packed; struct hv_mmio_read_output { u8 data[HV_HYPERCALL_MMIO_MAX_DATA_LENGTH]; } __packed; struct hv_mmio_write_input { u64 gpa; u32 size; u32 reserved; u8 data[HV_HYPERCALL_MMIO_MAX_DATA_LENGTH]; } __packed; #endif