236 lines
6.3 KiB
C
236 lines
6.3 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* KMSAN initialization routines.
|
||
|
*
|
||
|
* Copyright (C) 2017-2021 Google LLC
|
||
|
* Author: Alexander Potapenko <glider@google.com>
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#include "kmsan.h"
|
||
|
|
||
|
#include <asm/sections.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/memblock.h>
|
||
|
|
||
|
#include "../internal.h"
|
||
|
|
||
|
#define NUM_FUTURE_RANGES 128
|
||
|
struct start_end_pair {
|
||
|
u64 start, end;
|
||
|
};
|
||
|
|
||
|
static struct start_end_pair start_end_pairs[NUM_FUTURE_RANGES] __initdata;
|
||
|
static int future_index __initdata;
|
||
|
|
||
|
/*
|
||
|
* Record a range of memory for which the metadata pages will be created once
|
||
|
* the page allocator becomes available.
|
||
|
*/
|
||
|
static void __init kmsan_record_future_shadow_range(void *start, void *end)
|
||
|
{
|
||
|
u64 nstart = (u64)start, nend = (u64)end, cstart, cend;
|
||
|
bool merged = false;
|
||
|
|
||
|
KMSAN_WARN_ON(future_index == NUM_FUTURE_RANGES);
|
||
|
KMSAN_WARN_ON((nstart >= nend) || !nstart || !nend);
|
||
|
nstart = ALIGN_DOWN(nstart, PAGE_SIZE);
|
||
|
nend = ALIGN(nend, PAGE_SIZE);
|
||
|
|
||
|
/*
|
||
|
* Scan the existing ranges to see if any of them overlaps with
|
||
|
* [start, end). In that case, merge the two ranges instead of
|
||
|
* creating a new one.
|
||
|
* The number of ranges is less than 20, so there is no need to organize
|
||
|
* them into a more intelligent data structure.
|
||
|
*/
|
||
|
for (int i = 0; i < future_index; i++) {
|
||
|
cstart = start_end_pairs[i].start;
|
||
|
cend = start_end_pairs[i].end;
|
||
|
if ((cstart < nstart && cend < nstart) ||
|
||
|
(cstart > nend && cend > nend))
|
||
|
/* ranges are disjoint - do not merge */
|
||
|
continue;
|
||
|
start_end_pairs[i].start = min(nstart, cstart);
|
||
|
start_end_pairs[i].end = max(nend, cend);
|
||
|
merged = true;
|
||
|
break;
|
||
|
}
|
||
|
if (merged)
|
||
|
return;
|
||
|
start_end_pairs[future_index].start = nstart;
|
||
|
start_end_pairs[future_index].end = nend;
|
||
|
future_index++;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Initialize the shadow for existing mappings during kernel initialization.
|
||
|
* These include kernel text/data sections, NODE_DATA and future ranges
|
||
|
* registered while creating other data (e.g. percpu).
|
||
|
*
|
||
|
* Allocations via memblock can be only done before slab is initialized.
|
||
|
*/
|
||
|
void __init kmsan_init_shadow(void)
|
||
|
{
|
||
|
const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
|
||
|
phys_addr_t p_start, p_end;
|
||
|
u64 loop;
|
||
|
int nid;
|
||
|
|
||
|
for_each_reserved_mem_range(loop, &p_start, &p_end)
|
||
|
kmsan_record_future_shadow_range(phys_to_virt(p_start),
|
||
|
phys_to_virt(p_end));
|
||
|
/* Allocate shadow for .data */
|
||
|
kmsan_record_future_shadow_range(_sdata, _edata);
|
||
|
|
||
|
for_each_online_node(nid)
|
||
|
kmsan_record_future_shadow_range(
|
||
|
NODE_DATA(nid), (char *)NODE_DATA(nid) + nd_size);
|
||
|
|
||
|
for (int i = 0; i < future_index; i++)
|
||
|
kmsan_init_alloc_meta_for_range(
|
||
|
(void *)start_end_pairs[i].start,
|
||
|
(void *)start_end_pairs[i].end);
|
||
|
}
|
||
|
|
||
|
struct metadata_page_pair {
|
||
|
struct page *shadow, *origin;
|
||
|
};
|
||
|
static struct metadata_page_pair held_back[NR_PAGE_ORDERS] __initdata;
|
||
|
|
||
|
/*
|
||
|
* Eager metadata allocation. When the memblock allocator is freeing pages to
|
||
|
* pagealloc, we use 2/3 of them as metadata for the remaining 1/3.
|
||
|
* We store the pointers to the returned blocks of pages in held_back[] grouped
|
||
|
* by their order: when kmsan_memblock_free_pages() is called for the first
|
||
|
* time with a certain order, it is reserved as a shadow block, for the second
|
||
|
* time - as an origin block. On the third time the incoming block receives its
|
||
|
* shadow and origin ranges from the previously saved shadow and origin blocks,
|
||
|
* after which held_back[order] can be used again.
|
||
|
*
|
||
|
* At the very end there may be leftover blocks in held_back[]. They are
|
||
|
* collected later by kmsan_memblock_discard().
|
||
|
*/
|
||
|
bool kmsan_memblock_free_pages(struct page *page, unsigned int order)
|
||
|
{
|
||
|
struct page *shadow, *origin;
|
||
|
|
||
|
if (!held_back[order].shadow) {
|
||
|
held_back[order].shadow = page;
|
||
|
return false;
|
||
|
}
|
||
|
if (!held_back[order].origin) {
|
||
|
held_back[order].origin = page;
|
||
|
return false;
|
||
|
}
|
||
|
shadow = held_back[order].shadow;
|
||
|
origin = held_back[order].origin;
|
||
|
kmsan_setup_meta(page, shadow, origin, order);
|
||
|
|
||
|
held_back[order].shadow = NULL;
|
||
|
held_back[order].origin = NULL;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
#define MAX_BLOCKS 8
|
||
|
struct smallstack {
|
||
|
struct page *items[MAX_BLOCKS];
|
||
|
int index;
|
||
|
int order;
|
||
|
};
|
||
|
|
||
|
static struct smallstack collect = {
|
||
|
.index = 0,
|
||
|
.order = MAX_PAGE_ORDER,
|
||
|
};
|
||
|
|
||
|
static void smallstack_push(struct smallstack *stack, struct page *pages)
|
||
|
{
|
||
|
KMSAN_WARN_ON(stack->index == MAX_BLOCKS);
|
||
|
stack->items[stack->index] = pages;
|
||
|
stack->index++;
|
||
|
}
|
||
|
#undef MAX_BLOCKS
|
||
|
|
||
|
static struct page *smallstack_pop(struct smallstack *stack)
|
||
|
{
|
||
|
struct page *ret;
|
||
|
|
||
|
KMSAN_WARN_ON(stack->index == 0);
|
||
|
stack->index--;
|
||
|
ret = stack->items[stack->index];
|
||
|
stack->items[stack->index] = NULL;
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void do_collection(void)
|
||
|
{
|
||
|
struct page *page, *shadow, *origin;
|
||
|
|
||
|
while (collect.index >= 3) {
|
||
|
page = smallstack_pop(&collect);
|
||
|
shadow = smallstack_pop(&collect);
|
||
|
origin = smallstack_pop(&collect);
|
||
|
kmsan_setup_meta(page, shadow, origin, collect.order);
|
||
|
__free_pages_core(page, collect.order);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void collect_split(void)
|
||
|
{
|
||
|
struct smallstack tmp = {
|
||
|
.order = collect.order - 1,
|
||
|
.index = 0,
|
||
|
};
|
||
|
struct page *page;
|
||
|
|
||
|
if (!collect.order)
|
||
|
return;
|
||
|
while (collect.index) {
|
||
|
page = smallstack_pop(&collect);
|
||
|
smallstack_push(&tmp, &page[0]);
|
||
|
smallstack_push(&tmp, &page[1 << tmp.order]);
|
||
|
}
|
||
|
__memcpy(&collect, &tmp, sizeof(tmp));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Memblock is about to go away. Split the page blocks left over in held_back[]
|
||
|
* and return 1/3 of that memory to the system.
|
||
|
*/
|
||
|
static void kmsan_memblock_discard(void)
|
||
|
{
|
||
|
/*
|
||
|
* For each order=N:
|
||
|
* - push held_back[N].shadow and .origin to @collect;
|
||
|
* - while there are >= 3 elements in @collect, do garbage collection:
|
||
|
* - pop 3 ranges from @collect;
|
||
|
* - use two of them as shadow and origin for the third one;
|
||
|
* - repeat;
|
||
|
* - split each remaining element from @collect into 2 ranges of
|
||
|
* order=N-1,
|
||
|
* - repeat.
|
||
|
*/
|
||
|
collect.order = MAX_PAGE_ORDER;
|
||
|
for (int i = MAX_PAGE_ORDER; i >= 0; i--) {
|
||
|
if (held_back[i].shadow)
|
||
|
smallstack_push(&collect, held_back[i].shadow);
|
||
|
if (held_back[i].origin)
|
||
|
smallstack_push(&collect, held_back[i].origin);
|
||
|
held_back[i].shadow = NULL;
|
||
|
held_back[i].origin = NULL;
|
||
|
do_collection();
|
||
|
collect_split();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void __init kmsan_init_runtime(void)
|
||
|
{
|
||
|
/* Assuming current is init_task */
|
||
|
kmsan_internal_task_create(current);
|
||
|
kmsan_memblock_discard();
|
||
|
pr_info("Starting KernelMemorySanitizer\n");
|
||
|
pr_info("ATTENTION: KMSAN is a debugging tool! Do not use it on production machines!\n");
|
||
|
kmsan_enabled = true;
|
||
|
}
|