220 lines
6.3 KiB
C
220 lines
6.3 KiB
C
|
/* SPDX-License-Identifier: GPL-2.0 */
|
||
|
/*
|
||
|
* This is <linux/capability.h>
|
||
|
*
|
||
|
* Andrew G. Morgan <morgan@kernel.org>
|
||
|
* Alexander Kjeldaas <astor@guardian.no>
|
||
|
* with help from Aleph1, Roland Buresund and Andrew Main.
|
||
|
*
|
||
|
* See here for the libcap library ("POSIX draft" compliance):
|
||
|
*
|
||
|
* ftp://www.kernel.org/pub/linux/libs/security/linux-privs/kernel-2.6/
|
||
|
*/
|
||
|
#ifndef _LINUX_CAPABILITY_H
|
||
|
#define _LINUX_CAPABILITY_H
|
||
|
|
||
|
#include <uapi/linux/capability.h>
|
||
|
#include <linux/uidgid.h>
|
||
|
#include <linux/bits.h>
|
||
|
|
||
|
#define _KERNEL_CAPABILITY_VERSION _LINUX_CAPABILITY_VERSION_3
|
||
|
|
||
|
extern int file_caps_enabled;
|
||
|
|
||
|
typedef struct { u64 val; } kernel_cap_t;
|
||
|
|
||
|
/* same as vfs_ns_cap_data but in cpu endian and always filled completely */
|
||
|
struct cpu_vfs_cap_data {
|
||
|
__u32 magic_etc;
|
||
|
kuid_t rootid;
|
||
|
kernel_cap_t permitted;
|
||
|
kernel_cap_t inheritable;
|
||
|
};
|
||
|
|
||
|
#define _USER_CAP_HEADER_SIZE (sizeof(struct __user_cap_header_struct))
|
||
|
#define _KERNEL_CAP_T_SIZE (sizeof(kernel_cap_t))
|
||
|
|
||
|
struct file;
|
||
|
struct inode;
|
||
|
struct dentry;
|
||
|
struct task_struct;
|
||
|
struct user_namespace;
|
||
|
struct mnt_idmap;
|
||
|
|
||
|
/*
|
||
|
* CAP_FS_MASK and CAP_NFSD_MASKS:
|
||
|
*
|
||
|
* The fs mask is all the privileges that fsuid==0 historically meant.
|
||
|
* At one time in the past, that included CAP_MKNOD and CAP_LINUX_IMMUTABLE.
|
||
|
*
|
||
|
* It has never meant setting security.* and trusted.* xattrs.
|
||
|
*
|
||
|
* We could also define fsmask as follows:
|
||
|
* 1. CAP_FS_MASK is the privilege to bypass all fs-related DAC permissions
|
||
|
* 2. The security.* and trusted.* xattrs are fs-related MAC permissions
|
||
|
*/
|
||
|
|
||
|
# define CAP_FS_MASK (BIT_ULL(CAP_CHOWN) \
|
||
|
| BIT_ULL(CAP_MKNOD) \
|
||
|
| BIT_ULL(CAP_DAC_OVERRIDE) \
|
||
|
| BIT_ULL(CAP_DAC_READ_SEARCH) \
|
||
|
| BIT_ULL(CAP_FOWNER) \
|
||
|
| BIT_ULL(CAP_FSETID) \
|
||
|
| BIT_ULL(CAP_MAC_OVERRIDE))
|
||
|
#define CAP_VALID_MASK (BIT_ULL(CAP_LAST_CAP+1)-1)
|
||
|
|
||
|
# define CAP_EMPTY_SET ((kernel_cap_t) { 0 })
|
||
|
# define CAP_FULL_SET ((kernel_cap_t) { CAP_VALID_MASK })
|
||
|
# define CAP_FS_SET ((kernel_cap_t) { CAP_FS_MASK | BIT_ULL(CAP_LINUX_IMMUTABLE) })
|
||
|
# define CAP_NFSD_SET ((kernel_cap_t) { CAP_FS_MASK | BIT_ULL(CAP_SYS_RESOURCE) })
|
||
|
|
||
|
# define cap_clear(c) do { (c).val = 0; } while (0)
|
||
|
|
||
|
#define cap_raise(c, flag) ((c).val |= BIT_ULL(flag))
|
||
|
#define cap_lower(c, flag) ((c).val &= ~BIT_ULL(flag))
|
||
|
#define cap_raised(c, flag) (((c).val & BIT_ULL(flag)) != 0)
|
||
|
|
||
|
static inline kernel_cap_t cap_combine(const kernel_cap_t a,
|
||
|
const kernel_cap_t b)
|
||
|
{
|
||
|
return (kernel_cap_t) { a.val | b.val };
|
||
|
}
|
||
|
|
||
|
static inline kernel_cap_t cap_intersect(const kernel_cap_t a,
|
||
|
const kernel_cap_t b)
|
||
|
{
|
||
|
return (kernel_cap_t) { a.val & b.val };
|
||
|
}
|
||
|
|
||
|
static inline kernel_cap_t cap_drop(const kernel_cap_t a,
|
||
|
const kernel_cap_t drop)
|
||
|
{
|
||
|
return (kernel_cap_t) { a.val &~ drop.val };
|
||
|
}
|
||
|
|
||
|
static inline bool cap_isclear(const kernel_cap_t a)
|
||
|
{
|
||
|
return !a.val;
|
||
|
}
|
||
|
|
||
|
static inline bool cap_isidentical(const kernel_cap_t a, const kernel_cap_t b)
|
||
|
{
|
||
|
return a.val == b.val;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check if "a" is a subset of "set".
|
||
|
* return true if ALL of the capabilities in "a" are also in "set"
|
||
|
* cap_issubset(0101, 1111) will return true
|
||
|
* return false if ANY of the capabilities in "a" are not in "set"
|
||
|
* cap_issubset(1111, 0101) will return false
|
||
|
*/
|
||
|
static inline bool cap_issubset(const kernel_cap_t a, const kernel_cap_t set)
|
||
|
{
|
||
|
return !(a.val & ~set.val);
|
||
|
}
|
||
|
|
||
|
/* Used to decide between falling back on the old suser() or fsuser(). */
|
||
|
|
||
|
static inline kernel_cap_t cap_drop_fs_set(const kernel_cap_t a)
|
||
|
{
|
||
|
return cap_drop(a, CAP_FS_SET);
|
||
|
}
|
||
|
|
||
|
static inline kernel_cap_t cap_raise_fs_set(const kernel_cap_t a,
|
||
|
const kernel_cap_t permitted)
|
||
|
{
|
||
|
return cap_combine(a, cap_intersect(permitted, CAP_FS_SET));
|
||
|
}
|
||
|
|
||
|
static inline kernel_cap_t cap_drop_nfsd_set(const kernel_cap_t a)
|
||
|
{
|
||
|
return cap_drop(a, CAP_NFSD_SET);
|
||
|
}
|
||
|
|
||
|
static inline kernel_cap_t cap_raise_nfsd_set(const kernel_cap_t a,
|
||
|
const kernel_cap_t permitted)
|
||
|
{
|
||
|
return cap_combine(a, cap_intersect(permitted, CAP_NFSD_SET));
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_MULTIUSER
|
||
|
extern bool has_capability(struct task_struct *t, int cap);
|
||
|
extern bool has_ns_capability(struct task_struct *t,
|
||
|
struct user_namespace *ns, int cap);
|
||
|
extern bool has_capability_noaudit(struct task_struct *t, int cap);
|
||
|
extern bool has_ns_capability_noaudit(struct task_struct *t,
|
||
|
struct user_namespace *ns, int cap);
|
||
|
extern bool capable(int cap);
|
||
|
extern bool ns_capable(struct user_namespace *ns, int cap);
|
||
|
extern bool ns_capable_noaudit(struct user_namespace *ns, int cap);
|
||
|
extern bool ns_capable_setid(struct user_namespace *ns, int cap);
|
||
|
#else
|
||
|
static inline bool has_capability(struct task_struct *t, int cap)
|
||
|
{
|
||
|
return true;
|
||
|
}
|
||
|
static inline bool has_ns_capability(struct task_struct *t,
|
||
|
struct user_namespace *ns, int cap)
|
||
|
{
|
||
|
return true;
|
||
|
}
|
||
|
static inline bool has_capability_noaudit(struct task_struct *t, int cap)
|
||
|
{
|
||
|
return true;
|
||
|
}
|
||
|
static inline bool has_ns_capability_noaudit(struct task_struct *t,
|
||
|
struct user_namespace *ns, int cap)
|
||
|
{
|
||
|
return true;
|
||
|
}
|
||
|
static inline bool capable(int cap)
|
||
|
{
|
||
|
return true;
|
||
|
}
|
||
|
static inline bool ns_capable(struct user_namespace *ns, int cap)
|
||
|
{
|
||
|
return true;
|
||
|
}
|
||
|
static inline bool ns_capable_noaudit(struct user_namespace *ns, int cap)
|
||
|
{
|
||
|
return true;
|
||
|
}
|
||
|
static inline bool ns_capable_setid(struct user_namespace *ns, int cap)
|
||
|
{
|
||
|
return true;
|
||
|
}
|
||
|
#endif /* CONFIG_MULTIUSER */
|
||
|
bool privileged_wrt_inode_uidgid(struct user_namespace *ns,
|
||
|
struct mnt_idmap *idmap,
|
||
|
const struct inode *inode);
|
||
|
bool capable_wrt_inode_uidgid(struct mnt_idmap *idmap,
|
||
|
const struct inode *inode, int cap);
|
||
|
extern bool file_ns_capable(const struct file *file, struct user_namespace *ns, int cap);
|
||
|
extern bool ptracer_capable(struct task_struct *tsk, struct user_namespace *ns);
|
||
|
static inline bool perfmon_capable(void)
|
||
|
{
|
||
|
return capable(CAP_PERFMON) || capable(CAP_SYS_ADMIN);
|
||
|
}
|
||
|
|
||
|
static inline bool bpf_capable(void)
|
||
|
{
|
||
|
return capable(CAP_BPF) || capable(CAP_SYS_ADMIN);
|
||
|
}
|
||
|
|
||
|
static inline bool checkpoint_restore_ns_capable(struct user_namespace *ns)
|
||
|
{
|
||
|
return ns_capable(ns, CAP_CHECKPOINT_RESTORE) ||
|
||
|
ns_capable(ns, CAP_SYS_ADMIN);
|
||
|
}
|
||
|
|
||
|
/* audit system wants to get cap info from files as well */
|
||
|
int get_vfs_caps_from_disk(struct mnt_idmap *idmap,
|
||
|
const struct dentry *dentry,
|
||
|
struct cpu_vfs_cap_data *cpu_caps);
|
||
|
|
||
|
int cap_convert_nscap(struct mnt_idmap *idmap, struct dentry *dentry,
|
||
|
const void **ivalue, size_t size);
|
||
|
|
||
|
#endif /* !_LINUX_CAPABILITY_H */
|