406 lines
11 KiB
C
406 lines
11 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* Copyright (C) 2008 Oracle. All rights reserved.
|
||
|
*/
|
||
|
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/pagemap.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
#include <linux/page-flags.h>
|
||
|
#include <asm/bug.h>
|
||
|
#include <trace/events/btrfs.h>
|
||
|
#include "misc.h"
|
||
|
#include "ctree.h"
|
||
|
#include "extent_io.h"
|
||
|
#include "locking.h"
|
||
|
#include "accessors.h"
|
||
|
|
||
|
/*
|
||
|
* Lockdep class keys for extent_buffer->lock's in this root. For a given
|
||
|
* eb, the lockdep key is determined by the btrfs_root it belongs to and
|
||
|
* the level the eb occupies in the tree.
|
||
|
*
|
||
|
* Different roots are used for different purposes and may nest inside each
|
||
|
* other and they require separate keysets. As lockdep keys should be
|
||
|
* static, assign keysets according to the purpose of the root as indicated
|
||
|
* by btrfs_root->root_key.objectid. This ensures that all special purpose
|
||
|
* roots have separate keysets.
|
||
|
*
|
||
|
* Lock-nesting across peer nodes is always done with the immediate parent
|
||
|
* node locked thus preventing deadlock. As lockdep doesn't know this, use
|
||
|
* subclass to avoid triggering lockdep warning in such cases.
|
||
|
*
|
||
|
* The key is set by the readpage_end_io_hook after the buffer has passed
|
||
|
* csum validation but before the pages are unlocked. It is also set by
|
||
|
* btrfs_init_new_buffer on freshly allocated blocks.
|
||
|
*
|
||
|
* We also add a check to make sure the highest level of the tree is the
|
||
|
* same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
|
||
|
* needs update as well.
|
||
|
*/
|
||
|
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
||
|
#if BTRFS_MAX_LEVEL != 8
|
||
|
#error
|
||
|
#endif
|
||
|
|
||
|
#define DEFINE_LEVEL(stem, level) \
|
||
|
.names[level] = "btrfs-" stem "-0" #level,
|
||
|
|
||
|
#define DEFINE_NAME(stem) \
|
||
|
DEFINE_LEVEL(stem, 0) \
|
||
|
DEFINE_LEVEL(stem, 1) \
|
||
|
DEFINE_LEVEL(stem, 2) \
|
||
|
DEFINE_LEVEL(stem, 3) \
|
||
|
DEFINE_LEVEL(stem, 4) \
|
||
|
DEFINE_LEVEL(stem, 5) \
|
||
|
DEFINE_LEVEL(stem, 6) \
|
||
|
DEFINE_LEVEL(stem, 7)
|
||
|
|
||
|
static struct btrfs_lockdep_keyset {
|
||
|
u64 id; /* root objectid */
|
||
|
/* Longest entry: btrfs-block-group-00 */
|
||
|
char names[BTRFS_MAX_LEVEL][24];
|
||
|
struct lock_class_key keys[BTRFS_MAX_LEVEL];
|
||
|
} btrfs_lockdep_keysets[] = {
|
||
|
{ .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") },
|
||
|
{ .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") },
|
||
|
{ .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") },
|
||
|
{ .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") },
|
||
|
{ .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") },
|
||
|
{ .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") },
|
||
|
{ .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") },
|
||
|
{ .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") },
|
||
|
{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") },
|
||
|
{ .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") },
|
||
|
{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
|
||
|
{ .id = BTRFS_BLOCK_GROUP_TREE_OBJECTID, DEFINE_NAME("block-group") },
|
||
|
{ .id = BTRFS_RAID_STRIPE_TREE_OBJECTID, DEFINE_NAME("raid-stripe") },
|
||
|
{ .id = 0, DEFINE_NAME("tree") },
|
||
|
};
|
||
|
|
||
|
#undef DEFINE_LEVEL
|
||
|
#undef DEFINE_NAME
|
||
|
|
||
|
void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, int level)
|
||
|
{
|
||
|
struct btrfs_lockdep_keyset *ks;
|
||
|
|
||
|
BUG_ON(level >= ARRAY_SIZE(ks->keys));
|
||
|
|
||
|
/* Find the matching keyset, id 0 is the default entry */
|
||
|
for (ks = btrfs_lockdep_keysets; ks->id; ks++)
|
||
|
if (ks->id == objectid)
|
||
|
break;
|
||
|
|
||
|
lockdep_set_class_and_name(&eb->lock, &ks->keys[level], ks->names[level]);
|
||
|
}
|
||
|
|
||
|
void btrfs_maybe_reset_lockdep_class(struct btrfs_root *root, struct extent_buffer *eb)
|
||
|
{
|
||
|
if (test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
|
||
|
btrfs_set_buffer_lockdep_class(root->root_key.objectid,
|
||
|
eb, btrfs_header_level(eb));
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
#ifdef CONFIG_BTRFS_DEBUG
|
||
|
static void btrfs_set_eb_lock_owner(struct extent_buffer *eb, pid_t owner)
|
||
|
{
|
||
|
eb->lock_owner = owner;
|
||
|
}
|
||
|
#else
|
||
|
static void btrfs_set_eb_lock_owner(struct extent_buffer *eb, pid_t owner) { }
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Extent buffer locking
|
||
|
* =====================
|
||
|
*
|
||
|
* We use a rw_semaphore for tree locking, and the semantics are exactly the
|
||
|
* same:
|
||
|
*
|
||
|
* - reader/writer exclusion
|
||
|
* - writer/writer exclusion
|
||
|
* - reader/reader sharing
|
||
|
* - try-lock semantics for readers and writers
|
||
|
*
|
||
|
* The rwsem implementation does opportunistic spinning which reduces number of
|
||
|
* times the locking task needs to sleep.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* __btrfs_tree_read_lock - lock extent buffer for read
|
||
|
* @eb: the eb to be locked
|
||
|
* @nest: the nesting level to be used for lockdep
|
||
|
*
|
||
|
* This takes the read lock on the extent buffer, using the specified nesting
|
||
|
* level for lockdep purposes.
|
||
|
*/
|
||
|
void __btrfs_tree_read_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
|
||
|
{
|
||
|
u64 start_ns = 0;
|
||
|
|
||
|
if (trace_btrfs_tree_read_lock_enabled())
|
||
|
start_ns = ktime_get_ns();
|
||
|
|
||
|
down_read_nested(&eb->lock, nest);
|
||
|
trace_btrfs_tree_read_lock(eb, start_ns);
|
||
|
}
|
||
|
|
||
|
void btrfs_tree_read_lock(struct extent_buffer *eb)
|
||
|
{
|
||
|
__btrfs_tree_read_lock(eb, BTRFS_NESTING_NORMAL);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Try-lock for read.
|
||
|
*
|
||
|
* Return 1 if the rwlock has been taken, 0 otherwise
|
||
|
*/
|
||
|
int btrfs_try_tree_read_lock(struct extent_buffer *eb)
|
||
|
{
|
||
|
if (down_read_trylock(&eb->lock)) {
|
||
|
trace_btrfs_try_tree_read_lock(eb);
|
||
|
return 1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Try-lock for write.
|
||
|
*
|
||
|
* Return 1 if the rwlock has been taken, 0 otherwise
|
||
|
*/
|
||
|
int btrfs_try_tree_write_lock(struct extent_buffer *eb)
|
||
|
{
|
||
|
if (down_write_trylock(&eb->lock)) {
|
||
|
btrfs_set_eb_lock_owner(eb, current->pid);
|
||
|
trace_btrfs_try_tree_write_lock(eb);
|
||
|
return 1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Release read lock.
|
||
|
*/
|
||
|
void btrfs_tree_read_unlock(struct extent_buffer *eb)
|
||
|
{
|
||
|
trace_btrfs_tree_read_unlock(eb);
|
||
|
up_read(&eb->lock);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Lock eb for write.
|
||
|
*
|
||
|
* @eb: the eb to lock
|
||
|
* @nest: the nesting to use for the lock
|
||
|
*
|
||
|
* Returns with the eb->lock write locked.
|
||
|
*/
|
||
|
void __btrfs_tree_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
|
||
|
__acquires(&eb->lock)
|
||
|
{
|
||
|
u64 start_ns = 0;
|
||
|
|
||
|
if (trace_btrfs_tree_lock_enabled())
|
||
|
start_ns = ktime_get_ns();
|
||
|
|
||
|
down_write_nested(&eb->lock, nest);
|
||
|
btrfs_set_eb_lock_owner(eb, current->pid);
|
||
|
trace_btrfs_tree_lock(eb, start_ns);
|
||
|
}
|
||
|
|
||
|
void btrfs_tree_lock(struct extent_buffer *eb)
|
||
|
{
|
||
|
__btrfs_tree_lock(eb, BTRFS_NESTING_NORMAL);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Release the write lock.
|
||
|
*/
|
||
|
void btrfs_tree_unlock(struct extent_buffer *eb)
|
||
|
{
|
||
|
trace_btrfs_tree_unlock(eb);
|
||
|
btrfs_set_eb_lock_owner(eb, 0);
|
||
|
up_write(&eb->lock);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This releases any locks held in the path starting at level and going all the
|
||
|
* way up to the root.
|
||
|
*
|
||
|
* btrfs_search_slot will keep the lock held on higher nodes in a few corner
|
||
|
* cases, such as COW of the block at slot zero in the node. This ignores
|
||
|
* those rules, and it should only be called when there are no more updates to
|
||
|
* be done higher up in the tree.
|
||
|
*/
|
||
|
void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
if (path->keep_locks)
|
||
|
return;
|
||
|
|
||
|
for (i = level; i < BTRFS_MAX_LEVEL; i++) {
|
||
|
if (!path->nodes[i])
|
||
|
continue;
|
||
|
if (!path->locks[i])
|
||
|
continue;
|
||
|
btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
|
||
|
path->locks[i] = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Loop around taking references on and locking the root node of the tree until
|
||
|
* we end up with a lock on the root node.
|
||
|
*
|
||
|
* Return: root extent buffer with write lock held
|
||
|
*/
|
||
|
struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
|
||
|
{
|
||
|
struct extent_buffer *eb;
|
||
|
|
||
|
while (1) {
|
||
|
eb = btrfs_root_node(root);
|
||
|
|
||
|
btrfs_maybe_reset_lockdep_class(root, eb);
|
||
|
btrfs_tree_lock(eb);
|
||
|
if (eb == root->node)
|
||
|
break;
|
||
|
btrfs_tree_unlock(eb);
|
||
|
free_extent_buffer(eb);
|
||
|
}
|
||
|
return eb;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Loop around taking references on and locking the root node of the tree until
|
||
|
* we end up with a lock on the root node.
|
||
|
*
|
||
|
* Return: root extent buffer with read lock held
|
||
|
*/
|
||
|
struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
|
||
|
{
|
||
|
struct extent_buffer *eb;
|
||
|
|
||
|
while (1) {
|
||
|
eb = btrfs_root_node(root);
|
||
|
|
||
|
btrfs_maybe_reset_lockdep_class(root, eb);
|
||
|
btrfs_tree_read_lock(eb);
|
||
|
if (eb == root->node)
|
||
|
break;
|
||
|
btrfs_tree_read_unlock(eb);
|
||
|
free_extent_buffer(eb);
|
||
|
}
|
||
|
return eb;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Loop around taking references on and locking the root node of the tree in
|
||
|
* nowait mode until we end up with a lock on the root node or returning to
|
||
|
* avoid blocking.
|
||
|
*
|
||
|
* Return: root extent buffer with read lock held or -EAGAIN.
|
||
|
*/
|
||
|
struct extent_buffer *btrfs_try_read_lock_root_node(struct btrfs_root *root)
|
||
|
{
|
||
|
struct extent_buffer *eb;
|
||
|
|
||
|
while (1) {
|
||
|
eb = btrfs_root_node(root);
|
||
|
if (!btrfs_try_tree_read_lock(eb)) {
|
||
|
free_extent_buffer(eb);
|
||
|
return ERR_PTR(-EAGAIN);
|
||
|
}
|
||
|
if (eb == root->node)
|
||
|
break;
|
||
|
btrfs_tree_read_unlock(eb);
|
||
|
free_extent_buffer(eb);
|
||
|
}
|
||
|
return eb;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* DREW locks
|
||
|
* ==========
|
||
|
*
|
||
|
* DREW stands for double-reader-writer-exclusion lock. It's used in situation
|
||
|
* where you want to provide A-B exclusion but not AA or BB.
|
||
|
*
|
||
|
* Currently implementation gives more priority to reader. If a reader and a
|
||
|
* writer both race to acquire their respective sides of the lock the writer
|
||
|
* would yield its lock as soon as it detects a concurrent reader. Additionally
|
||
|
* if there are pending readers no new writers would be allowed to come in and
|
||
|
* acquire the lock.
|
||
|
*/
|
||
|
|
||
|
void btrfs_drew_lock_init(struct btrfs_drew_lock *lock)
|
||
|
{
|
||
|
atomic_set(&lock->readers, 0);
|
||
|
atomic_set(&lock->writers, 0);
|
||
|
init_waitqueue_head(&lock->pending_readers);
|
||
|
init_waitqueue_head(&lock->pending_writers);
|
||
|
}
|
||
|
|
||
|
/* Return true if acquisition is successful, false otherwise */
|
||
|
bool btrfs_drew_try_write_lock(struct btrfs_drew_lock *lock)
|
||
|
{
|
||
|
if (atomic_read(&lock->readers))
|
||
|
return false;
|
||
|
|
||
|
atomic_inc(&lock->writers);
|
||
|
|
||
|
/* Ensure writers count is updated before we check for pending readers */
|
||
|
smp_mb__after_atomic();
|
||
|
if (atomic_read(&lock->readers)) {
|
||
|
btrfs_drew_write_unlock(lock);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void btrfs_drew_write_lock(struct btrfs_drew_lock *lock)
|
||
|
{
|
||
|
while (true) {
|
||
|
if (btrfs_drew_try_write_lock(lock))
|
||
|
return;
|
||
|
wait_event(lock->pending_writers, !atomic_read(&lock->readers));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void btrfs_drew_write_unlock(struct btrfs_drew_lock *lock)
|
||
|
{
|
||
|
atomic_dec(&lock->writers);
|
||
|
cond_wake_up(&lock->pending_readers);
|
||
|
}
|
||
|
|
||
|
void btrfs_drew_read_lock(struct btrfs_drew_lock *lock)
|
||
|
{
|
||
|
atomic_inc(&lock->readers);
|
||
|
|
||
|
/*
|
||
|
* Ensure the pending reader count is perceieved BEFORE this reader
|
||
|
* goes to sleep in case of active writers. This guarantees new writers
|
||
|
* won't be allowed and that the current reader will be woken up when
|
||
|
* the last active writer finishes its jobs.
|
||
|
*/
|
||
|
smp_mb__after_atomic();
|
||
|
|
||
|
wait_event(lock->pending_readers, atomic_read(&lock->writers) == 0);
|
||
|
}
|
||
|
|
||
|
void btrfs_drew_read_unlock(struct btrfs_drew_lock *lock)
|
||
|
{
|
||
|
/*
|
||
|
* atomic_dec_and_test implies a full barrier, so woken up writers
|
||
|
* are guaranteed to see the decrement
|
||
|
*/
|
||
|
if (atomic_dec_and_test(&lock->readers))
|
||
|
wake_up(&lock->pending_writers);
|
||
|
}
|