mirror_ubuntu-kernels/drivers/soc/tegra/fuse/fuse-tegra.c

542 lines
13 KiB
C
Raw Normal View History

2024-07-02 00:48:40 +03:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2013-2023, NVIDIA CORPORATION. All rights reserved.
*/
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/kobject.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/nvmem-consumer.h>
#include <linux/nvmem-provider.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <linux/sys_soc.h>
#include <soc/tegra/common.h>
#include <soc/tegra/fuse.h>
#include "fuse.h"
struct tegra_sku_info tegra_sku_info;
EXPORT_SYMBOL(tegra_sku_info);
static const char *tegra_revision_name[TEGRA_REVISION_MAX] = {
[TEGRA_REVISION_UNKNOWN] = "unknown",
[TEGRA_REVISION_A01] = "A01",
[TEGRA_REVISION_A02] = "A02",
[TEGRA_REVISION_A03] = "A03",
[TEGRA_REVISION_A03p] = "A03 prime",
[TEGRA_REVISION_A04] = "A04",
};
static const char *tegra_platform_name[TEGRA_PLATFORM_MAX] = {
[TEGRA_PLATFORM_SILICON] = "Silicon",
[TEGRA_PLATFORM_QT] = "QT",
[TEGRA_PLATFORM_SYSTEM_FPGA] = "System FPGA",
[TEGRA_PLATFORM_UNIT_FPGA] = "Unit FPGA",
[TEGRA_PLATFORM_ASIM_QT] = "Asim QT",
[TEGRA_PLATFORM_ASIM_LINSIM] = "Asim Linsim",
[TEGRA_PLATFORM_DSIM_ASIM_LINSIM] = "Dsim Asim Linsim",
[TEGRA_PLATFORM_VERIFICATION_SIMULATION] = "Verification Simulation",
[TEGRA_PLATFORM_VDK] = "VDK",
[TEGRA_PLATFORM_VSP] = "VSP",
};
static const struct of_device_id car_match[] __initconst = {
{ .compatible = "nvidia,tegra20-car", },
{ .compatible = "nvidia,tegra30-car", },
{ .compatible = "nvidia,tegra114-car", },
{ .compatible = "nvidia,tegra124-car", },
{ .compatible = "nvidia,tegra132-car", },
{ .compatible = "nvidia,tegra210-car", },
{},
};
static struct tegra_fuse *fuse = &(struct tegra_fuse) {
.base = NULL,
.soc = NULL,
};
static const struct of_device_id tegra_fuse_match[] = {
#ifdef CONFIG_ARCH_TEGRA_234_SOC
{ .compatible = "nvidia,tegra234-efuse", .data = &tegra234_fuse_soc },
#endif
#ifdef CONFIG_ARCH_TEGRA_194_SOC
{ .compatible = "nvidia,tegra194-efuse", .data = &tegra194_fuse_soc },
#endif
#ifdef CONFIG_ARCH_TEGRA_186_SOC
{ .compatible = "nvidia,tegra186-efuse", .data = &tegra186_fuse_soc },
#endif
#ifdef CONFIG_ARCH_TEGRA_210_SOC
{ .compatible = "nvidia,tegra210-efuse", .data = &tegra210_fuse_soc },
#endif
#ifdef CONFIG_ARCH_TEGRA_132_SOC
{ .compatible = "nvidia,tegra132-efuse", .data = &tegra124_fuse_soc },
#endif
#ifdef CONFIG_ARCH_TEGRA_124_SOC
{ .compatible = "nvidia,tegra124-efuse", .data = &tegra124_fuse_soc },
#endif
#ifdef CONFIG_ARCH_TEGRA_114_SOC
{ .compatible = "nvidia,tegra114-efuse", .data = &tegra114_fuse_soc },
#endif
#ifdef CONFIG_ARCH_TEGRA_3x_SOC
{ .compatible = "nvidia,tegra30-efuse", .data = &tegra30_fuse_soc },
#endif
#ifdef CONFIG_ARCH_TEGRA_2x_SOC
{ .compatible = "nvidia,tegra20-efuse", .data = &tegra20_fuse_soc },
#endif
{ /* sentinel */ }
};
static int tegra_fuse_read(void *priv, unsigned int offset, void *value,
size_t bytes)
{
unsigned int count = bytes / 4, i;
struct tegra_fuse *fuse = priv;
u32 *buffer = value;
for (i = 0; i < count; i++)
buffer[i] = fuse->read(fuse, offset + i * 4);
return 0;
}
static void tegra_fuse_restore(void *base)
{
fuse->base = (void __iomem *)base;
fuse->clk = NULL;
}
static int tegra_fuse_probe(struct platform_device *pdev)
{
void __iomem *base = fuse->base;
struct nvmem_config nvmem;
struct resource *res;
int err;
err = devm_add_action(&pdev->dev, tegra_fuse_restore, (void __force *)base);
if (err)
return err;
/* take over the memory region from the early initialization */
fuse->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(fuse->base))
return PTR_ERR(fuse->base);
fuse->phys = res->start;
fuse->clk = devm_clk_get(&pdev->dev, "fuse");
if (IS_ERR(fuse->clk)) {
if (PTR_ERR(fuse->clk) != -EPROBE_DEFER)
dev_err(&pdev->dev, "failed to get FUSE clock: %ld",
PTR_ERR(fuse->clk));
return PTR_ERR(fuse->clk);
}
platform_set_drvdata(pdev, fuse);
fuse->dev = &pdev->dev;
err = devm_pm_runtime_enable(&pdev->dev);
if (err)
return err;
if (fuse->soc->probe) {
err = fuse->soc->probe(fuse);
if (err < 0)
return err;
}
memset(&nvmem, 0, sizeof(nvmem));
nvmem.dev = &pdev->dev;
nvmem.name = "fuse";
nvmem.id = -1;
nvmem.owner = THIS_MODULE;
nvmem.cells = fuse->soc->cells;
nvmem.ncells = fuse->soc->num_cells;
nvmem.keepout = fuse->soc->keepouts;
nvmem.nkeepout = fuse->soc->num_keepouts;
nvmem.type = NVMEM_TYPE_OTP;
nvmem.read_only = true;
nvmem.root_only = false;
nvmem.reg_read = tegra_fuse_read;
nvmem.size = fuse->soc->info->size;
nvmem.word_size = 4;
nvmem.stride = 4;
nvmem.priv = fuse;
fuse->nvmem = devm_nvmem_register(&pdev->dev, &nvmem);
if (IS_ERR(fuse->nvmem)) {
err = PTR_ERR(fuse->nvmem);
dev_err(&pdev->dev, "failed to register NVMEM device: %d\n",
err);
return err;
}
fuse->rst = devm_reset_control_get_optional(&pdev->dev, "fuse");
if (IS_ERR(fuse->rst)) {
err = PTR_ERR(fuse->rst);
dev_err(&pdev->dev, "failed to get FUSE reset: %pe\n",
fuse->rst);
return err;
}
/*
* FUSE clock is enabled at a boot time, hence this resume/suspend
* disables the clock besides the h/w resetting.
*/
err = pm_runtime_resume_and_get(&pdev->dev);
if (err)
return err;
err = reset_control_reset(fuse->rst);
pm_runtime_put(&pdev->dev);
if (err < 0) {
dev_err(&pdev->dev, "failed to reset FUSE: %d\n", err);
return err;
}
/* release the early I/O memory mapping */
iounmap(base);
return 0;
}
static int __maybe_unused tegra_fuse_runtime_resume(struct device *dev)
{
int err;
err = clk_prepare_enable(fuse->clk);
if (err < 0) {
dev_err(dev, "failed to enable FUSE clock: %d\n", err);
return err;
}
return 0;
}
static int __maybe_unused tegra_fuse_runtime_suspend(struct device *dev)
{
clk_disable_unprepare(fuse->clk);
return 0;
}
static int __maybe_unused tegra_fuse_suspend(struct device *dev)
{
int ret;
/*
* Critical for RAM re-repair operation, which must occur on resume
* from LP1 system suspend and as part of CCPLEX cluster switching.
*/
if (fuse->soc->clk_suspend_on)
ret = pm_runtime_resume_and_get(dev);
else
ret = pm_runtime_force_suspend(dev);
return ret;
}
static int __maybe_unused tegra_fuse_resume(struct device *dev)
{
int ret = 0;
if (fuse->soc->clk_suspend_on)
pm_runtime_put(dev);
else
ret = pm_runtime_force_resume(dev);
return ret;
}
static const struct dev_pm_ops tegra_fuse_pm = {
SET_RUNTIME_PM_OPS(tegra_fuse_runtime_suspend, tegra_fuse_runtime_resume,
NULL)
SET_SYSTEM_SLEEP_PM_OPS(tegra_fuse_suspend, tegra_fuse_resume)
};
static struct platform_driver tegra_fuse_driver = {
.driver = {
.name = "tegra-fuse",
.of_match_table = tegra_fuse_match,
.pm = &tegra_fuse_pm,
.suppress_bind_attrs = true,
},
.probe = tegra_fuse_probe,
};
builtin_platform_driver(tegra_fuse_driver);
u32 __init tegra_fuse_read_spare(unsigned int spare)
{
unsigned int offset = fuse->soc->info->spare + spare * 4;
return fuse->read_early(fuse, offset) & 1;
}
u32 __init tegra_fuse_read_early(unsigned int offset)
{
return fuse->read_early(fuse, offset);
}
int tegra_fuse_readl(unsigned long offset, u32 *value)
{
if (!fuse->read || !fuse->clk)
return -EPROBE_DEFER;
if (IS_ERR(fuse->clk))
return PTR_ERR(fuse->clk);
*value = fuse->read(fuse, offset);
return 0;
}
EXPORT_SYMBOL(tegra_fuse_readl);
static void tegra_enable_fuse_clk(void __iomem *base)
{
u32 reg;
reg = readl_relaxed(base + 0x48);
reg |= 1 << 28;
writel(reg, base + 0x48);
/*
* Enable FUSE clock. This needs to be hardcoded because the clock
* subsystem is not active during early boot.
*/
reg = readl(base + 0x14);
reg |= 1 << 7;
writel(reg, base + 0x14);
}
static ssize_t major_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n", tegra_get_major_rev());
}
static DEVICE_ATTR_RO(major);
static ssize_t minor_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n", tegra_get_minor_rev());
}
static DEVICE_ATTR_RO(minor);
static struct attribute *tegra_soc_attr[] = {
&dev_attr_major.attr,
&dev_attr_minor.attr,
NULL,
};
const struct attribute_group tegra_soc_attr_group = {
.attrs = tegra_soc_attr,
};
#if IS_ENABLED(CONFIG_ARCH_TEGRA_194_SOC) || \
IS_ENABLED(CONFIG_ARCH_TEGRA_234_SOC)
static ssize_t platform_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
/*
* Displays the value in the 'pre_si_platform' field of the HIDREV
* register for Tegra194 devices. A value of 0 indicates that the
* platform type is silicon and all other non-zero values indicate
* the type of simulation platform is being used.
*/
return sprintf(buf, "%d\n", tegra_get_platform());
}
static DEVICE_ATTR_RO(platform);
static struct attribute *tegra194_soc_attr[] = {
&dev_attr_major.attr,
&dev_attr_minor.attr,
&dev_attr_platform.attr,
NULL,
};
const struct attribute_group tegra194_soc_attr_group = {
.attrs = tegra194_soc_attr,
};
#endif
struct device * __init tegra_soc_device_register(void)
{
struct soc_device_attribute *attr;
struct soc_device *dev;
attr = kzalloc(sizeof(*attr), GFP_KERNEL);
if (!attr)
return NULL;
attr->family = kasprintf(GFP_KERNEL, "Tegra");
if (tegra_is_silicon())
attr->revision = kasprintf(GFP_KERNEL, "%s %s",
tegra_platform_name[tegra_sku_info.platform],
tegra_revision_name[tegra_sku_info.revision]);
else
attr->revision = kasprintf(GFP_KERNEL, "%s",
tegra_platform_name[tegra_sku_info.platform]);
attr->soc_id = kasprintf(GFP_KERNEL, "%u", tegra_get_chip_id());
attr->custom_attr_group = fuse->soc->soc_attr_group;
dev = soc_device_register(attr);
if (IS_ERR(dev)) {
kfree(attr->soc_id);
kfree(attr->revision);
kfree(attr->family);
kfree(attr);
return ERR_CAST(dev);
}
return soc_device_to_device(dev);
}
static int __init tegra_init_fuse(void)
{
const struct of_device_id *match;
struct device_node *np;
struct resource regs;
tegra_init_apbmisc();
np = of_find_matching_node_and_match(NULL, tegra_fuse_match, &match);
if (!np) {
/*
* Fall back to legacy initialization for 32-bit ARM only. All
* 64-bit ARM device tree files for Tegra are required to have
* a FUSE node.
*
* This is for backwards-compatibility with old device trees
* that didn't contain a FUSE node.
*/
if (IS_ENABLED(CONFIG_ARM) && soc_is_tegra()) {
u8 chip = tegra_get_chip_id();
regs.start = 0x7000f800;
regs.end = 0x7000fbff;
regs.flags = IORESOURCE_MEM;
switch (chip) {
#ifdef CONFIG_ARCH_TEGRA_2x_SOC
case TEGRA20:
fuse->soc = &tegra20_fuse_soc;
break;
#endif
#ifdef CONFIG_ARCH_TEGRA_3x_SOC
case TEGRA30:
fuse->soc = &tegra30_fuse_soc;
break;
#endif
#ifdef CONFIG_ARCH_TEGRA_114_SOC
case TEGRA114:
fuse->soc = &tegra114_fuse_soc;
break;
#endif
#ifdef CONFIG_ARCH_TEGRA_124_SOC
case TEGRA124:
fuse->soc = &tegra124_fuse_soc;
break;
#endif
default:
pr_warn("Unsupported SoC: %02x\n", chip);
break;
}
} else {
/*
* At this point we're not running on Tegra, so play
* nice with multi-platform kernels.
*/
return 0;
}
} else {
/*
* Extract information from the device tree if we've found a
* matching node.
*/
if (of_address_to_resource(np, 0, &regs) < 0) {
pr_err("failed to get FUSE register\n");
return -ENXIO;
}
fuse->soc = match->data;
}
np = of_find_matching_node(NULL, car_match);
if (np) {
void __iomem *base = of_iomap(np, 0);
of_node_put(np);
if (base) {
tegra_enable_fuse_clk(base);
iounmap(base);
} else {
pr_err("failed to map clock registers\n");
return -ENXIO;
}
}
fuse->base = ioremap(regs.start, resource_size(&regs));
if (!fuse->base) {
pr_err("failed to map FUSE registers\n");
return -ENXIO;
}
fuse->soc->init(fuse);
pr_info("Tegra Revision: %s SKU: %d CPU Process: %d SoC Process: %d\n",
tegra_revision_name[tegra_sku_info.revision],
tegra_sku_info.sku_id, tegra_sku_info.cpu_process_id,
tegra_sku_info.soc_process_id);
pr_debug("Tegra CPU Speedo ID %d, SoC Speedo ID %d\n",
tegra_sku_info.cpu_speedo_id, tegra_sku_info.soc_speedo_id);
if (fuse->soc->lookups) {
size_t size = sizeof(*fuse->lookups) * fuse->soc->num_lookups;
fuse->lookups = kmemdup(fuse->soc->lookups, size, GFP_KERNEL);
if (fuse->lookups)
nvmem_add_cell_lookups(fuse->lookups, fuse->soc->num_lookups);
}
return 0;
}
early_initcall(tegra_init_fuse);
#ifdef CONFIG_ARM64
static int __init tegra_init_soc(void)
{
struct device_node *np;
struct device *soc;
/* make sure we're running on Tegra */
np = of_find_matching_node(NULL, tegra_fuse_match);
if (!np)
return 0;
of_node_put(np);
soc = tegra_soc_device_register();
if (IS_ERR(soc)) {
pr_err("failed to register SoC device: %ld\n", PTR_ERR(soc));
return PTR_ERR(soc);
}
return 0;
}
device_initcall(tegra_init_soc);
#endif