469 lines
13 KiB
C
469 lines
13 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/****************************************************************************
|
||
|
* Driver for Solarflare network controllers and boards
|
||
|
* Copyright 2018 Solarflare Communications Inc.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License version 2 as published
|
||
|
* by the Free Software Foundation, incorporated herein by reference.
|
||
|
*/
|
||
|
|
||
|
#include "net_driver.h"
|
||
|
#include "efx.h"
|
||
|
#include "nic_common.h"
|
||
|
#include "tx_common.h"
|
||
|
#include <net/gso.h>
|
||
|
|
||
|
static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
|
||
|
{
|
||
|
return DIV_ROUND_UP(tx_queue->ptr_mask + 1,
|
||
|
PAGE_SIZE >> EFX_TX_CB_ORDER);
|
||
|
}
|
||
|
|
||
|
int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
|
||
|
{
|
||
|
struct efx_nic *efx = tx_queue->efx;
|
||
|
unsigned int entries;
|
||
|
int rc;
|
||
|
|
||
|
/* Create the smallest power-of-two aligned ring */
|
||
|
entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
|
||
|
EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
|
||
|
tx_queue->ptr_mask = entries - 1;
|
||
|
|
||
|
netif_dbg(efx, probe, efx->net_dev,
|
||
|
"creating TX queue %d size %#x mask %#x\n",
|
||
|
tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
|
||
|
|
||
|
/* Allocate software ring */
|
||
|
tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
|
||
|
GFP_KERNEL);
|
||
|
if (!tx_queue->buffer)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
|
||
|
sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
|
||
|
if (!tx_queue->cb_page) {
|
||
|
rc = -ENOMEM;
|
||
|
goto fail1;
|
||
|
}
|
||
|
|
||
|
/* Allocate hardware ring, determine TXQ type */
|
||
|
rc = efx_nic_probe_tx(tx_queue);
|
||
|
if (rc)
|
||
|
goto fail2;
|
||
|
|
||
|
tx_queue->channel->tx_queue_by_type[tx_queue->type] = tx_queue;
|
||
|
return 0;
|
||
|
|
||
|
fail2:
|
||
|
kfree(tx_queue->cb_page);
|
||
|
tx_queue->cb_page = NULL;
|
||
|
fail1:
|
||
|
kfree(tx_queue->buffer);
|
||
|
tx_queue->buffer = NULL;
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
|
||
|
{
|
||
|
struct efx_nic *efx = tx_queue->efx;
|
||
|
|
||
|
netif_dbg(efx, drv, efx->net_dev,
|
||
|
"initialising TX queue %d\n", tx_queue->queue);
|
||
|
|
||
|
tx_queue->insert_count = 0;
|
||
|
tx_queue->notify_count = 0;
|
||
|
tx_queue->write_count = 0;
|
||
|
tx_queue->packet_write_count = 0;
|
||
|
tx_queue->old_write_count = 0;
|
||
|
tx_queue->read_count = 0;
|
||
|
tx_queue->old_read_count = 0;
|
||
|
tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
|
||
|
tx_queue->xmit_pending = false;
|
||
|
tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
|
||
|
tx_queue->channel == efx_ptp_channel(efx));
|
||
|
tx_queue->completed_timestamp_major = 0;
|
||
|
tx_queue->completed_timestamp_minor = 0;
|
||
|
|
||
|
tx_queue->xdp_tx = efx_channel_is_xdp_tx(tx_queue->channel);
|
||
|
tx_queue->tso_version = 0;
|
||
|
|
||
|
/* Set up TX descriptor ring */
|
||
|
efx_nic_init_tx(tx_queue);
|
||
|
|
||
|
tx_queue->initialised = true;
|
||
|
}
|
||
|
|
||
|
void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
|
||
|
{
|
||
|
struct efx_tx_buffer *buffer;
|
||
|
|
||
|
netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
|
||
|
"shutting down TX queue %d\n", tx_queue->queue);
|
||
|
|
||
|
tx_queue->initialised = false;
|
||
|
|
||
|
if (!tx_queue->buffer)
|
||
|
return;
|
||
|
|
||
|
/* Free any buffers left in the ring */
|
||
|
while (tx_queue->read_count != tx_queue->write_count) {
|
||
|
unsigned int pkts_compl = 0, bytes_compl = 0;
|
||
|
unsigned int efv_pkts_compl = 0;
|
||
|
|
||
|
buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
|
||
|
efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl,
|
||
|
&efv_pkts_compl);
|
||
|
|
||
|
++tx_queue->read_count;
|
||
|
}
|
||
|
tx_queue->xmit_pending = false;
|
||
|
netdev_tx_reset_queue(tx_queue->core_txq);
|
||
|
}
|
||
|
|
||
|
void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
if (!tx_queue->buffer)
|
||
|
return;
|
||
|
|
||
|
netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
|
||
|
"destroying TX queue %d\n", tx_queue->queue);
|
||
|
efx_nic_remove_tx(tx_queue);
|
||
|
|
||
|
if (tx_queue->cb_page) {
|
||
|
for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
|
||
|
efx_nic_free_buffer(tx_queue->efx,
|
||
|
&tx_queue->cb_page[i]);
|
||
|
kfree(tx_queue->cb_page);
|
||
|
tx_queue->cb_page = NULL;
|
||
|
}
|
||
|
|
||
|
kfree(tx_queue->buffer);
|
||
|
tx_queue->buffer = NULL;
|
||
|
tx_queue->channel->tx_queue_by_type[tx_queue->type] = NULL;
|
||
|
}
|
||
|
|
||
|
void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
|
||
|
struct efx_tx_buffer *buffer,
|
||
|
unsigned int *pkts_compl,
|
||
|
unsigned int *bytes_compl,
|
||
|
unsigned int *efv_pkts_compl)
|
||
|
{
|
||
|
if (buffer->unmap_len) {
|
||
|
struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
|
||
|
dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
|
||
|
|
||
|
if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
|
||
|
dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
|
||
|
DMA_TO_DEVICE);
|
||
|
else
|
||
|
dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
|
||
|
DMA_TO_DEVICE);
|
||
|
buffer->unmap_len = 0;
|
||
|
}
|
||
|
|
||
|
if (buffer->flags & EFX_TX_BUF_SKB) {
|
||
|
struct sk_buff *skb = (struct sk_buff *)buffer->skb;
|
||
|
|
||
|
if (unlikely(buffer->flags & EFX_TX_BUF_EFV)) {
|
||
|
EFX_WARN_ON_PARANOID(!efv_pkts_compl);
|
||
|
(*efv_pkts_compl)++;
|
||
|
} else {
|
||
|
EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
|
||
|
(*pkts_compl)++;
|
||
|
(*bytes_compl) += skb->len;
|
||
|
}
|
||
|
|
||
|
if (tx_queue->timestamping &&
|
||
|
(tx_queue->completed_timestamp_major ||
|
||
|
tx_queue->completed_timestamp_minor)) {
|
||
|
struct skb_shared_hwtstamps hwtstamp;
|
||
|
|
||
|
hwtstamp.hwtstamp =
|
||
|
efx_ptp_nic_to_kernel_time(tx_queue);
|
||
|
skb_tstamp_tx(skb, &hwtstamp);
|
||
|
|
||
|
tx_queue->completed_timestamp_major = 0;
|
||
|
tx_queue->completed_timestamp_minor = 0;
|
||
|
}
|
||
|
dev_consume_skb_any((struct sk_buff *)buffer->skb);
|
||
|
netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
|
||
|
"TX queue %d transmission id %x complete\n",
|
||
|
tx_queue->queue, tx_queue->read_count);
|
||
|
} else if (buffer->flags & EFX_TX_BUF_XDP) {
|
||
|
xdp_return_frame_rx_napi(buffer->xdpf);
|
||
|
}
|
||
|
|
||
|
buffer->len = 0;
|
||
|
buffer->flags = 0;
|
||
|
}
|
||
|
|
||
|
/* Remove packets from the TX queue
|
||
|
*
|
||
|
* This removes packets from the TX queue, up to and including the
|
||
|
* specified index.
|
||
|
*/
|
||
|
static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
|
||
|
unsigned int index,
|
||
|
unsigned int *pkts_compl,
|
||
|
unsigned int *bytes_compl,
|
||
|
unsigned int *efv_pkts_compl)
|
||
|
{
|
||
|
struct efx_nic *efx = tx_queue->efx;
|
||
|
unsigned int stop_index, read_ptr;
|
||
|
|
||
|
stop_index = (index + 1) & tx_queue->ptr_mask;
|
||
|
read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
|
||
|
|
||
|
while (read_ptr != stop_index) {
|
||
|
struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
|
||
|
|
||
|
if (!efx_tx_buffer_in_use(buffer)) {
|
||
|
netif_err(efx, tx_err, efx->net_dev,
|
||
|
"TX queue %d spurious TX completion id %d\n",
|
||
|
tx_queue->queue, read_ptr);
|
||
|
efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl,
|
||
|
efv_pkts_compl);
|
||
|
|
||
|
++tx_queue->read_count;
|
||
|
read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void efx_xmit_done_check_empty(struct efx_tx_queue *tx_queue)
|
||
|
{
|
||
|
if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
|
||
|
tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
|
||
|
if (tx_queue->read_count == tx_queue->old_write_count) {
|
||
|
/* Ensure that read_count is flushed. */
|
||
|
smp_mb();
|
||
|
tx_queue->empty_read_count =
|
||
|
tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
|
||
|
{
|
||
|
unsigned int fill_level, pkts_compl = 0, bytes_compl = 0;
|
||
|
unsigned int efv_pkts_compl = 0;
|
||
|
struct efx_nic *efx = tx_queue->efx;
|
||
|
|
||
|
EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
|
||
|
|
||
|
efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl,
|
||
|
&efv_pkts_compl);
|
||
|
tx_queue->pkts_compl += pkts_compl;
|
||
|
tx_queue->bytes_compl += bytes_compl;
|
||
|
|
||
|
if (pkts_compl + efv_pkts_compl > 1)
|
||
|
++tx_queue->merge_events;
|
||
|
|
||
|
/* See if we need to restart the netif queue. This memory
|
||
|
* barrier ensures that we write read_count (inside
|
||
|
* efx_dequeue_buffers()) before reading the queue status.
|
||
|
*/
|
||
|
smp_mb();
|
||
|
if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
|
||
|
likely(efx->port_enabled) &&
|
||
|
likely(netif_device_present(efx->net_dev))) {
|
||
|
fill_level = efx_channel_tx_fill_level(tx_queue->channel);
|
||
|
if (fill_level <= efx->txq_wake_thresh)
|
||
|
netif_tx_wake_queue(tx_queue->core_txq);
|
||
|
}
|
||
|
|
||
|
efx_xmit_done_check_empty(tx_queue);
|
||
|
|
||
|
return pkts_compl + efv_pkts_compl;
|
||
|
}
|
||
|
|
||
|
/* Remove buffers put into a tx_queue for the current packet.
|
||
|
* None of the buffers must have an skb attached.
|
||
|
*/
|
||
|
void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
|
||
|
unsigned int insert_count)
|
||
|
{
|
||
|
unsigned int efv_pkts_compl = 0;
|
||
|
struct efx_tx_buffer *buffer;
|
||
|
unsigned int bytes_compl = 0;
|
||
|
unsigned int pkts_compl = 0;
|
||
|
|
||
|
/* Work backwards until we hit the original insert pointer value */
|
||
|
while (tx_queue->insert_count != insert_count) {
|
||
|
--tx_queue->insert_count;
|
||
|
buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
|
||
|
efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl,
|
||
|
&efv_pkts_compl);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
|
||
|
dma_addr_t dma_addr, size_t len)
|
||
|
{
|
||
|
const struct efx_nic_type *nic_type = tx_queue->efx->type;
|
||
|
struct efx_tx_buffer *buffer;
|
||
|
unsigned int dma_len;
|
||
|
|
||
|
/* Map the fragment taking account of NIC-dependent DMA limits. */
|
||
|
do {
|
||
|
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
|
||
|
|
||
|
if (nic_type->tx_limit_len)
|
||
|
dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
|
||
|
else
|
||
|
dma_len = len;
|
||
|
|
||
|
buffer->len = dma_len;
|
||
|
buffer->dma_addr = dma_addr;
|
||
|
buffer->flags = EFX_TX_BUF_CONT;
|
||
|
len -= dma_len;
|
||
|
dma_addr += dma_len;
|
||
|
++tx_queue->insert_count;
|
||
|
} while (len);
|
||
|
|
||
|
return buffer;
|
||
|
}
|
||
|
|
||
|
int efx_tx_tso_header_length(struct sk_buff *skb)
|
||
|
{
|
||
|
size_t header_len;
|
||
|
|
||
|
if (skb->encapsulation)
|
||
|
header_len = skb_inner_transport_header(skb) -
|
||
|
skb->data +
|
||
|
(inner_tcp_hdr(skb)->doff << 2u);
|
||
|
else
|
||
|
header_len = skb_transport_header(skb) - skb->data +
|
||
|
(tcp_hdr(skb)->doff << 2u);
|
||
|
return header_len;
|
||
|
}
|
||
|
|
||
|
/* Map all data from an SKB for DMA and create descriptors on the queue. */
|
||
|
int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
|
||
|
unsigned int segment_count)
|
||
|
{
|
||
|
struct efx_nic *efx = tx_queue->efx;
|
||
|
struct device *dma_dev = &efx->pci_dev->dev;
|
||
|
unsigned int frag_index, nr_frags;
|
||
|
dma_addr_t dma_addr, unmap_addr;
|
||
|
unsigned short dma_flags;
|
||
|
size_t len, unmap_len;
|
||
|
|
||
|
nr_frags = skb_shinfo(skb)->nr_frags;
|
||
|
frag_index = 0;
|
||
|
|
||
|
/* Map header data. */
|
||
|
len = skb_headlen(skb);
|
||
|
dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
|
||
|
dma_flags = EFX_TX_BUF_MAP_SINGLE;
|
||
|
unmap_len = len;
|
||
|
unmap_addr = dma_addr;
|
||
|
|
||
|
if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
|
||
|
return -EIO;
|
||
|
|
||
|
if (segment_count) {
|
||
|
/* For TSO we need to put the header in to a separate
|
||
|
* descriptor. Map this separately if necessary.
|
||
|
*/
|
||
|
size_t header_len = efx_tx_tso_header_length(skb);
|
||
|
|
||
|
if (header_len != len) {
|
||
|
tx_queue->tso_long_headers++;
|
||
|
efx_tx_map_chunk(tx_queue, dma_addr, header_len);
|
||
|
len -= header_len;
|
||
|
dma_addr += header_len;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Add descriptors for each fragment. */
|
||
|
do {
|
||
|
struct efx_tx_buffer *buffer;
|
||
|
skb_frag_t *fragment;
|
||
|
|
||
|
buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
|
||
|
|
||
|
/* The final descriptor for a fragment is responsible for
|
||
|
* unmapping the whole fragment.
|
||
|
*/
|
||
|
buffer->flags = EFX_TX_BUF_CONT | dma_flags;
|
||
|
buffer->unmap_len = unmap_len;
|
||
|
buffer->dma_offset = buffer->dma_addr - unmap_addr;
|
||
|
|
||
|
if (frag_index >= nr_frags) {
|
||
|
/* Store SKB details with the final buffer for
|
||
|
* the completion.
|
||
|
*/
|
||
|
buffer->skb = skb;
|
||
|
buffer->flags = EFX_TX_BUF_SKB | dma_flags;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Move on to the next fragment. */
|
||
|
fragment = &skb_shinfo(skb)->frags[frag_index++];
|
||
|
len = skb_frag_size(fragment);
|
||
|
dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
|
||
|
DMA_TO_DEVICE);
|
||
|
dma_flags = 0;
|
||
|
unmap_len = len;
|
||
|
unmap_addr = dma_addr;
|
||
|
|
||
|
if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
|
||
|
return -EIO;
|
||
|
} while (1);
|
||
|
}
|
||
|
|
||
|
unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
|
||
|
{
|
||
|
/* Header and payload descriptor for each output segment, plus
|
||
|
* one for every input fragment boundary within a segment
|
||
|
*/
|
||
|
unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
|
||
|
|
||
|
/* Possibly one more per segment for option descriptors */
|
||
|
if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
|
||
|
max_descs += EFX_TSO_MAX_SEGS;
|
||
|
|
||
|
/* Possibly more for PCIe page boundaries within input fragments */
|
||
|
if (PAGE_SIZE > EFX_PAGE_SIZE)
|
||
|
max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
|
||
|
DIV_ROUND_UP(GSO_LEGACY_MAX_SIZE,
|
||
|
EFX_PAGE_SIZE));
|
||
|
|
||
|
return max_descs;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Fallback to software TSO.
|
||
|
*
|
||
|
* This is used if we are unable to send a GSO packet through hardware TSO.
|
||
|
* This should only ever happen due to per-queue restrictions - unsupported
|
||
|
* packets should first be filtered by the feature flags.
|
||
|
*
|
||
|
* Returns 0 on success, error code otherwise.
|
||
|
*/
|
||
|
int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
|
||
|
{
|
||
|
struct sk_buff *segments, *next;
|
||
|
|
||
|
segments = skb_gso_segment(skb, 0);
|
||
|
if (IS_ERR(segments))
|
||
|
return PTR_ERR(segments);
|
||
|
|
||
|
dev_consume_skb_any(skb);
|
||
|
|
||
|
skb_list_walk_safe(segments, skb, next) {
|
||
|
skb_mark_not_on_list(skb);
|
||
|
efx_enqueue_skb(tx_queue, skb);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|