260 lines
7.9 KiB
C
260 lines
7.9 KiB
C
|
/* SPDX-License-Identifier: GPL-2.0-only */
|
||
|
/****************************************************************************
|
||
|
* Driver for Solarflare network controllers and boards
|
||
|
* Copyright 2005-2006 Fen Systems Ltd.
|
||
|
* Copyright 2006-2013 Solarflare Communications Inc.
|
||
|
* Copyright 2019-2020 Xilinx Inc.
|
||
|
*/
|
||
|
|
||
|
#ifndef EFX_NIC_COMMON_H
|
||
|
#define EFX_NIC_COMMON_H
|
||
|
|
||
|
#include "net_driver.h"
|
||
|
#include "efx_common.h"
|
||
|
#include "mcdi.h"
|
||
|
#include "ptp.h"
|
||
|
|
||
|
enum {
|
||
|
/* Revisions 0-3 were Falcon A0, A1, B0 and Siena respectively.
|
||
|
* They are not supported by this driver but these revision numbers
|
||
|
* form part of the ethtool API for register dumping.
|
||
|
*/
|
||
|
EFX_REV_HUNT_A0 = 4,
|
||
|
EFX_REV_EF100 = 5,
|
||
|
};
|
||
|
|
||
|
static inline int efx_nic_rev(struct efx_nic *efx)
|
||
|
{
|
||
|
return efx->type->revision;
|
||
|
}
|
||
|
|
||
|
/* Read the current event from the event queue */
|
||
|
static inline efx_qword_t *efx_event(struct efx_channel *channel,
|
||
|
unsigned int index)
|
||
|
{
|
||
|
return ((efx_qword_t *)(channel->eventq.addr)) +
|
||
|
(index & channel->eventq_mask);
|
||
|
}
|
||
|
|
||
|
/* See if an event is present
|
||
|
*
|
||
|
* We check both the high and low dword of the event for all ones. We
|
||
|
* wrote all ones when we cleared the event, and no valid event can
|
||
|
* have all ones in either its high or low dwords. This approach is
|
||
|
* robust against reordering.
|
||
|
*
|
||
|
* Note that using a single 64-bit comparison is incorrect; even
|
||
|
* though the CPU read will be atomic, the DMA write may not be.
|
||
|
*/
|
||
|
static inline int efx_event_present(efx_qword_t *event)
|
||
|
{
|
||
|
return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
|
||
|
EFX_DWORD_IS_ALL_ONES(event->dword[1]));
|
||
|
}
|
||
|
|
||
|
/* Returns a pointer to the specified transmit descriptor in the TX
|
||
|
* descriptor queue belonging to the specified channel.
|
||
|
*/
|
||
|
static inline efx_qword_t *
|
||
|
efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
|
||
|
{
|
||
|
return ((efx_qword_t *)(tx_queue->txd.addr)) + index;
|
||
|
}
|
||
|
|
||
|
/* Report whether this TX queue would be empty for the given write_count.
|
||
|
* May return false negative.
|
||
|
*/
|
||
|
static inline bool efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue, unsigned int write_count)
|
||
|
{
|
||
|
unsigned int empty_read_count = READ_ONCE(tx_queue->empty_read_count);
|
||
|
|
||
|
if (empty_read_count == 0)
|
||
|
return false;
|
||
|
|
||
|
return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
|
||
|
}
|
||
|
|
||
|
int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
|
||
|
bool *data_mapped);
|
||
|
|
||
|
/* Decide whether to push a TX descriptor to the NIC vs merely writing
|
||
|
* the doorbell. This can reduce latency when we are adding a single
|
||
|
* descriptor to an empty queue, but is otherwise pointless.
|
||
|
* We use the write_count used for the last doorbell push, to get the
|
||
|
* NIC's view of the tx queue.
|
||
|
*/
|
||
|
static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
|
||
|
unsigned int write_count)
|
||
|
{
|
||
|
bool was_empty = efx_nic_tx_is_empty(tx_queue, write_count);
|
||
|
|
||
|
tx_queue->empty_read_count = 0;
|
||
|
return was_empty && tx_queue->write_count - write_count == 1;
|
||
|
}
|
||
|
|
||
|
/* Returns a pointer to the specified descriptor in the RX descriptor queue */
|
||
|
static inline efx_qword_t *
|
||
|
efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
|
||
|
{
|
||
|
return ((efx_qword_t *)(rx_queue->rxd.addr)) + index;
|
||
|
}
|
||
|
|
||
|
/* Alignment of PCIe DMA boundaries (4KB) */
|
||
|
#define EFX_PAGE_SIZE 4096
|
||
|
/* Size and alignment of buffer table entries (same) */
|
||
|
#define EFX_BUF_SIZE EFX_PAGE_SIZE
|
||
|
|
||
|
/* NIC-generic software stats */
|
||
|
enum {
|
||
|
GENERIC_STAT_rx_noskb_drops,
|
||
|
GENERIC_STAT_rx_nodesc_trunc,
|
||
|
GENERIC_STAT_COUNT
|
||
|
};
|
||
|
|
||
|
#define EFX_GENERIC_SW_STAT(ext_name) \
|
||
|
[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
|
||
|
|
||
|
/* TX data path */
|
||
|
static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
|
||
|
{
|
||
|
return tx_queue->efx->type->tx_probe(tx_queue);
|
||
|
}
|
||
|
static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
|
||
|
{
|
||
|
tx_queue->efx->type->tx_init(tx_queue);
|
||
|
}
|
||
|
static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
|
||
|
{
|
||
|
if (tx_queue->efx->type->tx_remove)
|
||
|
tx_queue->efx->type->tx_remove(tx_queue);
|
||
|
}
|
||
|
static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
|
||
|
{
|
||
|
tx_queue->efx->type->tx_write(tx_queue);
|
||
|
}
|
||
|
|
||
|
/* RX data path */
|
||
|
static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
|
||
|
{
|
||
|
return rx_queue->efx->type->rx_probe(rx_queue);
|
||
|
}
|
||
|
static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
|
||
|
{
|
||
|
rx_queue->efx->type->rx_init(rx_queue);
|
||
|
}
|
||
|
static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
|
||
|
{
|
||
|
rx_queue->efx->type->rx_remove(rx_queue);
|
||
|
}
|
||
|
static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
|
||
|
{
|
||
|
rx_queue->efx->type->rx_write(rx_queue);
|
||
|
}
|
||
|
static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
|
||
|
{
|
||
|
rx_queue->efx->type->rx_defer_refill(rx_queue);
|
||
|
}
|
||
|
|
||
|
/* Event data path */
|
||
|
static inline int efx_nic_probe_eventq(struct efx_channel *channel)
|
||
|
{
|
||
|
return channel->efx->type->ev_probe(channel);
|
||
|
}
|
||
|
static inline int efx_nic_init_eventq(struct efx_channel *channel)
|
||
|
{
|
||
|
return channel->efx->type->ev_init(channel);
|
||
|
}
|
||
|
static inline void efx_nic_fini_eventq(struct efx_channel *channel)
|
||
|
{
|
||
|
channel->efx->type->ev_fini(channel);
|
||
|
}
|
||
|
static inline void efx_nic_remove_eventq(struct efx_channel *channel)
|
||
|
{
|
||
|
channel->efx->type->ev_remove(channel);
|
||
|
}
|
||
|
static inline int
|
||
|
efx_nic_process_eventq(struct efx_channel *channel, int quota)
|
||
|
{
|
||
|
return channel->efx->type->ev_process(channel, quota);
|
||
|
}
|
||
|
static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
|
||
|
{
|
||
|
channel->efx->type->ev_read_ack(channel);
|
||
|
}
|
||
|
|
||
|
void efx_nic_event_test_start(struct efx_channel *channel);
|
||
|
|
||
|
bool efx_nic_event_present(struct efx_channel *channel);
|
||
|
|
||
|
static inline void efx_sensor_event(struct efx_nic *efx, efx_qword_t *ev)
|
||
|
{
|
||
|
if (efx->type->sensor_event)
|
||
|
efx->type->sensor_event(efx, ev);
|
||
|
}
|
||
|
|
||
|
static inline unsigned int efx_rx_recycle_ring_size(const struct efx_nic *efx)
|
||
|
{
|
||
|
return efx->type->rx_recycle_ring_size(efx);
|
||
|
}
|
||
|
|
||
|
/* Some statistics are computed as A - B where A and B each increase
|
||
|
* linearly with some hardware counter(s) and the counters are read
|
||
|
* asynchronously. If the counters contributing to B are always read
|
||
|
* after those contributing to A, the computed value may be lower than
|
||
|
* the true value by some variable amount, and may decrease between
|
||
|
* subsequent computations.
|
||
|
*
|
||
|
* We should never allow statistics to decrease or to exceed the true
|
||
|
* value. Since the computed value will never be greater than the
|
||
|
* true value, we can achieve this by only storing the computed value
|
||
|
* when it increases.
|
||
|
*/
|
||
|
static inline void efx_update_diff_stat(u64 *stat, u64 diff)
|
||
|
{
|
||
|
if ((s64)(diff - *stat) > 0)
|
||
|
*stat = diff;
|
||
|
}
|
||
|
|
||
|
/* Interrupts */
|
||
|
int efx_nic_init_interrupt(struct efx_nic *efx);
|
||
|
int efx_nic_irq_test_start(struct efx_nic *efx);
|
||
|
void efx_nic_fini_interrupt(struct efx_nic *efx);
|
||
|
|
||
|
static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
|
||
|
{
|
||
|
return READ_ONCE(channel->event_test_cpu);
|
||
|
}
|
||
|
static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
|
||
|
{
|
||
|
return READ_ONCE(efx->last_irq_cpu);
|
||
|
}
|
||
|
|
||
|
/* Global Resources */
|
||
|
int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
|
||
|
unsigned int len, gfp_t gfp_flags);
|
||
|
void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
|
||
|
|
||
|
size_t efx_nic_get_regs_len(struct efx_nic *efx);
|
||
|
void efx_nic_get_regs(struct efx_nic *efx, void *buf);
|
||
|
|
||
|
#define EFX_MC_STATS_GENERATION_INVALID ((__force __le64)(-1))
|
||
|
|
||
|
size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
|
||
|
const unsigned long *mask, u8 *names);
|
||
|
int efx_nic_copy_stats(struct efx_nic *efx, __le64 *dest);
|
||
|
void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
|
||
|
const unsigned long *mask, u64 *stats,
|
||
|
const void *dma_buf, bool accumulate);
|
||
|
void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat);
|
||
|
static inline size_t efx_nic_update_stats_atomic(struct efx_nic *efx, u64 *full_stats,
|
||
|
struct rtnl_link_stats64 *core_stats)
|
||
|
{
|
||
|
if (efx->type->update_stats_atomic)
|
||
|
return efx->type->update_stats_atomic(efx, full_stats, core_stats);
|
||
|
return efx->type->update_stats(efx, full_stats, core_stats);
|
||
|
}
|
||
|
|
||
|
#define EFX_MAX_FLUSH_TIME 5000
|
||
|
|
||
|
#endif /* EFX_NIC_COMMON_H */
|