777 lines
19 KiB
C
777 lines
19 KiB
C
|
// SPDX-License-Identifier: MIT
|
||
|
/*
|
||
|
* Copyright © 2023 Intel Corporation
|
||
|
*/
|
||
|
|
||
|
#include <linux/hwmon-sysfs.h>
|
||
|
#include <linux/hwmon.h>
|
||
|
#include <linux/types.h>
|
||
|
|
||
|
#include <drm/drm_managed.h>
|
||
|
#include "regs/xe_gt_regs.h"
|
||
|
#include "regs/xe_mchbar_regs.h"
|
||
|
#include "xe_device.h"
|
||
|
#include "xe_gt.h"
|
||
|
#include "xe_hwmon.h"
|
||
|
#include "xe_mmio.h"
|
||
|
#include "xe_pcode.h"
|
||
|
#include "xe_pcode_api.h"
|
||
|
|
||
|
enum xe_hwmon_reg {
|
||
|
REG_PKG_RAPL_LIMIT,
|
||
|
REG_PKG_POWER_SKU,
|
||
|
REG_PKG_POWER_SKU_UNIT,
|
||
|
REG_GT_PERF_STATUS,
|
||
|
REG_PKG_ENERGY_STATUS,
|
||
|
};
|
||
|
|
||
|
enum xe_hwmon_reg_operation {
|
||
|
REG_READ32,
|
||
|
REG_RMW32,
|
||
|
REG_READ64,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* SF_* - scale factors for particular quantities according to hwmon spec.
|
||
|
*/
|
||
|
#define SF_POWER 1000000 /* microwatts */
|
||
|
#define SF_CURR 1000 /* milliamperes */
|
||
|
#define SF_VOLTAGE 1000 /* millivolts */
|
||
|
#define SF_ENERGY 1000000 /* microjoules */
|
||
|
#define SF_TIME 1000 /* milliseconds */
|
||
|
|
||
|
/**
|
||
|
* struct xe_hwmon_energy_info - to accumulate energy
|
||
|
*/
|
||
|
struct xe_hwmon_energy_info {
|
||
|
/** @reg_val_prev: previous energy reg val */
|
||
|
u32 reg_val_prev;
|
||
|
/** @accum_energy: accumulated energy */
|
||
|
long accum_energy;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* struct xe_hwmon - xe hwmon data structure
|
||
|
*/
|
||
|
struct xe_hwmon {
|
||
|
/** @hwmon_dev: hwmon device for xe */
|
||
|
struct device *hwmon_dev;
|
||
|
/** @gt: primary gt */
|
||
|
struct xe_gt *gt;
|
||
|
/** @hwmon_lock: lock for rw attributes*/
|
||
|
struct mutex hwmon_lock;
|
||
|
/** @scl_shift_power: pkg power unit */
|
||
|
int scl_shift_power;
|
||
|
/** @scl_shift_energy: pkg energy unit */
|
||
|
int scl_shift_energy;
|
||
|
/** @scl_shift_time: pkg time unit */
|
||
|
int scl_shift_time;
|
||
|
/** @ei: Energy info for energy1_input */
|
||
|
struct xe_hwmon_energy_info ei;
|
||
|
};
|
||
|
|
||
|
static u32 xe_hwmon_get_reg(struct xe_hwmon *hwmon, enum xe_hwmon_reg hwmon_reg)
|
||
|
{
|
||
|
struct xe_device *xe = gt_to_xe(hwmon->gt);
|
||
|
struct xe_reg reg = XE_REG(0);
|
||
|
|
||
|
switch (hwmon_reg) {
|
||
|
case REG_PKG_RAPL_LIMIT:
|
||
|
if (xe->info.platform == XE_DG2)
|
||
|
reg = PCU_CR_PACKAGE_RAPL_LIMIT;
|
||
|
else if (xe->info.platform == XE_PVC)
|
||
|
reg = PVC_GT0_PACKAGE_RAPL_LIMIT;
|
||
|
break;
|
||
|
case REG_PKG_POWER_SKU:
|
||
|
if (xe->info.platform == XE_DG2)
|
||
|
reg = PCU_CR_PACKAGE_POWER_SKU;
|
||
|
else if (xe->info.platform == XE_PVC)
|
||
|
reg = PVC_GT0_PACKAGE_POWER_SKU;
|
||
|
break;
|
||
|
case REG_PKG_POWER_SKU_UNIT:
|
||
|
if (xe->info.platform == XE_DG2)
|
||
|
reg = PCU_CR_PACKAGE_POWER_SKU_UNIT;
|
||
|
else if (xe->info.platform == XE_PVC)
|
||
|
reg = PVC_GT0_PACKAGE_POWER_SKU_UNIT;
|
||
|
break;
|
||
|
case REG_GT_PERF_STATUS:
|
||
|
if (xe->info.platform == XE_DG2)
|
||
|
reg = GT_PERF_STATUS;
|
||
|
break;
|
||
|
case REG_PKG_ENERGY_STATUS:
|
||
|
if (xe->info.platform == XE_DG2)
|
||
|
reg = PCU_CR_PACKAGE_ENERGY_STATUS;
|
||
|
else if (xe->info.platform == XE_PVC)
|
||
|
reg = PVC_GT0_PLATFORM_ENERGY_STATUS;
|
||
|
break;
|
||
|
default:
|
||
|
drm_warn(&xe->drm, "Unknown xe hwmon reg id: %d\n", hwmon_reg);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return reg.raw;
|
||
|
}
|
||
|
|
||
|
static void xe_hwmon_process_reg(struct xe_hwmon *hwmon, enum xe_hwmon_reg hwmon_reg,
|
||
|
enum xe_hwmon_reg_operation operation, u64 *value,
|
||
|
u32 clr, u32 set)
|
||
|
{
|
||
|
struct xe_reg reg;
|
||
|
|
||
|
reg.raw = xe_hwmon_get_reg(hwmon, hwmon_reg);
|
||
|
|
||
|
if (!reg.raw)
|
||
|
return;
|
||
|
|
||
|
switch (operation) {
|
||
|
case REG_READ32:
|
||
|
*value = xe_mmio_read32(hwmon->gt, reg);
|
||
|
break;
|
||
|
case REG_RMW32:
|
||
|
*value = xe_mmio_rmw32(hwmon->gt, reg, clr, set);
|
||
|
break;
|
||
|
case REG_READ64:
|
||
|
*value = xe_mmio_read64_2x32(hwmon->gt, reg);
|
||
|
break;
|
||
|
default:
|
||
|
drm_warn(>_to_xe(hwmon->gt)->drm, "Invalid xe hwmon reg operation: %d\n",
|
||
|
operation);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define PL1_DISABLE 0
|
||
|
|
||
|
/*
|
||
|
* HW allows arbitrary PL1 limits to be set but silently clamps these values to
|
||
|
* "typical but not guaranteed" min/max values in REG_PKG_POWER_SKU. Follow the
|
||
|
* same pattern for sysfs, allow arbitrary PL1 limits to be set but display
|
||
|
* clamped values when read.
|
||
|
*/
|
||
|
static void xe_hwmon_power_max_read(struct xe_hwmon *hwmon, long *value)
|
||
|
{
|
||
|
u64 reg_val, min, max;
|
||
|
|
||
|
mutex_lock(&hwmon->hwmon_lock);
|
||
|
|
||
|
xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT, REG_READ32, ®_val, 0, 0);
|
||
|
/* Check if PL1 limit is disabled */
|
||
|
if (!(reg_val & PKG_PWR_LIM_1_EN)) {
|
||
|
*value = PL1_DISABLE;
|
||
|
goto unlock;
|
||
|
}
|
||
|
|
||
|
reg_val = REG_FIELD_GET(PKG_PWR_LIM_1, reg_val);
|
||
|
*value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power);
|
||
|
|
||
|
xe_hwmon_process_reg(hwmon, REG_PKG_POWER_SKU, REG_READ64, ®_val, 0, 0);
|
||
|
min = REG_FIELD_GET(PKG_MIN_PWR, reg_val);
|
||
|
min = mul_u64_u32_shr(min, SF_POWER, hwmon->scl_shift_power);
|
||
|
max = REG_FIELD_GET(PKG_MAX_PWR, reg_val);
|
||
|
max = mul_u64_u32_shr(max, SF_POWER, hwmon->scl_shift_power);
|
||
|
|
||
|
if (min && max)
|
||
|
*value = clamp_t(u64, *value, min, max);
|
||
|
unlock:
|
||
|
mutex_unlock(&hwmon->hwmon_lock);
|
||
|
}
|
||
|
|
||
|
static int xe_hwmon_power_max_write(struct xe_hwmon *hwmon, long value)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
u64 reg_val;
|
||
|
|
||
|
mutex_lock(&hwmon->hwmon_lock);
|
||
|
|
||
|
/* Disable PL1 limit and verify, as limit cannot be disabled on all platforms */
|
||
|
if (value == PL1_DISABLE) {
|
||
|
xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT, REG_RMW32, ®_val,
|
||
|
PKG_PWR_LIM_1_EN, 0);
|
||
|
xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT, REG_READ32, ®_val,
|
||
|
PKG_PWR_LIM_1_EN, 0);
|
||
|
|
||
|
if (reg_val & PKG_PWR_LIM_1_EN) {
|
||
|
ret = -EOPNOTSUPP;
|
||
|
goto unlock;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Computation in 64-bits to avoid overflow. Round to nearest. */
|
||
|
reg_val = DIV_ROUND_CLOSEST_ULL((u64)value << hwmon->scl_shift_power, SF_POWER);
|
||
|
reg_val = PKG_PWR_LIM_1_EN | REG_FIELD_PREP(PKG_PWR_LIM_1, reg_val);
|
||
|
|
||
|
xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT, REG_RMW32, ®_val,
|
||
|
PKG_PWR_LIM_1_EN | PKG_PWR_LIM_1, reg_val);
|
||
|
unlock:
|
||
|
mutex_unlock(&hwmon->hwmon_lock);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void xe_hwmon_power_rated_max_read(struct xe_hwmon *hwmon, long *value)
|
||
|
{
|
||
|
u64 reg_val;
|
||
|
|
||
|
xe_hwmon_process_reg(hwmon, REG_PKG_POWER_SKU, REG_READ32, ®_val, 0, 0);
|
||
|
reg_val = REG_FIELD_GET(PKG_TDP, reg_val);
|
||
|
*value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* xe_hwmon_energy_get - Obtain energy value
|
||
|
*
|
||
|
* The underlying energy hardware register is 32-bits and is subject to
|
||
|
* overflow. How long before overflow? For example, with an example
|
||
|
* scaling bit shift of 14 bits (see register *PACKAGE_POWER_SKU_UNIT) and
|
||
|
* a power draw of 1000 watts, the 32-bit counter will overflow in
|
||
|
* approximately 4.36 minutes.
|
||
|
*
|
||
|
* Examples:
|
||
|
* 1 watt: (2^32 >> 14) / 1 W / (60 * 60 * 24) secs/day -> 3 days
|
||
|
* 1000 watts: (2^32 >> 14) / 1000 W / 60 secs/min -> 4.36 minutes
|
||
|
*
|
||
|
* The function significantly increases overflow duration (from 4.36
|
||
|
* minutes) by accumulating the energy register into a 'long' as allowed by
|
||
|
* the hwmon API. Using x86_64 128 bit arithmetic (see mul_u64_u32_shr()),
|
||
|
* a 'long' of 63 bits, SF_ENERGY of 1e6 (~20 bits) and
|
||
|
* hwmon->scl_shift_energy of 14 bits we have 57 (63 - 20 + 14) bits before
|
||
|
* energy1_input overflows. This at 1000 W is an overflow duration of 278 years.
|
||
|
*/
|
||
|
static void
|
||
|
xe_hwmon_energy_get(struct xe_hwmon *hwmon, long *energy)
|
||
|
{
|
||
|
struct xe_hwmon_energy_info *ei = &hwmon->ei;
|
||
|
u64 reg_val;
|
||
|
|
||
|
xe_hwmon_process_reg(hwmon, REG_PKG_ENERGY_STATUS, REG_READ32,
|
||
|
®_val, 0, 0);
|
||
|
|
||
|
if (reg_val >= ei->reg_val_prev)
|
||
|
ei->accum_energy += reg_val - ei->reg_val_prev;
|
||
|
else
|
||
|
ei->accum_energy += UINT_MAX - ei->reg_val_prev + reg_val;
|
||
|
|
||
|
ei->reg_val_prev = reg_val;
|
||
|
|
||
|
*energy = mul_u64_u32_shr(ei->accum_energy, SF_ENERGY,
|
||
|
hwmon->scl_shift_energy);
|
||
|
}
|
||
|
|
||
|
static ssize_t
|
||
|
xe_hwmon_power1_max_interval_show(struct device *dev, struct device_attribute *attr,
|
||
|
char *buf)
|
||
|
{
|
||
|
struct xe_hwmon *hwmon = dev_get_drvdata(dev);
|
||
|
u32 x, y, x_w = 2; /* 2 bits */
|
||
|
u64 r, tau4, out;
|
||
|
|
||
|
xe_device_mem_access_get(gt_to_xe(hwmon->gt));
|
||
|
|
||
|
mutex_lock(&hwmon->hwmon_lock);
|
||
|
|
||
|
xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT,
|
||
|
REG_READ32, &r, 0, 0);
|
||
|
|
||
|
mutex_unlock(&hwmon->hwmon_lock);
|
||
|
|
||
|
xe_device_mem_access_put(gt_to_xe(hwmon->gt));
|
||
|
|
||
|
x = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_X, r);
|
||
|
y = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_Y, r);
|
||
|
|
||
|
/*
|
||
|
* tau = 1.x * power(2,y), x = bits(23:22), y = bits(21:17)
|
||
|
* = (4 | x) << (y - 2)
|
||
|
*
|
||
|
* Here (y - 2) ensures a 1.x fixed point representation of 1.x
|
||
|
* As x is 2 bits so 1.x can be 1.0, 1.25, 1.50, 1.75
|
||
|
*
|
||
|
* As y can be < 2, we compute tau4 = (4 | x) << y
|
||
|
* and then add 2 when doing the final right shift to account for units
|
||
|
*/
|
||
|
tau4 = (u64)((1 << x_w) | x) << y;
|
||
|
|
||
|
/* val in hwmon interface units (millisec) */
|
||
|
out = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
|
||
|
|
||
|
return sysfs_emit(buf, "%llu\n", out);
|
||
|
}
|
||
|
|
||
|
static ssize_t
|
||
|
xe_hwmon_power1_max_interval_store(struct device *dev, struct device_attribute *attr,
|
||
|
const char *buf, size_t count)
|
||
|
{
|
||
|
struct xe_hwmon *hwmon = dev_get_drvdata(dev);
|
||
|
u32 x, y, rxy, x_w = 2; /* 2 bits */
|
||
|
u64 tau4, r, max_win;
|
||
|
unsigned long val;
|
||
|
int ret;
|
||
|
|
||
|
ret = kstrtoul(buf, 0, &val);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
/*
|
||
|
* Max HW supported tau in '1.x * power(2,y)' format, x = 0, y = 0x12.
|
||
|
* The hwmon->scl_shift_time default of 0xa results in a max tau of 256 seconds.
|
||
|
*
|
||
|
* The ideal scenario is for PKG_MAX_WIN to be read from the PKG_PWR_SKU register.
|
||
|
* However, it is observed that existing discrete GPUs does not provide correct
|
||
|
* PKG_MAX_WIN value, therefore a using default constant value. For future discrete GPUs
|
||
|
* this may get resolved, in which case PKG_MAX_WIN should be obtained from PKG_PWR_SKU.
|
||
|
*/
|
||
|
#define PKG_MAX_WIN_DEFAULT 0x12ull
|
||
|
|
||
|
/*
|
||
|
* val must be < max in hwmon interface units. The steps below are
|
||
|
* explained in xe_hwmon_power1_max_interval_show()
|
||
|
*/
|
||
|
r = FIELD_PREP(PKG_MAX_WIN, PKG_MAX_WIN_DEFAULT);
|
||
|
x = REG_FIELD_GET(PKG_MAX_WIN_X, r);
|
||
|
y = REG_FIELD_GET(PKG_MAX_WIN_Y, r);
|
||
|
tau4 = (u64)((1 << x_w) | x) << y;
|
||
|
max_win = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
|
||
|
|
||
|
if (val > max_win)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* val in hw units */
|
||
|
val = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_time, SF_TIME);
|
||
|
|
||
|
/*
|
||
|
* Convert val to 1.x * power(2,y)
|
||
|
* y = ilog2(val)
|
||
|
* x = (val - (1 << y)) >> (y - 2)
|
||
|
*/
|
||
|
if (!val) {
|
||
|
y = 0;
|
||
|
x = 0;
|
||
|
} else {
|
||
|
y = ilog2(val);
|
||
|
x = (val - (1ul << y)) << x_w >> y;
|
||
|
}
|
||
|
|
||
|
rxy = REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_X, x) | REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_Y, y);
|
||
|
|
||
|
xe_device_mem_access_get(gt_to_xe(hwmon->gt));
|
||
|
|
||
|
mutex_lock(&hwmon->hwmon_lock);
|
||
|
|
||
|
xe_hwmon_process_reg(hwmon, REG_PKG_RAPL_LIMIT, REG_RMW32, (u64 *)&r,
|
||
|
PKG_PWR_LIM_1_TIME, rxy);
|
||
|
|
||
|
mutex_unlock(&hwmon->hwmon_lock);
|
||
|
|
||
|
xe_device_mem_access_put(gt_to_xe(hwmon->gt));
|
||
|
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
static SENSOR_DEVICE_ATTR(power1_max_interval, 0664,
|
||
|
xe_hwmon_power1_max_interval_show,
|
||
|
xe_hwmon_power1_max_interval_store, 0);
|
||
|
|
||
|
static struct attribute *hwmon_attributes[] = {
|
||
|
&sensor_dev_attr_power1_max_interval.dev_attr.attr,
|
||
|
NULL
|
||
|
};
|
||
|
|
||
|
static umode_t xe_hwmon_attributes_visible(struct kobject *kobj,
|
||
|
struct attribute *attr, int index)
|
||
|
{
|
||
|
struct device *dev = kobj_to_dev(kobj);
|
||
|
struct xe_hwmon *hwmon = dev_get_drvdata(dev);
|
||
|
int ret = 0;
|
||
|
|
||
|
xe_device_mem_access_get(gt_to_xe(hwmon->gt));
|
||
|
|
||
|
if (attr == &sensor_dev_attr_power1_max_interval.dev_attr.attr)
|
||
|
ret = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT) ? attr->mode : 0;
|
||
|
|
||
|
xe_device_mem_access_put(gt_to_xe(hwmon->gt));
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static const struct attribute_group hwmon_attrgroup = {
|
||
|
.attrs = hwmon_attributes,
|
||
|
.is_visible = xe_hwmon_attributes_visible,
|
||
|
};
|
||
|
|
||
|
static const struct attribute_group *hwmon_groups[] = {
|
||
|
&hwmon_attrgroup,
|
||
|
NULL
|
||
|
};
|
||
|
|
||
|
static const struct hwmon_channel_info *hwmon_info[] = {
|
||
|
HWMON_CHANNEL_INFO(power, HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_CRIT),
|
||
|
HWMON_CHANNEL_INFO(curr, HWMON_C_CRIT),
|
||
|
HWMON_CHANNEL_INFO(in, HWMON_I_INPUT),
|
||
|
HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT),
|
||
|
NULL
|
||
|
};
|
||
|
|
||
|
/* I1 is exposed as power_crit or as curr_crit depending on bit 31 */
|
||
|
static int xe_hwmon_pcode_read_i1(struct xe_gt *gt, u32 *uval)
|
||
|
{
|
||
|
/* Avoid Illegal Subcommand error */
|
||
|
if (gt_to_xe(gt)->info.platform == XE_DG2)
|
||
|
return -ENXIO;
|
||
|
|
||
|
return xe_pcode_read(gt, PCODE_MBOX(PCODE_POWER_SETUP,
|
||
|
POWER_SETUP_SUBCOMMAND_READ_I1, 0),
|
||
|
uval, NULL);
|
||
|
}
|
||
|
|
||
|
static int xe_hwmon_pcode_write_i1(struct xe_gt *gt, u32 uval)
|
||
|
{
|
||
|
return xe_pcode_write(gt, PCODE_MBOX(PCODE_POWER_SETUP,
|
||
|
POWER_SETUP_SUBCOMMAND_WRITE_I1, 0),
|
||
|
uval);
|
||
|
}
|
||
|
|
||
|
static int xe_hwmon_power_curr_crit_read(struct xe_hwmon *hwmon, long *value, u32 scale_factor)
|
||
|
{
|
||
|
int ret;
|
||
|
u32 uval;
|
||
|
|
||
|
mutex_lock(&hwmon->hwmon_lock);
|
||
|
|
||
|
ret = xe_hwmon_pcode_read_i1(hwmon->gt, &uval);
|
||
|
if (ret)
|
||
|
goto unlock;
|
||
|
|
||
|
*value = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval),
|
||
|
scale_factor, POWER_SETUP_I1_SHIFT);
|
||
|
unlock:
|
||
|
mutex_unlock(&hwmon->hwmon_lock);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int xe_hwmon_power_curr_crit_write(struct xe_hwmon *hwmon, long value, u32 scale_factor)
|
||
|
{
|
||
|
int ret;
|
||
|
u32 uval;
|
||
|
|
||
|
mutex_lock(&hwmon->hwmon_lock);
|
||
|
|
||
|
uval = DIV_ROUND_CLOSEST_ULL(value << POWER_SETUP_I1_SHIFT, scale_factor);
|
||
|
ret = xe_hwmon_pcode_write_i1(hwmon->gt, uval);
|
||
|
|
||
|
mutex_unlock(&hwmon->hwmon_lock);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void xe_hwmon_get_voltage(struct xe_hwmon *hwmon, long *value)
|
||
|
{
|
||
|
u64 reg_val;
|
||
|
|
||
|
xe_hwmon_process_reg(hwmon, REG_GT_PERF_STATUS,
|
||
|
REG_READ32, ®_val, 0, 0);
|
||
|
/* HW register value in units of 2.5 millivolt */
|
||
|
*value = DIV_ROUND_CLOSEST(REG_FIELD_GET(VOLTAGE_MASK, reg_val) * 2500, SF_VOLTAGE);
|
||
|
}
|
||
|
|
||
|
static umode_t
|
||
|
xe_hwmon_power_is_visible(struct xe_hwmon *hwmon, u32 attr, int chan)
|
||
|
{
|
||
|
u32 uval;
|
||
|
|
||
|
switch (attr) {
|
||
|
case hwmon_power_max:
|
||
|
return xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT) ? 0664 : 0;
|
||
|
case hwmon_power_rated_max:
|
||
|
return xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU) ? 0444 : 0;
|
||
|
case hwmon_power_crit:
|
||
|
return (xe_hwmon_pcode_read_i1(hwmon->gt, &uval) ||
|
||
|
!(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
|
||
|
default:
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
xe_hwmon_power_read(struct xe_hwmon *hwmon, u32 attr, int chan, long *val)
|
||
|
{
|
||
|
switch (attr) {
|
||
|
case hwmon_power_max:
|
||
|
xe_hwmon_power_max_read(hwmon, val);
|
||
|
return 0;
|
||
|
case hwmon_power_rated_max:
|
||
|
xe_hwmon_power_rated_max_read(hwmon, val);
|
||
|
return 0;
|
||
|
case hwmon_power_crit:
|
||
|
return xe_hwmon_power_curr_crit_read(hwmon, val, SF_POWER);
|
||
|
default:
|
||
|
return -EOPNOTSUPP;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
xe_hwmon_power_write(struct xe_hwmon *hwmon, u32 attr, int chan, long val)
|
||
|
{
|
||
|
switch (attr) {
|
||
|
case hwmon_power_max:
|
||
|
return xe_hwmon_power_max_write(hwmon, val);
|
||
|
case hwmon_power_crit:
|
||
|
return xe_hwmon_power_curr_crit_write(hwmon, val, SF_POWER);
|
||
|
default:
|
||
|
return -EOPNOTSUPP;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static umode_t
|
||
|
xe_hwmon_curr_is_visible(const struct xe_hwmon *hwmon, u32 attr)
|
||
|
{
|
||
|
u32 uval;
|
||
|
|
||
|
switch (attr) {
|
||
|
case hwmon_curr_crit:
|
||
|
return (xe_hwmon_pcode_read_i1(hwmon->gt, &uval) ||
|
||
|
(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
|
||
|
default:
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
xe_hwmon_curr_read(struct xe_hwmon *hwmon, u32 attr, long *val)
|
||
|
{
|
||
|
switch (attr) {
|
||
|
case hwmon_curr_crit:
|
||
|
return xe_hwmon_power_curr_crit_read(hwmon, val, SF_CURR);
|
||
|
default:
|
||
|
return -EOPNOTSUPP;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
xe_hwmon_curr_write(struct xe_hwmon *hwmon, u32 attr, long val)
|
||
|
{
|
||
|
switch (attr) {
|
||
|
case hwmon_curr_crit:
|
||
|
return xe_hwmon_power_curr_crit_write(hwmon, val, SF_CURR);
|
||
|
default:
|
||
|
return -EOPNOTSUPP;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static umode_t
|
||
|
xe_hwmon_in_is_visible(struct xe_hwmon *hwmon, u32 attr)
|
||
|
{
|
||
|
switch (attr) {
|
||
|
case hwmon_in_input:
|
||
|
return xe_hwmon_get_reg(hwmon, REG_GT_PERF_STATUS) ? 0444 : 0;
|
||
|
default:
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
xe_hwmon_in_read(struct xe_hwmon *hwmon, u32 attr, long *val)
|
||
|
{
|
||
|
switch (attr) {
|
||
|
case hwmon_in_input:
|
||
|
xe_hwmon_get_voltage(hwmon, val);
|
||
|
return 0;
|
||
|
default:
|
||
|
return -EOPNOTSUPP;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static umode_t
|
||
|
xe_hwmon_energy_is_visible(struct xe_hwmon *hwmon, u32 attr)
|
||
|
{
|
||
|
switch (attr) {
|
||
|
case hwmon_energy_input:
|
||
|
return xe_hwmon_get_reg(hwmon, REG_PKG_ENERGY_STATUS) ? 0444 : 0;
|
||
|
default:
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
xe_hwmon_energy_read(struct xe_hwmon *hwmon, u32 attr, long *val)
|
||
|
{
|
||
|
switch (attr) {
|
||
|
case hwmon_energy_input:
|
||
|
xe_hwmon_energy_get(hwmon, val);
|
||
|
return 0;
|
||
|
default:
|
||
|
return -EOPNOTSUPP;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static umode_t
|
||
|
xe_hwmon_is_visible(const void *drvdata, enum hwmon_sensor_types type,
|
||
|
u32 attr, int channel)
|
||
|
{
|
||
|
struct xe_hwmon *hwmon = (struct xe_hwmon *)drvdata;
|
||
|
int ret;
|
||
|
|
||
|
xe_device_mem_access_get(gt_to_xe(hwmon->gt));
|
||
|
|
||
|
switch (type) {
|
||
|
case hwmon_power:
|
||
|
ret = xe_hwmon_power_is_visible(hwmon, attr, channel);
|
||
|
break;
|
||
|
case hwmon_curr:
|
||
|
ret = xe_hwmon_curr_is_visible(hwmon, attr);
|
||
|
break;
|
||
|
case hwmon_in:
|
||
|
ret = xe_hwmon_in_is_visible(hwmon, attr);
|
||
|
break;
|
||
|
case hwmon_energy:
|
||
|
ret = xe_hwmon_energy_is_visible(hwmon, attr);
|
||
|
break;
|
||
|
default:
|
||
|
ret = 0;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
xe_device_mem_access_put(gt_to_xe(hwmon->gt));
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
xe_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
|
||
|
int channel, long *val)
|
||
|
{
|
||
|
struct xe_hwmon *hwmon = dev_get_drvdata(dev);
|
||
|
int ret;
|
||
|
|
||
|
xe_device_mem_access_get(gt_to_xe(hwmon->gt));
|
||
|
|
||
|
switch (type) {
|
||
|
case hwmon_power:
|
||
|
ret = xe_hwmon_power_read(hwmon, attr, channel, val);
|
||
|
break;
|
||
|
case hwmon_curr:
|
||
|
ret = xe_hwmon_curr_read(hwmon, attr, val);
|
||
|
break;
|
||
|
case hwmon_in:
|
||
|
ret = xe_hwmon_in_read(hwmon, attr, val);
|
||
|
break;
|
||
|
case hwmon_energy:
|
||
|
ret = xe_hwmon_energy_read(hwmon, attr, val);
|
||
|
break;
|
||
|
default:
|
||
|
ret = -EOPNOTSUPP;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
xe_device_mem_access_put(gt_to_xe(hwmon->gt));
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
xe_hwmon_write(struct device *dev, enum hwmon_sensor_types type, u32 attr,
|
||
|
int channel, long val)
|
||
|
{
|
||
|
struct xe_hwmon *hwmon = dev_get_drvdata(dev);
|
||
|
int ret;
|
||
|
|
||
|
xe_device_mem_access_get(gt_to_xe(hwmon->gt));
|
||
|
|
||
|
switch (type) {
|
||
|
case hwmon_power:
|
||
|
ret = xe_hwmon_power_write(hwmon, attr, channel, val);
|
||
|
break;
|
||
|
case hwmon_curr:
|
||
|
ret = xe_hwmon_curr_write(hwmon, attr, val);
|
||
|
break;
|
||
|
default:
|
||
|
ret = -EOPNOTSUPP;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
xe_device_mem_access_put(gt_to_xe(hwmon->gt));
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static const struct hwmon_ops hwmon_ops = {
|
||
|
.is_visible = xe_hwmon_is_visible,
|
||
|
.read = xe_hwmon_read,
|
||
|
.write = xe_hwmon_write,
|
||
|
};
|
||
|
|
||
|
static const struct hwmon_chip_info hwmon_chip_info = {
|
||
|
.ops = &hwmon_ops,
|
||
|
.info = hwmon_info,
|
||
|
};
|
||
|
|
||
|
static void
|
||
|
xe_hwmon_get_preregistration_info(struct xe_device *xe)
|
||
|
{
|
||
|
struct xe_hwmon *hwmon = xe->hwmon;
|
||
|
long energy;
|
||
|
u64 val_sku_unit = 0;
|
||
|
|
||
|
/*
|
||
|
* The contents of register PKG_POWER_SKU_UNIT do not change,
|
||
|
* so read it once and store the shift values.
|
||
|
*/
|
||
|
if (xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU_UNIT)) {
|
||
|
xe_hwmon_process_reg(hwmon, REG_PKG_POWER_SKU_UNIT,
|
||
|
REG_READ32, &val_sku_unit, 0, 0);
|
||
|
hwmon->scl_shift_power = REG_FIELD_GET(PKG_PWR_UNIT, val_sku_unit);
|
||
|
hwmon->scl_shift_energy = REG_FIELD_GET(PKG_ENERGY_UNIT, val_sku_unit);
|
||
|
hwmon->scl_shift_time = REG_FIELD_GET(PKG_TIME_UNIT, val_sku_unit);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Initialize 'struct xe_hwmon_energy_info', i.e. set fields to the
|
||
|
* first value of the energy register read
|
||
|
*/
|
||
|
if (xe_hwmon_is_visible(hwmon, hwmon_energy, hwmon_energy_input, 0))
|
||
|
xe_hwmon_energy_get(hwmon, &energy);
|
||
|
}
|
||
|
|
||
|
static void xe_hwmon_mutex_destroy(void *arg)
|
||
|
{
|
||
|
struct xe_hwmon *hwmon = arg;
|
||
|
|
||
|
mutex_destroy(&hwmon->hwmon_lock);
|
||
|
}
|
||
|
|
||
|
void xe_hwmon_register(struct xe_device *xe)
|
||
|
{
|
||
|
struct device *dev = xe->drm.dev;
|
||
|
struct xe_hwmon *hwmon;
|
||
|
|
||
|
/* hwmon is available only for dGfx */
|
||
|
if (!IS_DGFX(xe))
|
||
|
return;
|
||
|
|
||
|
hwmon = devm_kzalloc(dev, sizeof(*hwmon), GFP_KERNEL);
|
||
|
if (!hwmon)
|
||
|
return;
|
||
|
|
||
|
xe->hwmon = hwmon;
|
||
|
|
||
|
mutex_init(&hwmon->hwmon_lock);
|
||
|
if (devm_add_action_or_reset(dev, xe_hwmon_mutex_destroy, hwmon))
|
||
|
return;
|
||
|
|
||
|
/* primary GT to access device level properties */
|
||
|
hwmon->gt = xe->tiles[0].primary_gt;
|
||
|
|
||
|
xe_hwmon_get_preregistration_info(xe);
|
||
|
|
||
|
drm_dbg(&xe->drm, "Register xe hwmon interface\n");
|
||
|
|
||
|
/* hwmon_dev points to device hwmon<i> */
|
||
|
hwmon->hwmon_dev = devm_hwmon_device_register_with_info(dev, "xe", hwmon,
|
||
|
&hwmon_chip_info,
|
||
|
hwmon_groups);
|
||
|
|
||
|
if (IS_ERR(hwmon->hwmon_dev)) {
|
||
|
drm_warn(&xe->drm, "Failed to register xe hwmon (%pe)\n", hwmon->hwmon_dev);
|
||
|
xe->hwmon = NULL;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|