157 lines
4.2 KiB
C
157 lines
4.2 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* Common EFI memory map functions.
|
||
|
*/
|
||
|
|
||
|
#define pr_fmt(fmt) "efi: " fmt
|
||
|
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/efi.h>
|
||
|
#include <linux/io.h>
|
||
|
#include <linux/memblock.h>
|
||
|
#include <linux/slab.h>
|
||
|
|
||
|
#include <asm/early_ioremap.h>
|
||
|
#include <asm/efi.h>
|
||
|
|
||
|
#ifndef __efi_memmap_free
|
||
|
#define __efi_memmap_free(phys, size, flags) do { } while (0)
|
||
|
#endif
|
||
|
|
||
|
/**
|
||
|
* __efi_memmap_init - Common code for mapping the EFI memory map
|
||
|
* @data: EFI memory map data
|
||
|
*
|
||
|
* This function takes care of figuring out which function to use to
|
||
|
* map the EFI memory map in efi.memmap based on how far into the boot
|
||
|
* we are.
|
||
|
*
|
||
|
* During bootup EFI_MEMMAP_LATE in data->flags should be clear since we
|
||
|
* only have access to the early_memremap*() functions as the vmalloc
|
||
|
* space isn't setup. Once the kernel is fully booted we can fallback
|
||
|
* to the more robust memremap*() API.
|
||
|
*
|
||
|
* Returns: zero on success, a negative error code on failure.
|
||
|
*/
|
||
|
int __init __efi_memmap_init(struct efi_memory_map_data *data)
|
||
|
{
|
||
|
struct efi_memory_map map;
|
||
|
phys_addr_t phys_map;
|
||
|
|
||
|
phys_map = data->phys_map;
|
||
|
|
||
|
if (data->flags & EFI_MEMMAP_LATE)
|
||
|
map.map = memremap(phys_map, data->size, MEMREMAP_WB);
|
||
|
else
|
||
|
map.map = early_memremap(phys_map, data->size);
|
||
|
|
||
|
if (!map.map) {
|
||
|
pr_err("Could not map the memory map!\n");
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
if (efi.memmap.flags & (EFI_MEMMAP_MEMBLOCK | EFI_MEMMAP_SLAB))
|
||
|
__efi_memmap_free(efi.memmap.phys_map,
|
||
|
efi.memmap.desc_size * efi.memmap.nr_map,
|
||
|
efi.memmap.flags);
|
||
|
|
||
|
map.phys_map = data->phys_map;
|
||
|
map.nr_map = data->size / data->desc_size;
|
||
|
map.map_end = map.map + data->size;
|
||
|
|
||
|
map.desc_version = data->desc_version;
|
||
|
map.desc_size = data->desc_size;
|
||
|
map.flags = data->flags;
|
||
|
|
||
|
set_bit(EFI_MEMMAP, &efi.flags);
|
||
|
|
||
|
efi.memmap = map;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* efi_memmap_init_early - Map the EFI memory map data structure
|
||
|
* @data: EFI memory map data
|
||
|
*
|
||
|
* Use early_memremap() to map the passed in EFI memory map and assign
|
||
|
* it to efi.memmap.
|
||
|
*
|
||
|
* Returns: zero on success, a negative error code on failure.
|
||
|
*/
|
||
|
int __init efi_memmap_init_early(struct efi_memory_map_data *data)
|
||
|
{
|
||
|
/* Cannot go backwards */
|
||
|
WARN_ON(efi.memmap.flags & EFI_MEMMAP_LATE);
|
||
|
|
||
|
data->flags = 0;
|
||
|
return __efi_memmap_init(data);
|
||
|
}
|
||
|
|
||
|
void __init efi_memmap_unmap(void)
|
||
|
{
|
||
|
if (!efi_enabled(EFI_MEMMAP))
|
||
|
return;
|
||
|
|
||
|
if (!(efi.memmap.flags & EFI_MEMMAP_LATE)) {
|
||
|
unsigned long size;
|
||
|
|
||
|
size = efi.memmap.desc_size * efi.memmap.nr_map;
|
||
|
early_memunmap(efi.memmap.map, size);
|
||
|
} else {
|
||
|
memunmap(efi.memmap.map);
|
||
|
}
|
||
|
|
||
|
efi.memmap.map = NULL;
|
||
|
clear_bit(EFI_MEMMAP, &efi.flags);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* efi_memmap_init_late - Map efi.memmap with memremap()
|
||
|
* @addr: Physical address of the new EFI memory map
|
||
|
* @size: Size in bytes of the new EFI memory map
|
||
|
*
|
||
|
* Setup a mapping of the EFI memory map using ioremap_cache(). This
|
||
|
* function should only be called once the vmalloc space has been
|
||
|
* setup and is therefore not suitable for calling during early EFI
|
||
|
* initialise, e.g. in efi_init(). Additionally, it expects
|
||
|
* efi_memmap_init_early() to have already been called.
|
||
|
*
|
||
|
* The reason there are two EFI memmap initialisation
|
||
|
* (efi_memmap_init_early() and this late version) is because the
|
||
|
* early EFI memmap should be explicitly unmapped once EFI
|
||
|
* initialisation is complete as the fixmap space used to map the EFI
|
||
|
* memmap (via early_memremap()) is a scarce resource.
|
||
|
*
|
||
|
* This late mapping is intended to persist for the duration of
|
||
|
* runtime so that things like efi_mem_desc_lookup() and
|
||
|
* efi_mem_attributes() always work.
|
||
|
*
|
||
|
* Returns: zero on success, a negative error code on failure.
|
||
|
*/
|
||
|
int __init efi_memmap_init_late(phys_addr_t addr, unsigned long size)
|
||
|
{
|
||
|
struct efi_memory_map_data data = {
|
||
|
.phys_map = addr,
|
||
|
.size = size,
|
||
|
.flags = EFI_MEMMAP_LATE,
|
||
|
};
|
||
|
|
||
|
/* Did we forget to unmap the early EFI memmap? */
|
||
|
WARN_ON(efi.memmap.map);
|
||
|
|
||
|
/* Were we already called? */
|
||
|
WARN_ON(efi.memmap.flags & EFI_MEMMAP_LATE);
|
||
|
|
||
|
/*
|
||
|
* It makes no sense to allow callers to register different
|
||
|
* values for the following fields. Copy them out of the
|
||
|
* existing early EFI memmap.
|
||
|
*/
|
||
|
data.desc_version = efi.memmap.desc_version;
|
||
|
data.desc_size = efi.memmap.desc_size;
|
||
|
|
||
|
return __efi_memmap_init(&data);
|
||
|
}
|