mirror_ubuntu-kernels/drivers/clk/xilinx/clk-xlnx-clock-wizard.c

1267 lines
35 KiB
C
Raw Normal View History

2024-07-02 00:48:40 +03:00
// SPDX-License-Identifier: GPL-2.0
/*
* Xilinx 'Clocking Wizard' driver
*
* Copyright (C) 2013 - 2021 Xilinx
*
* Sören Brinkmann <soren.brinkmann@xilinx.com>
*
*/
#include <linux/bitfield.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/err.h>
#include <linux/iopoll.h>
#define WZRD_NUM_OUTPUTS 7
#define WZRD_ACLK_MAX_FREQ 250000000UL
#define WZRD_CLK_CFG_REG(v, n) (0x200 + 0x130 * (v) + 4 * (n))
#define WZRD_CLKOUT0_FRAC_EN BIT(18)
#define WZRD_CLKFBOUT_1 0
#define WZRD_CLKFBOUT_2 1
#define WZRD_CLKOUT0_1 2
#define WZRD_CLKOUT0_2 3
#define WZRD_DESKEW_2 20
#define WZRD_DIVCLK 21
#define WZRD_CLKFBOUT_4 51
#define WZRD_CLKFBOUT_3 48
#define WZRD_DUTY_CYCLE 2
#define WZRD_O_DIV 4
#define WZRD_CLKFBOUT_FRAC_EN BIT(1)
#define WZRD_CLKFBOUT_PREDIV2 (BIT(11) | BIT(12) | BIT(9))
#define WZRD_MULT_PREDIV2 (BIT(10) | BIT(9) | BIT(12))
#define WZRD_CLKFBOUT_EDGE BIT(8)
#define WZRD_P5EN BIT(13)
#define WZRD_P5EN_SHIFT 13
#define WZRD_P5FEDGE BIT(15)
#define WZRD_DIVCLK_EDGE BIT(10)
#define WZRD_P5FEDGE_SHIFT 15
#define WZRD_CLKOUT0_PREDIV2 BIT(11)
#define WZRD_EDGE_SHIFT 8
#define WZRD_CLKFBOUT_MULT_SHIFT 8
#define WZRD_CLKFBOUT_MULT_MASK (0xff << WZRD_CLKFBOUT_MULT_SHIFT)
#define WZRD_CLKFBOUT_L_SHIFT 0
#define WZRD_CLKFBOUT_H_SHIFT 8
#define WZRD_CLKFBOUT_L_MASK GENMASK(7, 0)
#define WZRD_CLKFBOUT_H_MASK GENMASK(15, 8)
#define WZRD_CLKFBOUT_FRAC_SHIFT 16
#define WZRD_CLKFBOUT_FRAC_MASK (0x3ff << WZRD_CLKFBOUT_FRAC_SHIFT)
#define WZRD_VERSAL_FRAC_MASK GENMASK(5, 0)
#define WZRD_DIVCLK_DIVIDE_SHIFT 0
#define WZRD_DIVCLK_DIVIDE_MASK (0xff << WZRD_DIVCLK_DIVIDE_SHIFT)
#define WZRD_CLKOUT_DIVIDE_SHIFT 0
#define WZRD_CLKOUT_DIVIDE_WIDTH 8
#define WZRD_CLKOUT_DIVIDE_MASK (0xff << WZRD_DIVCLK_DIVIDE_SHIFT)
#define WZRD_CLKOUT_FRAC_SHIFT 8
#define WZRD_CLKOUT_FRAC_MASK 0x3ff
#define WZRD_CLKOUT0_FRAC_MASK GENMASK(17, 8)
#define WZRD_DR_MAX_INT_DIV_VALUE 255
#define WZRD_DR_STATUS_REG_OFFSET 0x04
#define WZRD_DR_LOCK_BIT_MASK 0x00000001
#define WZRD_DR_INIT_REG_OFFSET 0x25C
#define WZRD_DR_INIT_VERSAL_OFFSET 0x14
#define WZRD_DR_DIV_TO_PHASE_OFFSET 4
#define WZRD_DR_BEGIN_DYNA_RECONF 0x03
#define WZRD_DR_BEGIN_DYNA_RECONF_5_2 0x07
#define WZRD_DR_BEGIN_DYNA_RECONF1_5_2 0x02
#define WZRD_USEC_POLL 10
#define WZRD_TIMEOUT_POLL 1000
#define WZRD_FRAC_GRADIENT 64
#define PREDIV2_MULT 2
/* Divider limits, from UG572 Table 3-4 for Ultrascale+ */
#define DIV_O 0x01
#define DIV_ALL 0x03
#define WZRD_M_MIN 2
#define WZRD_M_MAX 128
#define WZRD_D_MIN 1
#define WZRD_D_MAX 106
#define WZRD_VCO_MIN 800000000
#define WZRD_VCO_MAX 1600000000
#define WZRD_O_MIN 1
#define WZRD_O_MAX 128
#define VER_WZRD_M_MIN 4
#define VER_WZRD_M_MAX 432
#define VER_WZRD_D_MIN 1
#define VER_WZRD_D_MAX 123
#define VER_WZRD_VCO_MIN 2160000000ULL
#define VER_WZRD_VCO_MAX 4320000000ULL
#define VER_WZRD_O_MIN 2
#define VER_WZRD_O_MAX 511
#define WZRD_MIN_ERR 20000
#define WZRD_FRAC_POINTS 1000
/* Get the mask from width */
#define div_mask(width) ((1 << (width)) - 1)
/* Extract divider instance from clock hardware instance */
#define to_clk_wzrd_divider(_hw) container_of(_hw, struct clk_wzrd_divider, hw)
enum clk_wzrd_int_clks {
wzrd_clk_mul,
wzrd_clk_mul_div,
wzrd_clk_mul_frac,
wzrd_clk_int_max
};
/**
* struct clk_wzrd - Clock wizard private data structure
*
* @clk_data: Clock data
* @nb: Notifier block
* @base: Memory base
* @clk_in1: Handle to input clock 'clk_in1'
* @axi_clk: Handle to input clock 's_axi_aclk'
* @clks_internal: Internal clocks
* @clkout: Output clocks
* @speed_grade: Speed grade of the device
* @suspended: Flag indicating power state of the device
*/
struct clk_wzrd {
struct clk_onecell_data clk_data;
struct notifier_block nb;
void __iomem *base;
struct clk *clk_in1;
struct clk *axi_clk;
struct clk *clks_internal[wzrd_clk_int_max];
struct clk *clkout[WZRD_NUM_OUTPUTS];
unsigned int speed_grade;
bool suspended;
};
/**
* struct clk_wzrd_divider - clock divider specific to clk_wzrd
*
* @hw: handle between common and hardware-specific interfaces
* @base: base address of register containing the divider
* @offset: offset address of register containing the divider
* @shift: shift to the divider bit field
* @width: width of the divider bit field
* @flags: clk_wzrd divider flags
* @table: array of value/divider pairs, last entry should have div = 0
* @m: value of the multiplier
* @d: value of the common divider
* @o: value of the leaf divider
* @lock: register lock
*/
struct clk_wzrd_divider {
struct clk_hw hw;
void __iomem *base;
u16 offset;
u8 shift;
u8 width;
u8 flags;
const struct clk_div_table *table;
u32 m;
u32 d;
u32 o;
spinlock_t *lock; /* divider lock */
};
struct versal_clk_data {
bool is_versal;
};
#define to_clk_wzrd(_nb) container_of(_nb, struct clk_wzrd, nb)
/* maximum frequencies for input/output clocks per speed grade */
static const unsigned long clk_wzrd_max_freq[] = {
800000000UL,
933000000UL,
1066000000UL
};
/* spin lock variable for clk_wzrd */
static DEFINE_SPINLOCK(clkwzrd_lock);
static unsigned long clk_wzrd_recalc_rate_ver(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
void __iomem *div_addr = divider->base + divider->offset;
u32 div, p5en, edge, prediv2, all;
unsigned int vall, valh;
edge = !!(readl(div_addr) & WZRD_CLKFBOUT_EDGE);
p5en = !!(readl(div_addr) & WZRD_P5EN);
prediv2 = !!(readl(div_addr) & WZRD_CLKOUT0_PREDIV2);
vall = readl(div_addr + 4) & WZRD_CLKFBOUT_L_MASK;
valh = readl(div_addr + 4) >> WZRD_CLKFBOUT_H_SHIFT;
all = valh + vall + edge;
if (!all)
all = 1;
if (prediv2)
div = 2 * all + prediv2 * p5en;
else
div = all;
return DIV_ROUND_UP_ULL((u64)parent_rate, div);
}
static unsigned long clk_wzrd_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
void __iomem *div_addr = divider->base + divider->offset;
unsigned int val;
val = readl(div_addr) >> divider->shift;
val &= div_mask(divider->width);
return divider_recalc_rate(hw, parent_rate, val, divider->table,
divider->flags, divider->width);
}
static int clk_wzrd_ver_dynamic_reconfig(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
void __iomem *div_addr = divider->base + divider->offset;
u32 value, regh, edged, p5en, p5fedge, regval, regval1;
unsigned long flags;
int err;
spin_lock_irqsave(divider->lock, flags);
value = DIV_ROUND_CLOSEST(parent_rate, rate);
regh = (value / 4);
regval1 = readl(div_addr);
regval1 |= WZRD_CLKFBOUT_PREDIV2;
regval1 = regval1 & ~(WZRD_CLKFBOUT_EDGE | WZRD_P5EN | WZRD_P5FEDGE);
if (value % 4 > 1) {
edged = 1;
regval1 |= (edged << WZRD_EDGE_SHIFT);
}
p5fedge = value % 2;
p5en = value % 2;
regval1 = regval1 | p5en << WZRD_P5EN_SHIFT | p5fedge << WZRD_P5FEDGE_SHIFT;
writel(regval1, div_addr);
regval = regh | regh << WZRD_CLKFBOUT_H_SHIFT;
writel(regval, div_addr + 4);
/* Check status register */
err = readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET,
value, value & WZRD_DR_LOCK_BIT_MASK,
WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
if (err)
goto err_reconfig;
/* Initiate reconfiguration */
writel(WZRD_DR_BEGIN_DYNA_RECONF,
divider->base + WZRD_DR_INIT_VERSAL_OFFSET);
/* Check status register */
err = readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET,
value, value & WZRD_DR_LOCK_BIT_MASK,
WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
err_reconfig:
spin_unlock_irqrestore(divider->lock, flags);
return err;
}
static int clk_wzrd_dynamic_reconfig(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
void __iomem *div_addr = divider->base + divider->offset;
unsigned long flags;
u32 value;
int err;
spin_lock_irqsave(divider->lock, flags);
value = DIV_ROUND_CLOSEST(parent_rate, rate);
/* Cap the value to max */
min_t(u32, value, WZRD_DR_MAX_INT_DIV_VALUE);
/* Set divisor and clear phase offset */
writel(value, div_addr);
writel(0x00, div_addr + WZRD_DR_DIV_TO_PHASE_OFFSET);
/* Check status register */
err = readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET,
value, value & WZRD_DR_LOCK_BIT_MASK,
WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
if (err)
goto err_reconfig;
/* Initiate reconfiguration */
writel(WZRD_DR_BEGIN_DYNA_RECONF_5_2,
divider->base + WZRD_DR_INIT_REG_OFFSET);
writel(WZRD_DR_BEGIN_DYNA_RECONF1_5_2,
divider->base + WZRD_DR_INIT_REG_OFFSET);
/* Check status register */
err = readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET,
value, value & WZRD_DR_LOCK_BIT_MASK,
WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
err_reconfig:
spin_unlock_irqrestore(divider->lock, flags);
return err;
}
static long clk_wzrd_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
u8 div;
/*
* since we don't change parent rate we just round rate to closest
* achievable
*/
div = DIV_ROUND_CLOSEST(*prate, rate);
return *prate / div;
}
static int clk_wzrd_get_divisors_ver(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
u64 vco_freq, freq, diff, vcomin, vcomax;
u32 m, d, o;
u32 mmin, mmax, dmin, dmax, omin, omax;
mmin = VER_WZRD_M_MIN;
mmax = VER_WZRD_M_MAX;
dmin = VER_WZRD_D_MIN;
dmax = VER_WZRD_D_MAX;
omin = VER_WZRD_O_MIN;
omax = VER_WZRD_O_MAX;
vcomin = VER_WZRD_VCO_MIN;
vcomax = VER_WZRD_VCO_MAX;
for (m = mmin; m <= mmax; m++) {
for (d = dmin; d <= dmax; d++) {
vco_freq = DIV_ROUND_CLOSEST((parent_rate * m), d);
if (vco_freq >= vcomin && vco_freq <= vcomax) {
for (o = omin; o <= omax; o++) {
freq = DIV_ROUND_CLOSEST_ULL(vco_freq, o);
diff = abs(freq - rate);
if (diff < WZRD_MIN_ERR) {
divider->m = m;
divider->d = d;
divider->o = o;
return 0;
}
}
}
}
}
return -EBUSY;
}
static int clk_wzrd_get_divisors(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
u64 vco_freq, freq, diff, vcomin, vcomax;
u32 m, d, o;
u32 mmin, mmax, dmin, dmax, omin, omax;
mmin = WZRD_M_MIN;
mmax = WZRD_M_MAX;
dmin = WZRD_D_MIN;
dmax = WZRD_D_MAX;
omin = WZRD_O_MIN;
omax = WZRD_O_MAX;
vcomin = WZRD_VCO_MIN;
vcomax = WZRD_VCO_MAX;
for (m = mmin; m <= mmax; m++) {
for (d = dmin; d <= dmax; d++) {
vco_freq = DIV_ROUND_CLOSEST((parent_rate * m), d);
if (vco_freq >= vcomin && vco_freq <= vcomax) {
for (o = omin; o <= omax; o++) {
freq = DIV_ROUND_CLOSEST_ULL(vco_freq, o);
diff = abs(freq - rate);
if (diff < WZRD_MIN_ERR) {
divider->m = m;
divider->d = d;
divider->o = o;
return 0;
}
}
}
}
}
return -EBUSY;
}
static int clk_wzrd_reconfig(struct clk_wzrd_divider *divider, void __iomem *div_addr)
{
u32 value;
int err;
/* Check status register */
err = readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET, value,
value & WZRD_DR_LOCK_BIT_MASK,
WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
if (err)
return -ETIMEDOUT;
/* Initiate reconfiguration */
writel(WZRD_DR_BEGIN_DYNA_RECONF, div_addr);
/* Check status register */
return readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET, value,
value & WZRD_DR_LOCK_BIT_MASK,
WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
}
static int clk_wzrd_dynamic_ver_all_nolock(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
u32 regh, edged, p5en, p5fedge, value2, m, regval, regval1, value;
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
void __iomem *div_addr;
int err;
err = clk_wzrd_get_divisors_ver(hw, rate, parent_rate);
if (err)
return err;
writel(0, divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKFBOUT_4));
m = divider->m;
edged = m % WZRD_DUTY_CYCLE;
regh = m / WZRD_DUTY_CYCLE;
regval1 = readl(divider->base + WZRD_CLK_CFG_REG(1,
WZRD_CLKFBOUT_1));
regval1 |= WZRD_MULT_PREDIV2;
if (edged)
regval1 = regval1 | WZRD_CLKFBOUT_EDGE;
else
regval1 = regval1 & ~WZRD_CLKFBOUT_EDGE;
writel(regval1, divider->base + WZRD_CLK_CFG_REG(1,
WZRD_CLKFBOUT_1));
regval1 = regh | regh << WZRD_CLKFBOUT_H_SHIFT;
writel(regval1, divider->base + WZRD_CLK_CFG_REG(1,
WZRD_CLKFBOUT_2));
value2 = divider->d;
edged = value2 % WZRD_DUTY_CYCLE;
regh = (value2 / WZRD_DUTY_CYCLE);
regval1 = FIELD_PREP(WZRD_DIVCLK_EDGE, edged);
writel(regval1, divider->base + WZRD_CLK_CFG_REG(1,
WZRD_DESKEW_2));
regval1 = regh | regh << WZRD_CLKFBOUT_H_SHIFT;
writel(regval1, divider->base + WZRD_CLK_CFG_REG(1, WZRD_DIVCLK));
value = divider->o;
regh = value / WZRD_O_DIV;
regval1 = readl(divider->base + WZRD_CLK_CFG_REG(1,
WZRD_CLKOUT0_1));
regval1 |= WZRD_CLKFBOUT_PREDIV2;
regval1 = regval1 & ~(WZRD_CLKFBOUT_EDGE | WZRD_P5EN | WZRD_P5FEDGE);
if (value % WZRD_O_DIV > 1) {
edged = 1;
regval1 |= edged << WZRD_CLKFBOUT_H_SHIFT;
}
p5fedge = value % WZRD_DUTY_CYCLE;
p5en = value % WZRD_DUTY_CYCLE;
regval1 = regval1 | FIELD_PREP(WZRD_P5EN, p5en) | FIELD_PREP(WZRD_P5FEDGE, p5fedge);
writel(regval1, divider->base + WZRD_CLK_CFG_REG(1,
WZRD_CLKOUT0_1));
regval = regh | regh << WZRD_CLKFBOUT_H_SHIFT;
writel(regval, divider->base + WZRD_CLK_CFG_REG(1,
WZRD_CLKOUT0_2));
div_addr = divider->base + WZRD_DR_INIT_VERSAL_OFFSET;
return clk_wzrd_reconfig(divider, div_addr);
}
static int clk_wzrd_dynamic_all_nolock(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
unsigned long vco_freq, rate_div, clockout0_div;
void __iomem *div_addr = divider->base;
u32 reg, pre, f;
int err;
err = clk_wzrd_get_divisors(hw, rate, parent_rate);
if (err)
return err;
vco_freq = DIV_ROUND_CLOSEST(parent_rate * divider->m, divider->d);
rate_div = DIV_ROUND_CLOSEST_ULL((vco_freq * WZRD_FRAC_POINTS), rate);
clockout0_div = div_u64(rate_div, WZRD_FRAC_POINTS);
pre = DIV_ROUND_CLOSEST_ULL(vco_freq * WZRD_FRAC_POINTS, rate);
f = (pre - (clockout0_div * WZRD_FRAC_POINTS));
f &= WZRD_CLKOUT_FRAC_MASK;
reg = FIELD_PREP(WZRD_CLKOUT_DIVIDE_MASK, clockout0_div) |
FIELD_PREP(WZRD_CLKOUT0_FRAC_MASK, f);
writel(reg, divider->base + WZRD_CLK_CFG_REG(0, 2));
/* Set divisor and clear phase offset */
reg = FIELD_PREP(WZRD_CLKFBOUT_MULT_MASK, divider->m) |
FIELD_PREP(WZRD_DIVCLK_DIVIDE_MASK, divider->d);
writel(reg, divider->base + WZRD_CLK_CFG_REG(0, 0));
writel(divider->o, divider->base + WZRD_CLK_CFG_REG(0, 2));
writel(0, divider->base + WZRD_CLK_CFG_REG(0, 3));
div_addr = divider->base + WZRD_DR_INIT_REG_OFFSET;
return clk_wzrd_reconfig(divider, div_addr);
}
static int clk_wzrd_dynamic_all(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
unsigned long flags;
int ret;
spin_lock_irqsave(divider->lock, flags);
ret = clk_wzrd_dynamic_all_nolock(hw, rate, parent_rate);
spin_unlock_irqrestore(divider->lock, flags);
return ret;
}
static int clk_wzrd_dynamic_all_ver(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
unsigned long flags;
int ret;
spin_lock_irqsave(divider->lock, flags);
ret = clk_wzrd_dynamic_ver_all_nolock(hw, rate, parent_rate);
spin_unlock_irqrestore(divider->lock, flags);
return ret;
}
static unsigned long clk_wzrd_recalc_rate_all(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
u32 m, d, o, div, reg, f;
reg = readl(divider->base + WZRD_CLK_CFG_REG(0, 0));
d = FIELD_GET(WZRD_DIVCLK_DIVIDE_MASK, reg);
m = FIELD_GET(WZRD_CLKFBOUT_MULT_MASK, reg);
reg = readl(divider->base + WZRD_CLK_CFG_REG(0, 2));
o = FIELD_GET(WZRD_DIVCLK_DIVIDE_MASK, reg);
f = FIELD_GET(WZRD_CLKOUT0_FRAC_MASK, reg);
div = DIV_ROUND_CLOSEST(d * (WZRD_FRAC_POINTS * o + f), WZRD_FRAC_POINTS);
return divider_recalc_rate(hw, parent_rate * m, div, divider->table,
divider->flags, divider->width);
}
static unsigned long clk_wzrd_recalc_rate_all_ver(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
u32 edged, div2, p5en, edge, prediv2, all, regl, regh, mult;
u32 div, reg;
edge = !!(readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKFBOUT_1)) &
WZRD_CLKFBOUT_EDGE);
reg = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKFBOUT_2));
regl = FIELD_GET(WZRD_CLKFBOUT_L_MASK, reg);
regh = FIELD_GET(WZRD_CLKFBOUT_H_MASK, reg);
mult = regl + regh + edge;
if (!mult)
mult = 1;
regl = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKFBOUT_4)) &
WZRD_CLKFBOUT_FRAC_EN;
if (regl) {
regl = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKFBOUT_3))
& WZRD_VERSAL_FRAC_MASK;
mult = mult * WZRD_FRAC_GRADIENT + regl;
parent_rate = DIV_ROUND_CLOSEST((parent_rate * mult), WZRD_FRAC_GRADIENT);
} else {
parent_rate = parent_rate * mult;
}
/* O Calculation */
reg = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKOUT0_1));
edged = FIELD_GET(WZRD_CLKFBOUT_EDGE, reg);
p5en = FIELD_GET(WZRD_P5EN, reg);
prediv2 = FIELD_GET(WZRD_CLKOUT0_PREDIV2, reg);
reg = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKOUT0_2));
/* Low time */
regl = FIELD_GET(WZRD_CLKFBOUT_L_MASK, reg);
/* High time */
regh = FIELD_GET(WZRD_CLKFBOUT_H_MASK, reg);
all = regh + regl + edged;
if (!all)
all = 1;
if (prediv2)
div2 = PREDIV2_MULT * all + p5en;
else
div2 = all;
/* D calculation */
edged = !!(readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_DESKEW_2)) &
WZRD_DIVCLK_EDGE);
reg = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_DIVCLK));
/* Low time */
regl = FIELD_GET(WZRD_CLKFBOUT_L_MASK, reg);
/* High time */
regh = FIELD_GET(WZRD_CLKFBOUT_H_MASK, reg);
div = regl + regh + edged;
if (!div)
div = 1;
div = div * div2;
return divider_recalc_rate(hw, parent_rate, div, divider->table,
divider->flags, divider->width);
}
static long clk_wzrd_round_rate_all(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
unsigned long int_freq;
u32 m, d, o, div, f;
int err;
err = clk_wzrd_get_divisors(hw, rate, *prate);
if (err)
return err;
m = divider->m;
d = divider->d;
o = divider->o;
div = d * o;
int_freq = divider_recalc_rate(hw, *prate * m, div, divider->table,
divider->flags, divider->width);
if (rate > int_freq) {
f = DIV_ROUND_CLOSEST_ULL(rate * WZRD_FRAC_POINTS, int_freq);
rate = DIV_ROUND_CLOSEST(int_freq * f, WZRD_FRAC_POINTS);
}
return rate;
}
static const struct clk_ops clk_wzrd_ver_divider_ops = {
.round_rate = clk_wzrd_round_rate,
.set_rate = clk_wzrd_ver_dynamic_reconfig,
.recalc_rate = clk_wzrd_recalc_rate_ver,
};
static const struct clk_ops clk_wzrd_ver_div_all_ops = {
.round_rate = clk_wzrd_round_rate_all,
.set_rate = clk_wzrd_dynamic_all_ver,
.recalc_rate = clk_wzrd_recalc_rate_all_ver,
};
static const struct clk_ops clk_wzrd_clk_divider_ops = {
.round_rate = clk_wzrd_round_rate,
.set_rate = clk_wzrd_dynamic_reconfig,
.recalc_rate = clk_wzrd_recalc_rate,
};
static const struct clk_ops clk_wzrd_clk_div_all_ops = {
.round_rate = clk_wzrd_round_rate_all,
.set_rate = clk_wzrd_dynamic_all,
.recalc_rate = clk_wzrd_recalc_rate_all,
};
static unsigned long clk_wzrd_recalc_ratef(struct clk_hw *hw,
unsigned long parent_rate)
{
unsigned int val;
u32 div, frac;
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
void __iomem *div_addr = divider->base + divider->offset;
val = readl(div_addr);
div = val & div_mask(divider->width);
frac = (val >> WZRD_CLKOUT_FRAC_SHIFT) & WZRD_CLKOUT_FRAC_MASK;
return mult_frac(parent_rate, 1000, (div * 1000) + frac);
}
static int clk_wzrd_dynamic_reconfig_f(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
int err;
u32 value, pre;
unsigned long rate_div, f, clockout0_div;
struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
void __iomem *div_addr = divider->base + divider->offset;
rate_div = DIV_ROUND_DOWN_ULL(parent_rate * 1000, rate);
clockout0_div = rate_div / 1000;
pre = DIV_ROUND_CLOSEST((parent_rate * 1000), rate);
f = (u32)(pre - (clockout0_div * 1000));
f = f & WZRD_CLKOUT_FRAC_MASK;
f = f << WZRD_CLKOUT_DIVIDE_WIDTH;
value = (f | (clockout0_div & WZRD_CLKOUT_DIVIDE_MASK));
/* Set divisor and clear phase offset */
writel(value, div_addr);
writel(0x0, div_addr + WZRD_DR_DIV_TO_PHASE_OFFSET);
/* Check status register */
err = readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value,
value & WZRD_DR_LOCK_BIT_MASK,
WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
if (err)
return err;
/* Initiate reconfiguration */
writel(WZRD_DR_BEGIN_DYNA_RECONF_5_2,
divider->base + WZRD_DR_INIT_REG_OFFSET);
writel(WZRD_DR_BEGIN_DYNA_RECONF1_5_2,
divider->base + WZRD_DR_INIT_REG_OFFSET);
/* Check status register */
return readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value,
value & WZRD_DR_LOCK_BIT_MASK,
WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
}
static long clk_wzrd_round_rate_f(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
return rate;
}
static const struct clk_ops clk_wzrd_clk_divider_ops_f = {
.round_rate = clk_wzrd_round_rate_f,
.set_rate = clk_wzrd_dynamic_reconfig_f,
.recalc_rate = clk_wzrd_recalc_ratef,
};
static struct clk *clk_wzrd_register_divf(struct device *dev,
const char *name,
const char *parent_name,
unsigned long flags,
void __iomem *base, u16 offset,
u8 shift, u8 width,
u8 clk_divider_flags,
u32 div_type,
spinlock_t *lock)
{
struct clk_wzrd_divider *div;
struct clk_hw *hw;
struct clk_init_data init;
int ret;
div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL);
if (!div)
return ERR_PTR(-ENOMEM);
init.name = name;
init.ops = &clk_wzrd_clk_divider_ops_f;
init.flags = flags;
init.parent_names = &parent_name;
init.num_parents = 1;
div->base = base;
div->offset = offset;
div->shift = shift;
div->width = width;
div->flags = clk_divider_flags;
div->lock = lock;
div->hw.init = &init;
hw = &div->hw;
ret = devm_clk_hw_register(dev, hw);
if (ret)
return ERR_PTR(ret);
return hw->clk;
}
static struct clk *clk_wzrd_ver_register_divider(struct device *dev,
const char *name,
const char *parent_name,
unsigned long flags,
void __iomem *base,
u16 offset,
u8 shift, u8 width,
u8 clk_divider_flags,
u32 div_type,
spinlock_t *lock)
{
struct clk_wzrd_divider *div;
struct clk_hw *hw;
struct clk_init_data init;
int ret;
div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL);
if (!div)
return ERR_PTR(-ENOMEM);
init.name = name;
if (clk_divider_flags & CLK_DIVIDER_READ_ONLY)
init.ops = &clk_divider_ro_ops;
else if (div_type == DIV_O)
init.ops = &clk_wzrd_ver_divider_ops;
else
init.ops = &clk_wzrd_ver_div_all_ops;
init.flags = flags;
init.parent_names = &parent_name;
init.num_parents = 1;
div->base = base;
div->offset = offset;
div->shift = shift;
div->width = width;
div->flags = clk_divider_flags;
div->lock = lock;
div->hw.init = &init;
hw = &div->hw;
ret = devm_clk_hw_register(dev, hw);
if (ret)
return ERR_PTR(ret);
return hw->clk;
}
static struct clk *clk_wzrd_register_divider(struct device *dev,
const char *name,
const char *parent_name,
unsigned long flags,
void __iomem *base, u16 offset,
u8 shift, u8 width,
u8 clk_divider_flags,
u32 div_type,
spinlock_t *lock)
{
struct clk_wzrd_divider *div;
struct clk_hw *hw;
struct clk_init_data init;
int ret;
div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL);
if (!div)
return ERR_PTR(-ENOMEM);
init.name = name;
if (clk_divider_flags & CLK_DIVIDER_READ_ONLY)
init.ops = &clk_divider_ro_ops;
else if (div_type == DIV_O)
init.ops = &clk_wzrd_clk_divider_ops;
else
init.ops = &clk_wzrd_clk_div_all_ops;
init.flags = flags;
init.parent_names = &parent_name;
init.num_parents = 1;
div->base = base;
div->offset = offset;
div->shift = shift;
div->width = width;
div->flags = clk_divider_flags;
div->lock = lock;
div->hw.init = &init;
hw = &div->hw;
ret = devm_clk_hw_register(dev, hw);
if (ret)
return ERR_PTR(ret);
return hw->clk;
}
static int clk_wzrd_clk_notifier(struct notifier_block *nb, unsigned long event,
void *data)
{
unsigned long max;
struct clk_notifier_data *ndata = data;
struct clk_wzrd *clk_wzrd = to_clk_wzrd(nb);
if (clk_wzrd->suspended)
return NOTIFY_OK;
if (ndata->clk == clk_wzrd->clk_in1)
max = clk_wzrd_max_freq[clk_wzrd->speed_grade - 1];
else if (ndata->clk == clk_wzrd->axi_clk)
max = WZRD_ACLK_MAX_FREQ;
else
return NOTIFY_DONE; /* should never happen */
switch (event) {
case PRE_RATE_CHANGE:
if (ndata->new_rate > max)
return NOTIFY_BAD;
return NOTIFY_OK;
case POST_RATE_CHANGE:
case ABORT_RATE_CHANGE:
default:
return NOTIFY_DONE;
}
}
static int __maybe_unused clk_wzrd_suspend(struct device *dev)
{
struct clk_wzrd *clk_wzrd = dev_get_drvdata(dev);
clk_disable_unprepare(clk_wzrd->axi_clk);
clk_wzrd->suspended = true;
return 0;
}
static int __maybe_unused clk_wzrd_resume(struct device *dev)
{
int ret;
struct clk_wzrd *clk_wzrd = dev_get_drvdata(dev);
ret = clk_prepare_enable(clk_wzrd->axi_clk);
if (ret) {
dev_err(dev, "unable to enable s_axi_aclk\n");
return ret;
}
clk_wzrd->suspended = false;
return 0;
}
static SIMPLE_DEV_PM_OPS(clk_wzrd_dev_pm_ops, clk_wzrd_suspend,
clk_wzrd_resume);
static const struct versal_clk_data versal_data = {
.is_versal = true,
};
static int clk_wzrd_probe(struct platform_device *pdev)
{
const char *clkout_name, *clk_name, *clk_mul_name;
u32 regl, regh, edge, regld, reghd, edged, div;
struct device_node *np = pdev->dev.of_node;
const struct versal_clk_data *data;
struct clk_wzrd *clk_wzrd;
unsigned long flags = 0;
void __iomem *ctrl_reg;
u32 reg, reg_f, mult;
bool is_versal = false;
unsigned long rate;
int nr_outputs;
int i, ret;
clk_wzrd = devm_kzalloc(&pdev->dev, sizeof(*clk_wzrd), GFP_KERNEL);
if (!clk_wzrd)
return -ENOMEM;
platform_set_drvdata(pdev, clk_wzrd);
clk_wzrd->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(clk_wzrd->base))
return PTR_ERR(clk_wzrd->base);
ret = of_property_read_u32(np, "xlnx,speed-grade", &clk_wzrd->speed_grade);
if (!ret) {
if (clk_wzrd->speed_grade < 1 || clk_wzrd->speed_grade > 3) {
dev_warn(&pdev->dev, "invalid speed grade '%d'\n",
clk_wzrd->speed_grade);
clk_wzrd->speed_grade = 0;
}
}
clk_wzrd->clk_in1 = devm_clk_get(&pdev->dev, "clk_in1");
if (IS_ERR(clk_wzrd->clk_in1))
return dev_err_probe(&pdev->dev, PTR_ERR(clk_wzrd->clk_in1),
"clk_in1 not found\n");
clk_wzrd->axi_clk = devm_clk_get(&pdev->dev, "s_axi_aclk");
if (IS_ERR(clk_wzrd->axi_clk))
return dev_err_probe(&pdev->dev, PTR_ERR(clk_wzrd->axi_clk),
"s_axi_aclk not found\n");
ret = clk_prepare_enable(clk_wzrd->axi_clk);
if (ret) {
dev_err(&pdev->dev, "enabling s_axi_aclk failed\n");
return ret;
}
rate = clk_get_rate(clk_wzrd->axi_clk);
if (rate > WZRD_ACLK_MAX_FREQ) {
dev_err(&pdev->dev, "s_axi_aclk frequency (%lu) too high\n",
rate);
ret = -EINVAL;
goto err_disable_clk;
}
data = device_get_match_data(&pdev->dev);
if (data)
is_versal = data->is_versal;
ret = of_property_read_u32(np, "xlnx,nr-outputs", &nr_outputs);
if (ret || nr_outputs > WZRD_NUM_OUTPUTS) {
ret = -EINVAL;
goto err_disable_clk;
}
clkout_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_out0", dev_name(&pdev->dev));
if (!clkout_name) {
ret = -ENOMEM;
goto err_disable_clk;
}
if (is_versal) {
if (nr_outputs == 1) {
clk_wzrd->clkout[0] = clk_wzrd_ver_register_divider
(&pdev->dev, clkout_name,
__clk_get_name(clk_wzrd->clk_in1), 0,
clk_wzrd->base, WZRD_CLK_CFG_REG(is_versal, 3),
WZRD_CLKOUT_DIVIDE_SHIFT,
WZRD_CLKOUT_DIVIDE_WIDTH,
CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
DIV_ALL, &clkwzrd_lock);
goto out;
}
/* register multiplier */
edge = !!(readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 0)) &
BIT(8));
regl = (readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 1)) &
WZRD_CLKFBOUT_L_MASK) >> WZRD_CLKFBOUT_L_SHIFT;
regh = (readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 1)) &
WZRD_CLKFBOUT_H_MASK) >> WZRD_CLKFBOUT_H_SHIFT;
mult = regl + regh + edge;
if (!mult)
mult = 1;
mult = mult * WZRD_FRAC_GRADIENT;
regl = readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 51)) &
WZRD_CLKFBOUT_FRAC_EN;
if (regl) {
regl = readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 48)) &
WZRD_VERSAL_FRAC_MASK;
mult = mult + regl;
}
div = 64;
} else {
if (nr_outputs == 1) {
clk_wzrd->clkout[0] = clk_wzrd_register_divider
(&pdev->dev, clkout_name,
__clk_get_name(clk_wzrd->clk_in1), 0,
clk_wzrd->base, WZRD_CLK_CFG_REG(is_versal, 3),
WZRD_CLKOUT_DIVIDE_SHIFT,
WZRD_CLKOUT_DIVIDE_WIDTH,
CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
DIV_ALL, &clkwzrd_lock);
goto out;
}
reg = readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 0));
reg_f = reg & WZRD_CLKFBOUT_FRAC_MASK;
reg_f = reg_f >> WZRD_CLKFBOUT_FRAC_SHIFT;
reg = reg & WZRD_CLKFBOUT_MULT_MASK;
reg = reg >> WZRD_CLKFBOUT_MULT_SHIFT;
mult = (reg * 1000) + reg_f;
div = 1000;
}
clk_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_mul", dev_name(&pdev->dev));
if (!clk_name) {
ret = -ENOMEM;
goto err_disable_clk;
}
clk_wzrd->clks_internal[wzrd_clk_mul] = clk_register_fixed_factor
(&pdev->dev, clk_name,
__clk_get_name(clk_wzrd->clk_in1),
0, mult, div);
if (IS_ERR(clk_wzrd->clks_internal[wzrd_clk_mul])) {
dev_err(&pdev->dev, "unable to register fixed-factor clock\n");
ret = PTR_ERR(clk_wzrd->clks_internal[wzrd_clk_mul]);
goto err_disable_clk;
}
clk_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_mul_div", dev_name(&pdev->dev));
if (!clk_name) {
ret = -ENOMEM;
goto err_rm_int_clk;
}
if (is_versal) {
edged = !!(readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 20)) &
BIT(10));
regld = (readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 21)) &
WZRD_CLKFBOUT_L_MASK) >> WZRD_CLKFBOUT_L_SHIFT;
reghd = (readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 21)) &
WZRD_CLKFBOUT_H_MASK) >> WZRD_CLKFBOUT_H_SHIFT;
div = (regld + reghd + edged);
if (!div)
div = 1;
clk_mul_name = __clk_get_name(clk_wzrd->clks_internal[wzrd_clk_mul]);
clk_wzrd->clks_internal[wzrd_clk_mul_div] =
clk_register_fixed_factor(&pdev->dev, clk_name,
clk_mul_name, 0, 1, div);
} else {
ctrl_reg = clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 0);
clk_wzrd->clks_internal[wzrd_clk_mul_div] = clk_register_divider
(&pdev->dev, clk_name,
__clk_get_name(clk_wzrd->clks_internal[wzrd_clk_mul]),
flags, ctrl_reg, 0, 8, CLK_DIVIDER_ONE_BASED |
CLK_DIVIDER_ALLOW_ZERO, &clkwzrd_lock);
}
if (IS_ERR(clk_wzrd->clks_internal[wzrd_clk_mul_div])) {
dev_err(&pdev->dev, "unable to register divider clock\n");
ret = PTR_ERR(clk_wzrd->clks_internal[wzrd_clk_mul_div]);
goto err_rm_int_clk;
}
/* register div per output */
for (i = nr_outputs - 1; i >= 0 ; i--) {
clkout_name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
"%s_out%d", dev_name(&pdev->dev), i);
if (!clkout_name) {
ret = -ENOMEM;
goto err_rm_int_clk;
}
if (is_versal) {
clk_wzrd->clkout[i] = clk_wzrd_ver_register_divider
(&pdev->dev,
clkout_name, clk_name, 0,
clk_wzrd->base,
(WZRD_CLK_CFG_REG(is_versal, 3) + i * 8),
WZRD_CLKOUT_DIVIDE_SHIFT,
WZRD_CLKOUT_DIVIDE_WIDTH,
CLK_DIVIDER_ONE_BASED |
CLK_DIVIDER_ALLOW_ZERO,
DIV_O, &clkwzrd_lock);
} else {
if (!i)
clk_wzrd->clkout[i] = clk_wzrd_register_divf
(&pdev->dev, clkout_name, clk_name, flags, clk_wzrd->base,
(WZRD_CLK_CFG_REG(is_versal, 2) + i * 12),
WZRD_CLKOUT_DIVIDE_SHIFT,
WZRD_CLKOUT_DIVIDE_WIDTH,
CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
DIV_O, &clkwzrd_lock);
else
clk_wzrd->clkout[i] = clk_wzrd_register_divider
(&pdev->dev, clkout_name, clk_name, 0, clk_wzrd->base,
(WZRD_CLK_CFG_REG(is_versal, 2) + i * 12),
WZRD_CLKOUT_DIVIDE_SHIFT,
WZRD_CLKOUT_DIVIDE_WIDTH,
CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
DIV_O, &clkwzrd_lock);
}
if (IS_ERR(clk_wzrd->clkout[i])) {
int j;
for (j = i + 1; j < nr_outputs; j++)
clk_unregister(clk_wzrd->clkout[j]);
dev_err(&pdev->dev,
"unable to register divider clock\n");
ret = PTR_ERR(clk_wzrd->clkout[i]);
goto err_rm_int_clks;
}
}
out:
clk_wzrd->clk_data.clks = clk_wzrd->clkout;
clk_wzrd->clk_data.clk_num = ARRAY_SIZE(clk_wzrd->clkout);
of_clk_add_provider(np, of_clk_src_onecell_get, &clk_wzrd->clk_data);
if (clk_wzrd->speed_grade) {
clk_wzrd->nb.notifier_call = clk_wzrd_clk_notifier;
ret = clk_notifier_register(clk_wzrd->clk_in1,
&clk_wzrd->nb);
if (ret)
dev_warn(&pdev->dev,
"unable to register clock notifier\n");
ret = clk_notifier_register(clk_wzrd->axi_clk, &clk_wzrd->nb);
if (ret)
dev_warn(&pdev->dev,
"unable to register clock notifier\n");
}
return 0;
err_rm_int_clks:
clk_unregister(clk_wzrd->clks_internal[1]);
err_rm_int_clk:
clk_unregister(clk_wzrd->clks_internal[0]);
err_disable_clk:
clk_disable_unprepare(clk_wzrd->axi_clk);
return ret;
}
static void clk_wzrd_remove(struct platform_device *pdev)
{
int i;
struct clk_wzrd *clk_wzrd = platform_get_drvdata(pdev);
of_clk_del_provider(pdev->dev.of_node);
for (i = 0; i < WZRD_NUM_OUTPUTS; i++)
clk_unregister(clk_wzrd->clkout[i]);
for (i = 0; i < wzrd_clk_int_max; i++)
clk_unregister(clk_wzrd->clks_internal[i]);
if (clk_wzrd->speed_grade) {
clk_notifier_unregister(clk_wzrd->axi_clk, &clk_wzrd->nb);
clk_notifier_unregister(clk_wzrd->clk_in1, &clk_wzrd->nb);
}
clk_disable_unprepare(clk_wzrd->axi_clk);
}
static const struct of_device_id clk_wzrd_ids[] = {
{ .compatible = "xlnx,versal-clk-wizard", .data = &versal_data },
{ .compatible = "xlnx,clocking-wizard" },
{ .compatible = "xlnx,clocking-wizard-v5.2" },
{ .compatible = "xlnx,clocking-wizard-v6.0" },
{ },
};
MODULE_DEVICE_TABLE(of, clk_wzrd_ids);
static struct platform_driver clk_wzrd_driver = {
.driver = {
.name = "clk-wizard",
.of_match_table = clk_wzrd_ids,
.pm = &clk_wzrd_dev_pm_ops,
},
.probe = clk_wzrd_probe,
.remove_new = clk_wzrd_remove,
};
module_platform_driver(clk_wzrd_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Soeren Brinkmann <soren.brinkmann@xilinx.com");
MODULE_DESCRIPTION("Driver for the Xilinx Clocking Wizard IP core");