3320 lines
86 KiB
C
3320 lines
86 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
|
||
|
/*
|
||
|
* Local APIC virtualization
|
||
|
*
|
||
|
* Copyright (C) 2006 Qumranet, Inc.
|
||
|
* Copyright (C) 2007 Novell
|
||
|
* Copyright (C) 2007 Intel
|
||
|
* Copyright 2009 Red Hat, Inc. and/or its affiliates.
|
||
|
*
|
||
|
* Authors:
|
||
|
* Dor Laor <dor.laor@qumranet.com>
|
||
|
* Gregory Haskins <ghaskins@novell.com>
|
||
|
* Yaozu (Eddie) Dong <eddie.dong@intel.com>
|
||
|
*
|
||
|
* Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
|
||
|
*/
|
||
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
||
|
|
||
|
#include <linux/kvm_host.h>
|
||
|
#include <linux/kvm.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/highmem.h>
|
||
|
#include <linux/smp.h>
|
||
|
#include <linux/hrtimer.h>
|
||
|
#include <linux/io.h>
|
||
|
#include <linux/export.h>
|
||
|
#include <linux/math64.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <asm/processor.h>
|
||
|
#include <asm/mce.h>
|
||
|
#include <asm/msr.h>
|
||
|
#include <asm/page.h>
|
||
|
#include <asm/current.h>
|
||
|
#include <asm/apicdef.h>
|
||
|
#include <asm/delay.h>
|
||
|
#include <linux/atomic.h>
|
||
|
#include <linux/jump_label.h>
|
||
|
#include "kvm_cache_regs.h"
|
||
|
#include "irq.h"
|
||
|
#include "ioapic.h"
|
||
|
#include "trace.h"
|
||
|
#include "x86.h"
|
||
|
#include "xen.h"
|
||
|
#include "cpuid.h"
|
||
|
#include "hyperv.h"
|
||
|
#include "smm.h"
|
||
|
|
||
|
#ifndef CONFIG_X86_64
|
||
|
#define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
|
||
|
#else
|
||
|
#define mod_64(x, y) ((x) % (y))
|
||
|
#endif
|
||
|
|
||
|
/* 14 is the version for Xeon and Pentium 8.4.8*/
|
||
|
#define APIC_VERSION 0x14UL
|
||
|
#define LAPIC_MMIO_LENGTH (1 << 12)
|
||
|
/* followed define is not in apicdef.h */
|
||
|
#define MAX_APIC_VECTOR 256
|
||
|
#define APIC_VECTORS_PER_REG 32
|
||
|
|
||
|
static bool lapic_timer_advance_dynamic __read_mostly;
|
||
|
#define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */
|
||
|
#define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */
|
||
|
#define LAPIC_TIMER_ADVANCE_NS_INIT 1000
|
||
|
#define LAPIC_TIMER_ADVANCE_NS_MAX 5000
|
||
|
/* step-by-step approximation to mitigate fluctuation */
|
||
|
#define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
|
||
|
static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data);
|
||
|
static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data);
|
||
|
|
||
|
static inline void __kvm_lapic_set_reg(char *regs, int reg_off, u32 val)
|
||
|
{
|
||
|
*((u32 *) (regs + reg_off)) = val;
|
||
|
}
|
||
|
|
||
|
static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val)
|
||
|
{
|
||
|
__kvm_lapic_set_reg(apic->regs, reg_off, val);
|
||
|
}
|
||
|
|
||
|
static __always_inline u64 __kvm_lapic_get_reg64(char *regs, int reg)
|
||
|
{
|
||
|
BUILD_BUG_ON(reg != APIC_ICR);
|
||
|
return *((u64 *) (regs + reg));
|
||
|
}
|
||
|
|
||
|
static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg)
|
||
|
{
|
||
|
return __kvm_lapic_get_reg64(apic->regs, reg);
|
||
|
}
|
||
|
|
||
|
static __always_inline void __kvm_lapic_set_reg64(char *regs, int reg, u64 val)
|
||
|
{
|
||
|
BUILD_BUG_ON(reg != APIC_ICR);
|
||
|
*((u64 *) (regs + reg)) = val;
|
||
|
}
|
||
|
|
||
|
static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic,
|
||
|
int reg, u64 val)
|
||
|
{
|
||
|
__kvm_lapic_set_reg64(apic->regs, reg, val);
|
||
|
}
|
||
|
|
||
|
static inline int apic_test_vector(int vec, void *bitmap)
|
||
|
{
|
||
|
return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
|
||
|
}
|
||
|
|
||
|
bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
|
||
|
{
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
|
||
|
return apic_test_vector(vector, apic->regs + APIC_ISR) ||
|
||
|
apic_test_vector(vector, apic->regs + APIC_IRR);
|
||
|
}
|
||
|
|
||
|
static inline int __apic_test_and_set_vector(int vec, void *bitmap)
|
||
|
{
|
||
|
return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
|
||
|
}
|
||
|
|
||
|
static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
|
||
|
{
|
||
|
return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
|
||
|
}
|
||
|
|
||
|
__read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ);
|
||
|
__read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ);
|
||
|
|
||
|
static inline int apic_enabled(struct kvm_lapic *apic)
|
||
|
{
|
||
|
return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic);
|
||
|
}
|
||
|
|
||
|
#define LVT_MASK \
|
||
|
(APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
|
||
|
|
||
|
#define LINT_MASK \
|
||
|
(LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
|
||
|
APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
|
||
|
|
||
|
static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
|
||
|
{
|
||
|
return apic->vcpu->vcpu_id;
|
||
|
}
|
||
|
|
||
|
static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) &&
|
||
|
(kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm));
|
||
|
}
|
||
|
|
||
|
bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
return kvm_x86_ops.set_hv_timer
|
||
|
&& !(kvm_mwait_in_guest(vcpu->kvm) ||
|
||
|
kvm_can_post_timer_interrupt(vcpu));
|
||
|
}
|
||
|
|
||
|
static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE;
|
||
|
}
|
||
|
|
||
|
static inline u32 kvm_apic_calc_x2apic_ldr(u32 id)
|
||
|
{
|
||
|
return ((id >> 4) << 16) | (1 << (id & 0xf));
|
||
|
}
|
||
|
|
||
|
static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
|
||
|
u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
|
||
|
switch (map->logical_mode) {
|
||
|
case KVM_APIC_MODE_SW_DISABLED:
|
||
|
/* Arbitrarily use the flat map so that @cluster isn't NULL. */
|
||
|
*cluster = map->xapic_flat_map;
|
||
|
*mask = 0;
|
||
|
return true;
|
||
|
case KVM_APIC_MODE_X2APIC: {
|
||
|
u32 offset = (dest_id >> 16) * 16;
|
||
|
u32 max_apic_id = map->max_apic_id;
|
||
|
|
||
|
if (offset <= max_apic_id) {
|
||
|
u8 cluster_size = min(max_apic_id - offset + 1, 16U);
|
||
|
|
||
|
offset = array_index_nospec(offset, map->max_apic_id + 1);
|
||
|
*cluster = &map->phys_map[offset];
|
||
|
*mask = dest_id & (0xffff >> (16 - cluster_size));
|
||
|
} else {
|
||
|
*mask = 0;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
case KVM_APIC_MODE_XAPIC_FLAT:
|
||
|
*cluster = map->xapic_flat_map;
|
||
|
*mask = dest_id & 0xff;
|
||
|
return true;
|
||
|
case KVM_APIC_MODE_XAPIC_CLUSTER:
|
||
|
*cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
|
||
|
*mask = dest_id & 0xf;
|
||
|
return true;
|
||
|
case KVM_APIC_MODE_MAP_DISABLED:
|
||
|
return false;
|
||
|
default:
|
||
|
WARN_ON_ONCE(1);
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void kvm_apic_map_free(struct rcu_head *rcu)
|
||
|
{
|
||
|
struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu);
|
||
|
|
||
|
kvfree(map);
|
||
|
}
|
||
|
|
||
|
static int kvm_recalculate_phys_map(struct kvm_apic_map *new,
|
||
|
struct kvm_vcpu *vcpu,
|
||
|
bool *xapic_id_mismatch)
|
||
|
{
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
u32 x2apic_id = kvm_x2apic_id(apic);
|
||
|
u32 xapic_id = kvm_xapic_id(apic);
|
||
|
u32 physical_id;
|
||
|
|
||
|
/*
|
||
|
* For simplicity, KVM always allocates enough space for all possible
|
||
|
* xAPIC IDs. Yell, but don't kill the VM, as KVM can continue on
|
||
|
* without the optimized map.
|
||
|
*/
|
||
|
if (WARN_ON_ONCE(xapic_id > new->max_apic_id))
|
||
|
return -EINVAL;
|
||
|
|
||
|
/*
|
||
|
* Bail if a vCPU was added and/or enabled its APIC between allocating
|
||
|
* the map and doing the actual calculations for the map. Note, KVM
|
||
|
* hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if
|
||
|
* the compiler decides to reload x2apic_id after this check.
|
||
|
*/
|
||
|
if (x2apic_id > new->max_apic_id)
|
||
|
return -E2BIG;
|
||
|
|
||
|
/*
|
||
|
* Deliberately truncate the vCPU ID when detecting a mismatched APIC
|
||
|
* ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a
|
||
|
* 32-bit value. Any unwanted aliasing due to truncation results will
|
||
|
* be detected below.
|
||
|
*/
|
||
|
if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id)
|
||
|
*xapic_id_mismatch = true;
|
||
|
|
||
|
/*
|
||
|
* Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs.
|
||
|
* Allow sending events to vCPUs by their x2APIC ID even if the target
|
||
|
* vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs
|
||
|
* (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap
|
||
|
* and collide).
|
||
|
*
|
||
|
* Honor the architectural (and KVM's non-optimized) behavior if
|
||
|
* userspace has not enabled 32-bit x2APIC IDs. Each APIC is supposed
|
||
|
* to process messages independently. If multiple vCPUs have the same
|
||
|
* effective APIC ID, e.g. due to the x2APIC wrap or because the guest
|
||
|
* manually modified its xAPIC IDs, events targeting that ID are
|
||
|
* supposed to be recognized by all vCPUs with said ID.
|
||
|
*/
|
||
|
if (vcpu->kvm->arch.x2apic_format) {
|
||
|
/* See also kvm_apic_match_physical_addr(). */
|
||
|
if (apic_x2apic_mode(apic) || x2apic_id > 0xff)
|
||
|
new->phys_map[x2apic_id] = apic;
|
||
|
|
||
|
if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
|
||
|
new->phys_map[xapic_id] = apic;
|
||
|
} else {
|
||
|
/*
|
||
|
* Disable the optimized map if the physical APIC ID is already
|
||
|
* mapped, i.e. is aliased to multiple vCPUs. The optimized
|
||
|
* map requires a strict 1:1 mapping between IDs and vCPUs.
|
||
|
*/
|
||
|
if (apic_x2apic_mode(apic))
|
||
|
physical_id = x2apic_id;
|
||
|
else
|
||
|
physical_id = xapic_id;
|
||
|
|
||
|
if (new->phys_map[physical_id])
|
||
|
return -EINVAL;
|
||
|
|
||
|
new->phys_map[physical_id] = apic;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void kvm_recalculate_logical_map(struct kvm_apic_map *new,
|
||
|
struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
enum kvm_apic_logical_mode logical_mode;
|
||
|
struct kvm_lapic **cluster;
|
||
|
u16 mask;
|
||
|
u32 ldr;
|
||
|
|
||
|
if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
|
||
|
return;
|
||
|
|
||
|
if (!kvm_apic_sw_enabled(apic))
|
||
|
return;
|
||
|
|
||
|
ldr = kvm_lapic_get_reg(apic, APIC_LDR);
|
||
|
if (!ldr)
|
||
|
return;
|
||
|
|
||
|
if (apic_x2apic_mode(apic)) {
|
||
|
logical_mode = KVM_APIC_MODE_X2APIC;
|
||
|
} else {
|
||
|
ldr = GET_APIC_LOGICAL_ID(ldr);
|
||
|
if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
|
||
|
logical_mode = KVM_APIC_MODE_XAPIC_FLAT;
|
||
|
else
|
||
|
logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* To optimize logical mode delivery, all software-enabled APICs must
|
||
|
* be configured for the same mode.
|
||
|
*/
|
||
|
if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) {
|
||
|
new->logical_mode = logical_mode;
|
||
|
} else if (new->logical_mode != logical_mode) {
|
||
|
new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* In x2APIC mode, the LDR is read-only and derived directly from the
|
||
|
* x2APIC ID, thus is guaranteed to be addressable. KVM reuses
|
||
|
* kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by
|
||
|
* reversing the LDR calculation to get cluster of APICs, i.e. no
|
||
|
* additional work is required.
|
||
|
*/
|
||
|
if (apic_x2apic_mode(apic)) {
|
||
|
WARN_ON_ONCE(ldr != kvm_apic_calc_x2apic_ldr(kvm_x2apic_id(apic)));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr,
|
||
|
&cluster, &mask))) {
|
||
|
new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (!mask)
|
||
|
return;
|
||
|
|
||
|
ldr = ffs(mask) - 1;
|
||
|
if (!is_power_of_2(mask) || cluster[ldr])
|
||
|
new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
|
||
|
else
|
||
|
cluster[ldr] = apic;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock.
|
||
|
*
|
||
|
* DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with
|
||
|
* apic_map_lock_held.
|
||
|
*/
|
||
|
enum {
|
||
|
CLEAN,
|
||
|
UPDATE_IN_PROGRESS,
|
||
|
DIRTY
|
||
|
};
|
||
|
|
||
|
void kvm_recalculate_apic_map(struct kvm *kvm)
|
||
|
{
|
||
|
struct kvm_apic_map *new, *old = NULL;
|
||
|
struct kvm_vcpu *vcpu;
|
||
|
unsigned long i;
|
||
|
u32 max_id = 255; /* enough space for any xAPIC ID */
|
||
|
bool xapic_id_mismatch;
|
||
|
int r;
|
||
|
|
||
|
/* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */
|
||
|
if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN)
|
||
|
return;
|
||
|
|
||
|
WARN_ONCE(!irqchip_in_kernel(kvm),
|
||
|
"Dirty APIC map without an in-kernel local APIC");
|
||
|
|
||
|
mutex_lock(&kvm->arch.apic_map_lock);
|
||
|
|
||
|
retry:
|
||
|
/*
|
||
|
* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map (if clean)
|
||
|
* or the APIC registers (if dirty). Note, on retry the map may have
|
||
|
* not yet been marked dirty by whatever task changed a vCPU's x2APIC
|
||
|
* ID, i.e. the map may still show up as in-progress. In that case
|
||
|
* this task still needs to retry and complete its calculation.
|
||
|
*/
|
||
|
if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty,
|
||
|
DIRTY, UPDATE_IN_PROGRESS) == CLEAN) {
|
||
|
/* Someone else has updated the map. */
|
||
|
mutex_unlock(&kvm->arch.apic_map_lock);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Reset the mismatch flag between attempts so that KVM does the right
|
||
|
* thing if a vCPU changes its xAPIC ID, but do NOT reset max_id, i.e.
|
||
|
* keep max_id strictly increasing. Disallowing max_id from shrinking
|
||
|
* ensures KVM won't get stuck in an infinite loop, e.g. if the vCPU
|
||
|
* with the highest x2APIC ID is toggling its APIC on and off.
|
||
|
*/
|
||
|
xapic_id_mismatch = false;
|
||
|
|
||
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
||
|
if (kvm_apic_present(vcpu))
|
||
|
max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
|
||
|
|
||
|
new = kvzalloc(sizeof(struct kvm_apic_map) +
|
||
|
sizeof(struct kvm_lapic *) * ((u64)max_id + 1),
|
||
|
GFP_KERNEL_ACCOUNT);
|
||
|
|
||
|
if (!new)
|
||
|
goto out;
|
||
|
|
||
|
new->max_apic_id = max_id;
|
||
|
new->logical_mode = KVM_APIC_MODE_SW_DISABLED;
|
||
|
|
||
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
||
|
if (!kvm_apic_present(vcpu))
|
||
|
continue;
|
||
|
|
||
|
r = kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch);
|
||
|
if (r) {
|
||
|
kvfree(new);
|
||
|
new = NULL;
|
||
|
if (r == -E2BIG) {
|
||
|
cond_resched();
|
||
|
goto retry;
|
||
|
}
|
||
|
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
kvm_recalculate_logical_map(new, vcpu);
|
||
|
}
|
||
|
out:
|
||
|
/*
|
||
|
* The optimized map is effectively KVM's internal version of APICv,
|
||
|
* and all unwanted aliasing that results in disabling the optimized
|
||
|
* map also applies to APICv.
|
||
|
*/
|
||
|
if (!new)
|
||
|
kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
|
||
|
else
|
||
|
kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
|
||
|
|
||
|
if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
|
||
|
kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
|
||
|
else
|
||
|
kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
|
||
|
|
||
|
if (xapic_id_mismatch)
|
||
|
kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
|
||
|
else
|
||
|
kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
|
||
|
|
||
|
old = rcu_dereference_protected(kvm->arch.apic_map,
|
||
|
lockdep_is_held(&kvm->arch.apic_map_lock));
|
||
|
rcu_assign_pointer(kvm->arch.apic_map, new);
|
||
|
/*
|
||
|
* Write kvm->arch.apic_map before clearing apic->apic_map_dirty.
|
||
|
* If another update has come in, leave it DIRTY.
|
||
|
*/
|
||
|
atomic_cmpxchg_release(&kvm->arch.apic_map_dirty,
|
||
|
UPDATE_IN_PROGRESS, CLEAN);
|
||
|
mutex_unlock(&kvm->arch.apic_map_lock);
|
||
|
|
||
|
if (old)
|
||
|
call_rcu(&old->rcu, kvm_apic_map_free);
|
||
|
|
||
|
kvm_make_scan_ioapic_request(kvm);
|
||
|
}
|
||
|
|
||
|
static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
|
||
|
{
|
||
|
bool enabled = val & APIC_SPIV_APIC_ENABLED;
|
||
|
|
||
|
kvm_lapic_set_reg(apic, APIC_SPIV, val);
|
||
|
|
||
|
if (enabled != apic->sw_enabled) {
|
||
|
apic->sw_enabled = enabled;
|
||
|
if (enabled)
|
||
|
static_branch_slow_dec_deferred(&apic_sw_disabled);
|
||
|
else
|
||
|
static_branch_inc(&apic_sw_disabled.key);
|
||
|
|
||
|
atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
|
||
|
}
|
||
|
|
||
|
/* Check if there are APF page ready requests pending */
|
||
|
if (enabled) {
|
||
|
kvm_make_request(KVM_REQ_APF_READY, apic->vcpu);
|
||
|
kvm_xen_sw_enable_lapic(apic->vcpu);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
|
||
|
{
|
||
|
kvm_lapic_set_reg(apic, APIC_ID, id << 24);
|
||
|
atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
|
||
|
}
|
||
|
|
||
|
static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
|
||
|
{
|
||
|
kvm_lapic_set_reg(apic, APIC_LDR, id);
|
||
|
atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
|
||
|
}
|
||
|
|
||
|
static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val)
|
||
|
{
|
||
|
kvm_lapic_set_reg(apic, APIC_DFR, val);
|
||
|
atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
|
||
|
}
|
||
|
|
||
|
static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
|
||
|
{
|
||
|
u32 ldr = kvm_apic_calc_x2apic_ldr(id);
|
||
|
|
||
|
WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
|
||
|
|
||
|
kvm_lapic_set_reg(apic, APIC_ID, id);
|
||
|
kvm_lapic_set_reg(apic, APIC_LDR, ldr);
|
||
|
atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
|
||
|
}
|
||
|
|
||
|
static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
|
||
|
{
|
||
|
return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
|
||
|
}
|
||
|
|
||
|
static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
|
||
|
{
|
||
|
return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
|
||
|
}
|
||
|
|
||
|
static inline int apic_lvtt_period(struct kvm_lapic *apic)
|
||
|
{
|
||
|
return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
|
||
|
}
|
||
|
|
||
|
static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
|
||
|
{
|
||
|
return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
|
||
|
}
|
||
|
|
||
|
static inline int apic_lvt_nmi_mode(u32 lvt_val)
|
||
|
{
|
||
|
return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
|
||
|
}
|
||
|
|
||
|
static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index)
|
||
|
{
|
||
|
return apic->nr_lvt_entries > lvt_index;
|
||
|
}
|
||
|
|
||
|
static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P);
|
||
|
}
|
||
|
|
||
|
void kvm_apic_set_version(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
u32 v = 0;
|
||
|
|
||
|
if (!lapic_in_kernel(vcpu))
|
||
|
return;
|
||
|
|
||
|
v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16);
|
||
|
|
||
|
/*
|
||
|
* KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
|
||
|
* which doesn't have EOI register; Some buggy OSes (e.g. Windows with
|
||
|
* Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
|
||
|
* version first and level-triggered interrupts never get EOIed in
|
||
|
* IOAPIC.
|
||
|
*/
|
||
|
if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) &&
|
||
|
!ioapic_in_kernel(vcpu->kvm))
|
||
|
v |= APIC_LVR_DIRECTED_EOI;
|
||
|
kvm_lapic_set_reg(apic, APIC_LVR, v);
|
||
|
}
|
||
|
|
||
|
void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
int i;
|
||
|
|
||
|
if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries)
|
||
|
return;
|
||
|
|
||
|
/* Initialize/mask any "new" LVT entries. */
|
||
|
for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++)
|
||
|
kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
|
||
|
|
||
|
apic->nr_lvt_entries = nr_lvt_entries;
|
||
|
|
||
|
/* The number of LVT entries is reflected in the version register. */
|
||
|
kvm_apic_set_version(vcpu);
|
||
|
}
|
||
|
|
||
|
static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = {
|
||
|
[LVT_TIMER] = LVT_MASK, /* timer mode mask added at runtime */
|
||
|
[LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK,
|
||
|
[LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK,
|
||
|
[LVT_LINT0] = LINT_MASK,
|
||
|
[LVT_LINT1] = LINT_MASK,
|
||
|
[LVT_ERROR] = LVT_MASK,
|
||
|
[LVT_CMCI] = LVT_MASK | APIC_MODE_MASK
|
||
|
};
|
||
|
|
||
|
static int find_highest_vector(void *bitmap)
|
||
|
{
|
||
|
int vec;
|
||
|
u32 *reg;
|
||
|
|
||
|
for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
|
||
|
vec >= 0; vec -= APIC_VECTORS_PER_REG) {
|
||
|
reg = bitmap + REG_POS(vec);
|
||
|
if (*reg)
|
||
|
return __fls(*reg) + vec;
|
||
|
}
|
||
|
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
static u8 count_vectors(void *bitmap)
|
||
|
{
|
||
|
int vec;
|
||
|
u32 *reg;
|
||
|
u8 count = 0;
|
||
|
|
||
|
for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
|
||
|
reg = bitmap + REG_POS(vec);
|
||
|
count += hweight32(*reg);
|
||
|
}
|
||
|
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr)
|
||
|
{
|
||
|
u32 i, vec;
|
||
|
u32 pir_val, irr_val, prev_irr_val;
|
||
|
int max_updated_irr;
|
||
|
|
||
|
max_updated_irr = -1;
|
||
|
*max_irr = -1;
|
||
|
|
||
|
for (i = vec = 0; i <= 7; i++, vec += 32) {
|
||
|
u32 *p_irr = (u32 *)(regs + APIC_IRR + i * 0x10);
|
||
|
|
||
|
irr_val = *p_irr;
|
||
|
pir_val = READ_ONCE(pir[i]);
|
||
|
|
||
|
if (pir_val) {
|
||
|
pir_val = xchg(&pir[i], 0);
|
||
|
|
||
|
prev_irr_val = irr_val;
|
||
|
do {
|
||
|
irr_val = prev_irr_val | pir_val;
|
||
|
} while (prev_irr_val != irr_val &&
|
||
|
!try_cmpxchg(p_irr, &prev_irr_val, irr_val));
|
||
|
|
||
|
if (prev_irr_val != irr_val)
|
||
|
max_updated_irr = __fls(irr_val ^ prev_irr_val) + vec;
|
||
|
}
|
||
|
if (irr_val)
|
||
|
*max_irr = __fls(irr_val) + vec;
|
||
|
}
|
||
|
|
||
|
return ((max_updated_irr != -1) &&
|
||
|
(max_updated_irr == *max_irr));
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
|
||
|
|
||
|
bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr)
|
||
|
{
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
bool irr_updated = __kvm_apic_update_irr(pir, apic->regs, max_irr);
|
||
|
|
||
|
if (unlikely(!apic->apicv_active && irr_updated))
|
||
|
apic->irr_pending = true;
|
||
|
return irr_updated;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
|
||
|
|
||
|
static inline int apic_search_irr(struct kvm_lapic *apic)
|
||
|
{
|
||
|
return find_highest_vector(apic->regs + APIC_IRR);
|
||
|
}
|
||
|
|
||
|
static inline int apic_find_highest_irr(struct kvm_lapic *apic)
|
||
|
{
|
||
|
int result;
|
||
|
|
||
|
/*
|
||
|
* Note that irr_pending is just a hint. It will be always
|
||
|
* true with virtual interrupt delivery enabled.
|
||
|
*/
|
||
|
if (!apic->irr_pending)
|
||
|
return -1;
|
||
|
|
||
|
result = apic_search_irr(apic);
|
||
|
ASSERT(result == -1 || result >= 16);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
|
||
|
{
|
||
|
if (unlikely(apic->apicv_active)) {
|
||
|
/* need to update RVI */
|
||
|
kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
|
||
|
static_call_cond(kvm_x86_hwapic_irr_update)(apic->vcpu,
|
||
|
apic_find_highest_irr(apic));
|
||
|
} else {
|
||
|
apic->irr_pending = false;
|
||
|
kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
|
||
|
if (apic_search_irr(apic) != -1)
|
||
|
apic->irr_pending = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec)
|
||
|
{
|
||
|
apic_clear_irr(vec, vcpu->arch.apic);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_apic_clear_irr);
|
||
|
|
||
|
static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
|
||
|
{
|
||
|
if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* With APIC virtualization enabled, all caching is disabled
|
||
|
* because the processor can modify ISR under the hood. Instead
|
||
|
* just set SVI.
|
||
|
*/
|
||
|
if (unlikely(apic->apicv_active))
|
||
|
static_call_cond(kvm_x86_hwapic_isr_update)(vec);
|
||
|
else {
|
||
|
++apic->isr_count;
|
||
|
BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
|
||
|
/*
|
||
|
* ISR (in service register) bit is set when injecting an interrupt.
|
||
|
* The highest vector is injected. Thus the latest bit set matches
|
||
|
* the highest bit in ISR.
|
||
|
*/
|
||
|
apic->highest_isr_cache = vec;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline int apic_find_highest_isr(struct kvm_lapic *apic)
|
||
|
{
|
||
|
int result;
|
||
|
|
||
|
/*
|
||
|
* Note that isr_count is always 1, and highest_isr_cache
|
||
|
* is always -1, with APIC virtualization enabled.
|
||
|
*/
|
||
|
if (!apic->isr_count)
|
||
|
return -1;
|
||
|
if (likely(apic->highest_isr_cache != -1))
|
||
|
return apic->highest_isr_cache;
|
||
|
|
||
|
result = find_highest_vector(apic->regs + APIC_ISR);
|
||
|
ASSERT(result == -1 || result >= 16);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
|
||
|
{
|
||
|
if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* We do get here for APIC virtualization enabled if the guest
|
||
|
* uses the Hyper-V APIC enlightenment. In this case we may need
|
||
|
* to trigger a new interrupt delivery by writing the SVI field;
|
||
|
* on the other hand isr_count and highest_isr_cache are unused
|
||
|
* and must be left alone.
|
||
|
*/
|
||
|
if (unlikely(apic->apicv_active))
|
||
|
static_call_cond(kvm_x86_hwapic_isr_update)(apic_find_highest_isr(apic));
|
||
|
else {
|
||
|
--apic->isr_count;
|
||
|
BUG_ON(apic->isr_count < 0);
|
||
|
apic->highest_isr_cache = -1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
/* This may race with setting of irr in __apic_accept_irq() and
|
||
|
* value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
|
||
|
* will cause vmexit immediately and the value will be recalculated
|
||
|
* on the next vmentry.
|
||
|
*/
|
||
|
return apic_find_highest_irr(vcpu->arch.apic);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
|
||
|
|
||
|
static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
|
||
|
int vector, int level, int trig_mode,
|
||
|
struct dest_map *dest_map);
|
||
|
|
||
|
int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
|
||
|
struct dest_map *dest_map)
|
||
|
{
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
|
||
|
return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
|
||
|
irq->level, irq->trig_mode, dest_map);
|
||
|
}
|
||
|
|
||
|
static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map,
|
||
|
struct kvm_lapic_irq *irq, u32 min)
|
||
|
{
|
||
|
int i, count = 0;
|
||
|
struct kvm_vcpu *vcpu;
|
||
|
|
||
|
if (min > map->max_apic_id)
|
||
|
return 0;
|
||
|
|
||
|
for_each_set_bit(i, ipi_bitmap,
|
||
|
min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
|
||
|
if (map->phys_map[min + i]) {
|
||
|
vcpu = map->phys_map[min + i]->vcpu;
|
||
|
count += kvm_apic_set_irq(vcpu, irq, NULL);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
|
||
|
unsigned long ipi_bitmap_high, u32 min,
|
||
|
unsigned long icr, int op_64_bit)
|
||
|
{
|
||
|
struct kvm_apic_map *map;
|
||
|
struct kvm_lapic_irq irq = {0};
|
||
|
int cluster_size = op_64_bit ? 64 : 32;
|
||
|
int count;
|
||
|
|
||
|
if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK))
|
||
|
return -KVM_EINVAL;
|
||
|
|
||
|
irq.vector = icr & APIC_VECTOR_MASK;
|
||
|
irq.delivery_mode = icr & APIC_MODE_MASK;
|
||
|
irq.level = (icr & APIC_INT_ASSERT) != 0;
|
||
|
irq.trig_mode = icr & APIC_INT_LEVELTRIG;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
map = rcu_dereference(kvm->arch.apic_map);
|
||
|
|
||
|
count = -EOPNOTSUPP;
|
||
|
if (likely(map)) {
|
||
|
count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min);
|
||
|
min += cluster_size;
|
||
|
count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min);
|
||
|
}
|
||
|
|
||
|
rcu_read_unlock();
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
|
||
|
{
|
||
|
|
||
|
return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
|
||
|
sizeof(val));
|
||
|
}
|
||
|
|
||
|
static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
|
||
|
{
|
||
|
|
||
|
return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
|
||
|
sizeof(*val));
|
||
|
}
|
||
|
|
||
|
static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
|
||
|
}
|
||
|
|
||
|
static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0)
|
||
|
return;
|
||
|
|
||
|
__set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
|
||
|
}
|
||
|
|
||
|
static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
u8 val;
|
||
|
|
||
|
if (pv_eoi_get_user(vcpu, &val) < 0)
|
||
|
return false;
|
||
|
|
||
|
val &= KVM_PV_EOI_ENABLED;
|
||
|
|
||
|
if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0)
|
||
|
return false;
|
||
|
|
||
|
/*
|
||
|
* Clear pending bit in any case: it will be set again on vmentry.
|
||
|
* While this might not be ideal from performance point of view,
|
||
|
* this makes sure pv eoi is only enabled when we know it's safe.
|
||
|
*/
|
||
|
__clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
|
||
|
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
|
||
|
{
|
||
|
int highest_irr;
|
||
|
if (kvm_x86_ops.sync_pir_to_irr)
|
||
|
highest_irr = static_call(kvm_x86_sync_pir_to_irr)(apic->vcpu);
|
||
|
else
|
||
|
highest_irr = apic_find_highest_irr(apic);
|
||
|
if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
|
||
|
return -1;
|
||
|
return highest_irr;
|
||
|
}
|
||
|
|
||
|
static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
|
||
|
{
|
||
|
u32 tpr, isrv, ppr, old_ppr;
|
||
|
int isr;
|
||
|
|
||
|
old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
|
||
|
tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
|
||
|
isr = apic_find_highest_isr(apic);
|
||
|
isrv = (isr != -1) ? isr : 0;
|
||
|
|
||
|
if ((tpr & 0xf0) >= (isrv & 0xf0))
|
||
|
ppr = tpr & 0xff;
|
||
|
else
|
||
|
ppr = isrv & 0xf0;
|
||
|
|
||
|
*new_ppr = ppr;
|
||
|
if (old_ppr != ppr)
|
||
|
kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
|
||
|
|
||
|
return ppr < old_ppr;
|
||
|
}
|
||
|
|
||
|
static void apic_update_ppr(struct kvm_lapic *apic)
|
||
|
{
|
||
|
u32 ppr;
|
||
|
|
||
|
if (__apic_update_ppr(apic, &ppr) &&
|
||
|
apic_has_interrupt_for_ppr(apic, ppr) != -1)
|
||
|
kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
|
||
|
}
|
||
|
|
||
|
void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
apic_update_ppr(vcpu->arch.apic);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
|
||
|
|
||
|
static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
|
||
|
{
|
||
|
kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
|
||
|
apic_update_ppr(apic);
|
||
|
}
|
||
|
|
||
|
static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
|
||
|
{
|
||
|
return mda == (apic_x2apic_mode(apic) ?
|
||
|
X2APIC_BROADCAST : APIC_BROADCAST);
|
||
|
}
|
||
|
|
||
|
static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
|
||
|
{
|
||
|
if (kvm_apic_broadcast(apic, mda))
|
||
|
return true;
|
||
|
|
||
|
/*
|
||
|
* Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they
|
||
|
* were in x2APIC mode if the target APIC ID can't be encoded as an
|
||
|
* xAPIC ID. This allows unique addressing of hotplugged vCPUs (which
|
||
|
* start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC
|
||
|
* mode. Match the x2APIC ID if and only if the target APIC ID can't
|
||
|
* be encoded in xAPIC to avoid spurious matches against a vCPU that
|
||
|
* changed its (addressable) xAPIC ID (which is writable).
|
||
|
*/
|
||
|
if (apic_x2apic_mode(apic) || mda > 0xff)
|
||
|
return mda == kvm_x2apic_id(apic);
|
||
|
|
||
|
return mda == kvm_xapic_id(apic);
|
||
|
}
|
||
|
|
||
|
static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
|
||
|
{
|
||
|
u32 logical_id;
|
||
|
|
||
|
if (kvm_apic_broadcast(apic, mda))
|
||
|
return true;
|
||
|
|
||
|
logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
|
||
|
|
||
|
if (apic_x2apic_mode(apic))
|
||
|
return ((logical_id >> 16) == (mda >> 16))
|
||
|
&& (logical_id & mda & 0xffff) != 0;
|
||
|
|
||
|
logical_id = GET_APIC_LOGICAL_ID(logical_id);
|
||
|
|
||
|
switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
|
||
|
case APIC_DFR_FLAT:
|
||
|
return (logical_id & mda) != 0;
|
||
|
case APIC_DFR_CLUSTER:
|
||
|
return ((logical_id >> 4) == (mda >> 4))
|
||
|
&& (logical_id & mda & 0xf) != 0;
|
||
|
default:
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* The KVM local APIC implementation has two quirks:
|
||
|
*
|
||
|
* - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
|
||
|
* in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
|
||
|
* KVM doesn't do that aliasing.
|
||
|
*
|
||
|
* - in-kernel IOAPIC messages have to be delivered directly to
|
||
|
* x2APIC, because the kernel does not support interrupt remapping.
|
||
|
* In order to support broadcast without interrupt remapping, x2APIC
|
||
|
* rewrites the destination of non-IPI messages from APIC_BROADCAST
|
||
|
* to X2APIC_BROADCAST.
|
||
|
*
|
||
|
* The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is
|
||
|
* important when userspace wants to use x2APIC-format MSIs, because
|
||
|
* APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
|
||
|
*/
|
||
|
static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
|
||
|
struct kvm_lapic *source, struct kvm_lapic *target)
|
||
|
{
|
||
|
bool ipi = source != NULL;
|
||
|
|
||
|
if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
|
||
|
!ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
|
||
|
return X2APIC_BROADCAST;
|
||
|
|
||
|
return dest_id;
|
||
|
}
|
||
|
|
||
|
bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
|
||
|
int shorthand, unsigned int dest, int dest_mode)
|
||
|
{
|
||
|
struct kvm_lapic *target = vcpu->arch.apic;
|
||
|
u32 mda = kvm_apic_mda(vcpu, dest, source, target);
|
||
|
|
||
|
ASSERT(target);
|
||
|
switch (shorthand) {
|
||
|
case APIC_DEST_NOSHORT:
|
||
|
if (dest_mode == APIC_DEST_PHYSICAL)
|
||
|
return kvm_apic_match_physical_addr(target, mda);
|
||
|
else
|
||
|
return kvm_apic_match_logical_addr(target, mda);
|
||
|
case APIC_DEST_SELF:
|
||
|
return target == source;
|
||
|
case APIC_DEST_ALLINC:
|
||
|
return true;
|
||
|
case APIC_DEST_ALLBUT:
|
||
|
return target != source;
|
||
|
default:
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
|
||
|
|
||
|
int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
|
||
|
const unsigned long *bitmap, u32 bitmap_size)
|
||
|
{
|
||
|
u32 mod;
|
||
|
int i, idx = -1;
|
||
|
|
||
|
mod = vector % dest_vcpus;
|
||
|
|
||
|
for (i = 0; i <= mod; i++) {
|
||
|
idx = find_next_bit(bitmap, bitmap_size, idx + 1);
|
||
|
BUG_ON(idx == bitmap_size);
|
||
|
}
|
||
|
|
||
|
return idx;
|
||
|
}
|
||
|
|
||
|
static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
|
||
|
{
|
||
|
if (!kvm->arch.disabled_lapic_found) {
|
||
|
kvm->arch.disabled_lapic_found = true;
|
||
|
pr_info("Disabled LAPIC found during irq injection\n");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
|
||
|
struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
|
||
|
{
|
||
|
if (kvm->arch.x2apic_broadcast_quirk_disabled) {
|
||
|
if ((irq->dest_id == APIC_BROADCAST &&
|
||
|
map->logical_mode != KVM_APIC_MODE_X2APIC))
|
||
|
return true;
|
||
|
if (irq->dest_id == X2APIC_BROADCAST)
|
||
|
return true;
|
||
|
} else {
|
||
|
bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
|
||
|
if (irq->dest_id == (x2apic_ipi ?
|
||
|
X2APIC_BROADCAST : APIC_BROADCAST))
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/* Return true if the interrupt can be handled by using *bitmap as index mask
|
||
|
* for valid destinations in *dst array.
|
||
|
* Return false if kvm_apic_map_get_dest_lapic did nothing useful.
|
||
|
* Note: we may have zero kvm_lapic destinations when we return true, which
|
||
|
* means that the interrupt should be dropped. In this case, *bitmap would be
|
||
|
* zero and *dst undefined.
|
||
|
*/
|
||
|
static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
|
||
|
struct kvm_lapic **src, struct kvm_lapic_irq *irq,
|
||
|
struct kvm_apic_map *map, struct kvm_lapic ***dst,
|
||
|
unsigned long *bitmap)
|
||
|
{
|
||
|
int i, lowest;
|
||
|
|
||
|
if (irq->shorthand == APIC_DEST_SELF && src) {
|
||
|
*dst = src;
|
||
|
*bitmap = 1;
|
||
|
return true;
|
||
|
} else if (irq->shorthand)
|
||
|
return false;
|
||
|
|
||
|
if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
|
||
|
return false;
|
||
|
|
||
|
if (irq->dest_mode == APIC_DEST_PHYSICAL) {
|
||
|
if (irq->dest_id > map->max_apic_id) {
|
||
|
*bitmap = 0;
|
||
|
} else {
|
||
|
u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1);
|
||
|
*dst = &map->phys_map[dest_id];
|
||
|
*bitmap = 1;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
*bitmap = 0;
|
||
|
if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
|
||
|
(u16 *)bitmap))
|
||
|
return false;
|
||
|
|
||
|
if (!kvm_lowest_prio_delivery(irq))
|
||
|
return true;
|
||
|
|
||
|
if (!kvm_vector_hashing_enabled()) {
|
||
|
lowest = -1;
|
||
|
for_each_set_bit(i, bitmap, 16) {
|
||
|
if (!(*dst)[i])
|
||
|
continue;
|
||
|
if (lowest < 0)
|
||
|
lowest = i;
|
||
|
else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
|
||
|
(*dst)[lowest]->vcpu) < 0)
|
||
|
lowest = i;
|
||
|
}
|
||
|
} else {
|
||
|
if (!*bitmap)
|
||
|
return true;
|
||
|
|
||
|
lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
|
||
|
bitmap, 16);
|
||
|
|
||
|
if (!(*dst)[lowest]) {
|
||
|
kvm_apic_disabled_lapic_found(kvm);
|
||
|
*bitmap = 0;
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
*bitmap = (lowest >= 0) ? 1 << lowest : 0;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
|
||
|
struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
|
||
|
{
|
||
|
struct kvm_apic_map *map;
|
||
|
unsigned long bitmap;
|
||
|
struct kvm_lapic **dst = NULL;
|
||
|
int i;
|
||
|
bool ret;
|
||
|
|
||
|
*r = -1;
|
||
|
|
||
|
if (irq->shorthand == APIC_DEST_SELF) {
|
||
|
if (KVM_BUG_ON(!src, kvm)) {
|
||
|
*r = 0;
|
||
|
return true;
|
||
|
}
|
||
|
*r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
rcu_read_lock();
|
||
|
map = rcu_dereference(kvm->arch.apic_map);
|
||
|
|
||
|
ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
|
||
|
if (ret) {
|
||
|
*r = 0;
|
||
|
for_each_set_bit(i, &bitmap, 16) {
|
||
|
if (!dst[i])
|
||
|
continue;
|
||
|
*r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
rcu_read_unlock();
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This routine tries to handle interrupts in posted mode, here is how
|
||
|
* it deals with different cases:
|
||
|
* - For single-destination interrupts, handle it in posted mode
|
||
|
* - Else if vector hashing is enabled and it is a lowest-priority
|
||
|
* interrupt, handle it in posted mode and use the following mechanism
|
||
|
* to find the destination vCPU.
|
||
|
* 1. For lowest-priority interrupts, store all the possible
|
||
|
* destination vCPUs in an array.
|
||
|
* 2. Use "guest vector % max number of destination vCPUs" to find
|
||
|
* the right destination vCPU in the array for the lowest-priority
|
||
|
* interrupt.
|
||
|
* - Otherwise, use remapped mode to inject the interrupt.
|
||
|
*/
|
||
|
bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
|
||
|
struct kvm_vcpu **dest_vcpu)
|
||
|
{
|
||
|
struct kvm_apic_map *map;
|
||
|
unsigned long bitmap;
|
||
|
struct kvm_lapic **dst = NULL;
|
||
|
bool ret = false;
|
||
|
|
||
|
if (irq->shorthand)
|
||
|
return false;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
map = rcu_dereference(kvm->arch.apic_map);
|
||
|
|
||
|
if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
|
||
|
hweight16(bitmap) == 1) {
|
||
|
unsigned long i = find_first_bit(&bitmap, 16);
|
||
|
|
||
|
if (dst[i]) {
|
||
|
*dest_vcpu = dst[i]->vcpu;
|
||
|
ret = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
rcu_read_unlock();
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Add a pending IRQ into lapic.
|
||
|
* Return 1 if successfully added and 0 if discarded.
|
||
|
*/
|
||
|
static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
|
||
|
int vector, int level, int trig_mode,
|
||
|
struct dest_map *dest_map)
|
||
|
{
|
||
|
int result = 0;
|
||
|
struct kvm_vcpu *vcpu = apic->vcpu;
|
||
|
|
||
|
trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
|
||
|
trig_mode, vector);
|
||
|
switch (delivery_mode) {
|
||
|
case APIC_DM_LOWEST:
|
||
|
vcpu->arch.apic_arb_prio++;
|
||
|
fallthrough;
|
||
|
case APIC_DM_FIXED:
|
||
|
if (unlikely(trig_mode && !level))
|
||
|
break;
|
||
|
|
||
|
/* FIXME add logic for vcpu on reset */
|
||
|
if (unlikely(!apic_enabled(apic)))
|
||
|
break;
|
||
|
|
||
|
result = 1;
|
||
|
|
||
|
if (dest_map) {
|
||
|
__set_bit(vcpu->vcpu_id, dest_map->map);
|
||
|
dest_map->vectors[vcpu->vcpu_id] = vector;
|
||
|
}
|
||
|
|
||
|
if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
|
||
|
if (trig_mode)
|
||
|
kvm_lapic_set_vector(vector,
|
||
|
apic->regs + APIC_TMR);
|
||
|
else
|
||
|
kvm_lapic_clear_vector(vector,
|
||
|
apic->regs + APIC_TMR);
|
||
|
}
|
||
|
|
||
|
static_call(kvm_x86_deliver_interrupt)(apic, delivery_mode,
|
||
|
trig_mode, vector);
|
||
|
break;
|
||
|
|
||
|
case APIC_DM_REMRD:
|
||
|
result = 1;
|
||
|
vcpu->arch.pv.pv_unhalted = 1;
|
||
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
||
|
kvm_vcpu_kick(vcpu);
|
||
|
break;
|
||
|
|
||
|
case APIC_DM_SMI:
|
||
|
if (!kvm_inject_smi(vcpu)) {
|
||
|
kvm_vcpu_kick(vcpu);
|
||
|
result = 1;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case APIC_DM_NMI:
|
||
|
result = 1;
|
||
|
kvm_inject_nmi(vcpu);
|
||
|
kvm_vcpu_kick(vcpu);
|
||
|
break;
|
||
|
|
||
|
case APIC_DM_INIT:
|
||
|
if (!trig_mode || level) {
|
||
|
result = 1;
|
||
|
/* assumes that there are only KVM_APIC_INIT/SIPI */
|
||
|
apic->pending_events = (1UL << KVM_APIC_INIT);
|
||
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
||
|
kvm_vcpu_kick(vcpu);
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case APIC_DM_STARTUP:
|
||
|
result = 1;
|
||
|
apic->sipi_vector = vector;
|
||
|
/* make sure sipi_vector is visible for the receiver */
|
||
|
smp_wmb();
|
||
|
set_bit(KVM_APIC_SIPI, &apic->pending_events);
|
||
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
||
|
kvm_vcpu_kick(vcpu);
|
||
|
break;
|
||
|
|
||
|
case APIC_DM_EXTINT:
|
||
|
/*
|
||
|
* Should only be called by kvm_apic_local_deliver() with LVT0,
|
||
|
* before NMI watchdog was enabled. Already handled by
|
||
|
* kvm_apic_accept_pic_intr().
|
||
|
*/
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
|
||
|
delivery_mode);
|
||
|
break;
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This routine identifies the destination vcpus mask meant to receive the
|
||
|
* IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find
|
||
|
* out the destination vcpus array and set the bitmap or it traverses to
|
||
|
* each available vcpu to identify the same.
|
||
|
*/
|
||
|
void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq,
|
||
|
unsigned long *vcpu_bitmap)
|
||
|
{
|
||
|
struct kvm_lapic **dest_vcpu = NULL;
|
||
|
struct kvm_lapic *src = NULL;
|
||
|
struct kvm_apic_map *map;
|
||
|
struct kvm_vcpu *vcpu;
|
||
|
unsigned long bitmap, i;
|
||
|
int vcpu_idx;
|
||
|
bool ret;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
map = rcu_dereference(kvm->arch.apic_map);
|
||
|
|
||
|
ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu,
|
||
|
&bitmap);
|
||
|
if (ret) {
|
||
|
for_each_set_bit(i, &bitmap, 16) {
|
||
|
if (!dest_vcpu[i])
|
||
|
continue;
|
||
|
vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx;
|
||
|
__set_bit(vcpu_idx, vcpu_bitmap);
|
||
|
}
|
||
|
} else {
|
||
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
||
|
if (!kvm_apic_present(vcpu))
|
||
|
continue;
|
||
|
if (!kvm_apic_match_dest(vcpu, NULL,
|
||
|
irq->shorthand,
|
||
|
irq->dest_id,
|
||
|
irq->dest_mode))
|
||
|
continue;
|
||
|
__set_bit(i, vcpu_bitmap);
|
||
|
}
|
||
|
}
|
||
|
rcu_read_unlock();
|
||
|
}
|
||
|
|
||
|
int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
|
||
|
{
|
||
|
return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
|
||
|
}
|
||
|
|
||
|
static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
|
||
|
{
|
||
|
return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
|
||
|
}
|
||
|
|
||
|
static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
|
||
|
{
|
||
|
int trigger_mode;
|
||
|
|
||
|
/* Eoi the ioapic only if the ioapic doesn't own the vector. */
|
||
|
if (!kvm_ioapic_handles_vector(apic, vector))
|
||
|
return;
|
||
|
|
||
|
/* Request a KVM exit to inform the userspace IOAPIC. */
|
||
|
if (irqchip_split(apic->vcpu->kvm)) {
|
||
|
apic->vcpu->arch.pending_ioapic_eoi = vector;
|
||
|
kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (apic_test_vector(vector, apic->regs + APIC_TMR))
|
||
|
trigger_mode = IOAPIC_LEVEL_TRIG;
|
||
|
else
|
||
|
trigger_mode = IOAPIC_EDGE_TRIG;
|
||
|
|
||
|
kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
|
||
|
}
|
||
|
|
||
|
static int apic_set_eoi(struct kvm_lapic *apic)
|
||
|
{
|
||
|
int vector = apic_find_highest_isr(apic);
|
||
|
|
||
|
trace_kvm_eoi(apic, vector);
|
||
|
|
||
|
/*
|
||
|
* Not every write EOI will has corresponding ISR,
|
||
|
* one example is when Kernel check timer on setup_IO_APIC
|
||
|
*/
|
||
|
if (vector == -1)
|
||
|
return vector;
|
||
|
|
||
|
apic_clear_isr(vector, apic);
|
||
|
apic_update_ppr(apic);
|
||
|
|
||
|
if (kvm_hv_synic_has_vector(apic->vcpu, vector))
|
||
|
kvm_hv_synic_send_eoi(apic->vcpu, vector);
|
||
|
|
||
|
kvm_ioapic_send_eoi(apic, vector);
|
||
|
kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
|
||
|
return vector;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* this interface assumes a trap-like exit, which has already finished
|
||
|
* desired side effect including vISR and vPPR update.
|
||
|
*/
|
||
|
void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
|
||
|
{
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
|
||
|
trace_kvm_eoi(apic, vector);
|
||
|
|
||
|
kvm_ioapic_send_eoi(apic, vector);
|
||
|
kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
|
||
|
|
||
|
void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high)
|
||
|
{
|
||
|
struct kvm_lapic_irq irq;
|
||
|
|
||
|
/* KVM has no delay and should always clear the BUSY/PENDING flag. */
|
||
|
WARN_ON_ONCE(icr_low & APIC_ICR_BUSY);
|
||
|
|
||
|
irq.vector = icr_low & APIC_VECTOR_MASK;
|
||
|
irq.delivery_mode = icr_low & APIC_MODE_MASK;
|
||
|
irq.dest_mode = icr_low & APIC_DEST_MASK;
|
||
|
irq.level = (icr_low & APIC_INT_ASSERT) != 0;
|
||
|
irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
|
||
|
irq.shorthand = icr_low & APIC_SHORT_MASK;
|
||
|
irq.msi_redir_hint = false;
|
||
|
if (apic_x2apic_mode(apic))
|
||
|
irq.dest_id = icr_high;
|
||
|
else
|
||
|
irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high);
|
||
|
|
||
|
trace_kvm_apic_ipi(icr_low, irq.dest_id);
|
||
|
|
||
|
kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_apic_send_ipi);
|
||
|
|
||
|
static u32 apic_get_tmcct(struct kvm_lapic *apic)
|
||
|
{
|
||
|
ktime_t remaining, now;
|
||
|
s64 ns;
|
||
|
|
||
|
ASSERT(apic != NULL);
|
||
|
|
||
|
/* if initial count is 0, current count should also be 0 */
|
||
|
if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
|
||
|
apic->lapic_timer.period == 0)
|
||
|
return 0;
|
||
|
|
||
|
now = ktime_get();
|
||
|
remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
|
||
|
if (ktime_to_ns(remaining) < 0)
|
||
|
remaining = 0;
|
||
|
|
||
|
ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
|
||
|
return div64_u64(ns, (APIC_BUS_CYCLE_NS * apic->divide_count));
|
||
|
}
|
||
|
|
||
|
static void __report_tpr_access(struct kvm_lapic *apic, bool write)
|
||
|
{
|
||
|
struct kvm_vcpu *vcpu = apic->vcpu;
|
||
|
struct kvm_run *run = vcpu->run;
|
||
|
|
||
|
kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
|
||
|
run->tpr_access.rip = kvm_rip_read(vcpu);
|
||
|
run->tpr_access.is_write = write;
|
||
|
}
|
||
|
|
||
|
static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
|
||
|
{
|
||
|
if (apic->vcpu->arch.tpr_access_reporting)
|
||
|
__report_tpr_access(apic, write);
|
||
|
}
|
||
|
|
||
|
static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
|
||
|
{
|
||
|
u32 val = 0;
|
||
|
|
||
|
if (offset >= LAPIC_MMIO_LENGTH)
|
||
|
return 0;
|
||
|
|
||
|
switch (offset) {
|
||
|
case APIC_ARBPRI:
|
||
|
break;
|
||
|
|
||
|
case APIC_TMCCT: /* Timer CCR */
|
||
|
if (apic_lvtt_tscdeadline(apic))
|
||
|
return 0;
|
||
|
|
||
|
val = apic_get_tmcct(apic);
|
||
|
break;
|
||
|
case APIC_PROCPRI:
|
||
|
apic_update_ppr(apic);
|
||
|
val = kvm_lapic_get_reg(apic, offset);
|
||
|
break;
|
||
|
case APIC_TASKPRI:
|
||
|
report_tpr_access(apic, false);
|
||
|
fallthrough;
|
||
|
default:
|
||
|
val = kvm_lapic_get_reg(apic, offset);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
|
||
|
{
|
||
|
return container_of(dev, struct kvm_lapic, dev);
|
||
|
}
|
||
|
|
||
|
#define APIC_REG_MASK(reg) (1ull << ((reg) >> 4))
|
||
|
#define APIC_REGS_MASK(first, count) \
|
||
|
(APIC_REG_MASK(first) * ((1ull << (count)) - 1))
|
||
|
|
||
|
u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic)
|
||
|
{
|
||
|
/* Leave bits '0' for reserved and write-only registers. */
|
||
|
u64 valid_reg_mask =
|
||
|
APIC_REG_MASK(APIC_ID) |
|
||
|
APIC_REG_MASK(APIC_LVR) |
|
||
|
APIC_REG_MASK(APIC_TASKPRI) |
|
||
|
APIC_REG_MASK(APIC_PROCPRI) |
|
||
|
APIC_REG_MASK(APIC_LDR) |
|
||
|
APIC_REG_MASK(APIC_SPIV) |
|
||
|
APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) |
|
||
|
APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) |
|
||
|
APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) |
|
||
|
APIC_REG_MASK(APIC_ESR) |
|
||
|
APIC_REG_MASK(APIC_ICR) |
|
||
|
APIC_REG_MASK(APIC_LVTT) |
|
||
|
APIC_REG_MASK(APIC_LVTTHMR) |
|
||
|
APIC_REG_MASK(APIC_LVTPC) |
|
||
|
APIC_REG_MASK(APIC_LVT0) |
|
||
|
APIC_REG_MASK(APIC_LVT1) |
|
||
|
APIC_REG_MASK(APIC_LVTERR) |
|
||
|
APIC_REG_MASK(APIC_TMICT) |
|
||
|
APIC_REG_MASK(APIC_TMCCT) |
|
||
|
APIC_REG_MASK(APIC_TDCR);
|
||
|
|
||
|
if (kvm_lapic_lvt_supported(apic, LVT_CMCI))
|
||
|
valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI);
|
||
|
|
||
|
/* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */
|
||
|
if (!apic_x2apic_mode(apic))
|
||
|
valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) |
|
||
|
APIC_REG_MASK(APIC_DFR) |
|
||
|
APIC_REG_MASK(APIC_ICR2);
|
||
|
|
||
|
return valid_reg_mask;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask);
|
||
|
|
||
|
static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
|
||
|
void *data)
|
||
|
{
|
||
|
unsigned char alignment = offset & 0xf;
|
||
|
u32 result;
|
||
|
|
||
|
/*
|
||
|
* WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in
|
||
|
* x2APIC and needs to be manually handled by the caller.
|
||
|
*/
|
||
|
WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR);
|
||
|
|
||
|
if (alignment + len > 4)
|
||
|
return 1;
|
||
|
|
||
|
if (offset > 0x3f0 ||
|
||
|
!(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset)))
|
||
|
return 1;
|
||
|
|
||
|
result = __apic_read(apic, offset & ~0xf);
|
||
|
|
||
|
trace_kvm_apic_read(offset, result);
|
||
|
|
||
|
switch (len) {
|
||
|
case 1:
|
||
|
case 2:
|
||
|
case 4:
|
||
|
memcpy(data, (char *)&result + alignment, len);
|
||
|
break;
|
||
|
default:
|
||
|
printk(KERN_ERR "Local APIC read with len = %x, "
|
||
|
"should be 1,2, or 4 instead\n", len);
|
||
|
break;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
|
||
|
{
|
||
|
return addr >= apic->base_address &&
|
||
|
addr < apic->base_address + LAPIC_MMIO_LENGTH;
|
||
|
}
|
||
|
|
||
|
static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
|
||
|
gpa_t address, int len, void *data)
|
||
|
{
|
||
|
struct kvm_lapic *apic = to_lapic(this);
|
||
|
u32 offset = address - apic->base_address;
|
||
|
|
||
|
if (!apic_mmio_in_range(apic, address))
|
||
|
return -EOPNOTSUPP;
|
||
|
|
||
|
if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
|
||
|
if (!kvm_check_has_quirk(vcpu->kvm,
|
||
|
KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
|
||
|
return -EOPNOTSUPP;
|
||
|
|
||
|
memset(data, 0xff, len);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
kvm_lapic_reg_read(apic, offset, len, data);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void update_divide_count(struct kvm_lapic *apic)
|
||
|
{
|
||
|
u32 tmp1, tmp2, tdcr;
|
||
|
|
||
|
tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
|
||
|
tmp1 = tdcr & 0xf;
|
||
|
tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
|
||
|
apic->divide_count = 0x1 << (tmp2 & 0x7);
|
||
|
}
|
||
|
|
||
|
static void limit_periodic_timer_frequency(struct kvm_lapic *apic)
|
||
|
{
|
||
|
/*
|
||
|
* Do not allow the guest to program periodic timers with small
|
||
|
* interval, since the hrtimers are not throttled by the host
|
||
|
* scheduler.
|
||
|
*/
|
||
|
if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
|
||
|
s64 min_period = min_timer_period_us * 1000LL;
|
||
|
|
||
|
if (apic->lapic_timer.period < min_period) {
|
||
|
pr_info_ratelimited(
|
||
|
"vcpu %i: requested %lld ns "
|
||
|
"lapic timer period limited to %lld ns\n",
|
||
|
apic->vcpu->vcpu_id,
|
||
|
apic->lapic_timer.period, min_period);
|
||
|
apic->lapic_timer.period = min_period;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void cancel_hv_timer(struct kvm_lapic *apic);
|
||
|
|
||
|
static void cancel_apic_timer(struct kvm_lapic *apic)
|
||
|
{
|
||
|
hrtimer_cancel(&apic->lapic_timer.timer);
|
||
|
preempt_disable();
|
||
|
if (apic->lapic_timer.hv_timer_in_use)
|
||
|
cancel_hv_timer(apic);
|
||
|
preempt_enable();
|
||
|
atomic_set(&apic->lapic_timer.pending, 0);
|
||
|
}
|
||
|
|
||
|
static void apic_update_lvtt(struct kvm_lapic *apic)
|
||
|
{
|
||
|
u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
|
||
|
apic->lapic_timer.timer_mode_mask;
|
||
|
|
||
|
if (apic->lapic_timer.timer_mode != timer_mode) {
|
||
|
if (apic_lvtt_tscdeadline(apic) != (timer_mode ==
|
||
|
APIC_LVT_TIMER_TSCDEADLINE)) {
|
||
|
cancel_apic_timer(apic);
|
||
|
kvm_lapic_set_reg(apic, APIC_TMICT, 0);
|
||
|
apic->lapic_timer.period = 0;
|
||
|
apic->lapic_timer.tscdeadline = 0;
|
||
|
}
|
||
|
apic->lapic_timer.timer_mode = timer_mode;
|
||
|
limit_periodic_timer_frequency(apic);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* On APICv, this test will cause a busy wait
|
||
|
* during a higher-priority task.
|
||
|
*/
|
||
|
|
||
|
static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT);
|
||
|
|
||
|
if (kvm_apic_hw_enabled(apic)) {
|
||
|
int vec = reg & APIC_VECTOR_MASK;
|
||
|
void *bitmap = apic->regs + APIC_ISR;
|
||
|
|
||
|
if (apic->apicv_active)
|
||
|
bitmap = apic->regs + APIC_IRR;
|
||
|
|
||
|
if (apic_test_vector(vec, bitmap))
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles)
|
||
|
{
|
||
|
u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns;
|
||
|
|
||
|
/*
|
||
|
* If the guest TSC is running at a different ratio than the host, then
|
||
|
* convert the delay to nanoseconds to achieve an accurate delay. Note
|
||
|
* that __delay() uses delay_tsc whenever the hardware has TSC, thus
|
||
|
* always for VMX enabled hardware.
|
||
|
*/
|
||
|
if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) {
|
||
|
__delay(min(guest_cycles,
|
||
|
nsec_to_cycles(vcpu, timer_advance_ns)));
|
||
|
} else {
|
||
|
u64 delay_ns = guest_cycles * 1000000ULL;
|
||
|
do_div(delay_ns, vcpu->arch.virtual_tsc_khz);
|
||
|
ndelay(min_t(u32, delay_ns, timer_advance_ns));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu,
|
||
|
s64 advance_expire_delta)
|
||
|
{
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns;
|
||
|
u64 ns;
|
||
|
|
||
|
/* Do not adjust for tiny fluctuations or large random spikes. */
|
||
|
if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX ||
|
||
|
abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN)
|
||
|
return;
|
||
|
|
||
|
/* too early */
|
||
|
if (advance_expire_delta < 0) {
|
||
|
ns = -advance_expire_delta * 1000000ULL;
|
||
|
do_div(ns, vcpu->arch.virtual_tsc_khz);
|
||
|
timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
|
||
|
} else {
|
||
|
/* too late */
|
||
|
ns = advance_expire_delta * 1000000ULL;
|
||
|
do_div(ns, vcpu->arch.virtual_tsc_khz);
|
||
|
timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
|
||
|
}
|
||
|
|
||
|
if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX))
|
||
|
timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
|
||
|
apic->lapic_timer.timer_advance_ns = timer_advance_ns;
|
||
|
}
|
||
|
|
||
|
static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
u64 guest_tsc, tsc_deadline;
|
||
|
|
||
|
tsc_deadline = apic->lapic_timer.expired_tscdeadline;
|
||
|
apic->lapic_timer.expired_tscdeadline = 0;
|
||
|
guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
|
||
|
trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline);
|
||
|
|
||
|
if (lapic_timer_advance_dynamic) {
|
||
|
adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline);
|
||
|
/*
|
||
|
* If the timer fired early, reread the TSC to account for the
|
||
|
* overhead of the above adjustment to avoid waiting longer
|
||
|
* than is necessary.
|
||
|
*/
|
||
|
if (guest_tsc < tsc_deadline)
|
||
|
guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
|
||
|
}
|
||
|
|
||
|
if (guest_tsc < tsc_deadline)
|
||
|
__wait_lapic_expire(vcpu, tsc_deadline - guest_tsc);
|
||
|
}
|
||
|
|
||
|
void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
if (lapic_in_kernel(vcpu) &&
|
||
|
vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
|
||
|
vcpu->arch.apic->lapic_timer.timer_advance_ns &&
|
||
|
lapic_timer_int_injected(vcpu))
|
||
|
__kvm_wait_lapic_expire(vcpu);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire);
|
||
|
|
||
|
static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic)
|
||
|
{
|
||
|
struct kvm_timer *ktimer = &apic->lapic_timer;
|
||
|
|
||
|
kvm_apic_local_deliver(apic, APIC_LVTT);
|
||
|
if (apic_lvtt_tscdeadline(apic)) {
|
||
|
ktimer->tscdeadline = 0;
|
||
|
} else if (apic_lvtt_oneshot(apic)) {
|
||
|
ktimer->tscdeadline = 0;
|
||
|
ktimer->target_expiration = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn)
|
||
|
{
|
||
|
struct kvm_vcpu *vcpu = apic->vcpu;
|
||
|
struct kvm_timer *ktimer = &apic->lapic_timer;
|
||
|
|
||
|
if (atomic_read(&apic->lapic_timer.pending))
|
||
|
return;
|
||
|
|
||
|
if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use)
|
||
|
ktimer->expired_tscdeadline = ktimer->tscdeadline;
|
||
|
|
||
|
if (!from_timer_fn && apic->apicv_active) {
|
||
|
WARN_ON(kvm_get_running_vcpu() != vcpu);
|
||
|
kvm_apic_inject_pending_timer_irqs(apic);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (kvm_use_posted_timer_interrupt(apic->vcpu)) {
|
||
|
/*
|
||
|
* Ensure the guest's timer has truly expired before posting an
|
||
|
* interrupt. Open code the relevant checks to avoid querying
|
||
|
* lapic_timer_int_injected(), which will be false since the
|
||
|
* interrupt isn't yet injected. Waiting until after injecting
|
||
|
* is not an option since that won't help a posted interrupt.
|
||
|
*/
|
||
|
if (vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
|
||
|
vcpu->arch.apic->lapic_timer.timer_advance_ns)
|
||
|
__kvm_wait_lapic_expire(vcpu);
|
||
|
kvm_apic_inject_pending_timer_irqs(apic);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
atomic_inc(&apic->lapic_timer.pending);
|
||
|
kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
|
||
|
if (from_timer_fn)
|
||
|
kvm_vcpu_kick(vcpu);
|
||
|
}
|
||
|
|
||
|
static void start_sw_tscdeadline(struct kvm_lapic *apic)
|
||
|
{
|
||
|
struct kvm_timer *ktimer = &apic->lapic_timer;
|
||
|
u64 guest_tsc, tscdeadline = ktimer->tscdeadline;
|
||
|
u64 ns = 0;
|
||
|
ktime_t expire;
|
||
|
struct kvm_vcpu *vcpu = apic->vcpu;
|
||
|
unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz;
|
||
|
unsigned long flags;
|
||
|
ktime_t now;
|
||
|
|
||
|
if (unlikely(!tscdeadline || !this_tsc_khz))
|
||
|
return;
|
||
|
|
||
|
local_irq_save(flags);
|
||
|
|
||
|
now = ktime_get();
|
||
|
guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
|
||
|
|
||
|
ns = (tscdeadline - guest_tsc) * 1000000ULL;
|
||
|
do_div(ns, this_tsc_khz);
|
||
|
|
||
|
if (likely(tscdeadline > guest_tsc) &&
|
||
|
likely(ns > apic->lapic_timer.timer_advance_ns)) {
|
||
|
expire = ktime_add_ns(now, ns);
|
||
|
expire = ktime_sub_ns(expire, ktimer->timer_advance_ns);
|
||
|
hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD);
|
||
|
} else
|
||
|
apic_timer_expired(apic, false);
|
||
|
|
||
|
local_irq_restore(flags);
|
||
|
}
|
||
|
|
||
|
static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict)
|
||
|
{
|
||
|
return (u64)tmict * APIC_BUS_CYCLE_NS * (u64)apic->divide_count;
|
||
|
}
|
||
|
|
||
|
static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor)
|
||
|
{
|
||
|
ktime_t now, remaining;
|
||
|
u64 ns_remaining_old, ns_remaining_new;
|
||
|
|
||
|
apic->lapic_timer.period =
|
||
|
tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
|
||
|
limit_periodic_timer_frequency(apic);
|
||
|
|
||
|
now = ktime_get();
|
||
|
remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
|
||
|
if (ktime_to_ns(remaining) < 0)
|
||
|
remaining = 0;
|
||
|
|
||
|
ns_remaining_old = ktime_to_ns(remaining);
|
||
|
ns_remaining_new = mul_u64_u32_div(ns_remaining_old,
|
||
|
apic->divide_count, old_divisor);
|
||
|
|
||
|
apic->lapic_timer.tscdeadline +=
|
||
|
nsec_to_cycles(apic->vcpu, ns_remaining_new) -
|
||
|
nsec_to_cycles(apic->vcpu, ns_remaining_old);
|
||
|
apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new);
|
||
|
}
|
||
|
|
||
|
static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg)
|
||
|
{
|
||
|
ktime_t now;
|
||
|
u64 tscl = rdtsc();
|
||
|
s64 deadline;
|
||
|
|
||
|
now = ktime_get();
|
||
|
apic->lapic_timer.period =
|
||
|
tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
|
||
|
|
||
|
if (!apic->lapic_timer.period) {
|
||
|
apic->lapic_timer.tscdeadline = 0;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
limit_periodic_timer_frequency(apic);
|
||
|
deadline = apic->lapic_timer.period;
|
||
|
|
||
|
if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) {
|
||
|
if (unlikely(count_reg != APIC_TMICT)) {
|
||
|
deadline = tmict_to_ns(apic,
|
||
|
kvm_lapic_get_reg(apic, count_reg));
|
||
|
if (unlikely(deadline <= 0)) {
|
||
|
if (apic_lvtt_period(apic))
|
||
|
deadline = apic->lapic_timer.period;
|
||
|
else
|
||
|
deadline = 0;
|
||
|
}
|
||
|
else if (unlikely(deadline > apic->lapic_timer.period)) {
|
||
|
pr_info_ratelimited(
|
||
|
"vcpu %i: requested lapic timer restore with "
|
||
|
"starting count register %#x=%u (%lld ns) > initial count (%lld ns). "
|
||
|
"Using initial count to start timer.\n",
|
||
|
apic->vcpu->vcpu_id,
|
||
|
count_reg,
|
||
|
kvm_lapic_get_reg(apic, count_reg),
|
||
|
deadline, apic->lapic_timer.period);
|
||
|
kvm_lapic_set_reg(apic, count_reg, 0);
|
||
|
deadline = apic->lapic_timer.period;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
|
||
|
nsec_to_cycles(apic->vcpu, deadline);
|
||
|
apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline);
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static void advance_periodic_target_expiration(struct kvm_lapic *apic)
|
||
|
{
|
||
|
ktime_t now = ktime_get();
|
||
|
u64 tscl = rdtsc();
|
||
|
ktime_t delta;
|
||
|
|
||
|
/*
|
||
|
* Synchronize both deadlines to the same time source or
|
||
|
* differences in the periods (caused by differences in the
|
||
|
* underlying clocks or numerical approximation errors) will
|
||
|
* cause the two to drift apart over time as the errors
|
||
|
* accumulate.
|
||
|
*/
|
||
|
apic->lapic_timer.target_expiration =
|
||
|
ktime_add_ns(apic->lapic_timer.target_expiration,
|
||
|
apic->lapic_timer.period);
|
||
|
delta = ktime_sub(apic->lapic_timer.target_expiration, now);
|
||
|
apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
|
||
|
nsec_to_cycles(apic->vcpu, delta);
|
||
|
}
|
||
|
|
||
|
static void start_sw_period(struct kvm_lapic *apic)
|
||
|
{
|
||
|
if (!apic->lapic_timer.period)
|
||
|
return;
|
||
|
|
||
|
if (ktime_after(ktime_get(),
|
||
|
apic->lapic_timer.target_expiration)) {
|
||
|
apic_timer_expired(apic, false);
|
||
|
|
||
|
if (apic_lvtt_oneshot(apic))
|
||
|
return;
|
||
|
|
||
|
advance_periodic_target_expiration(apic);
|
||
|
}
|
||
|
|
||
|
hrtimer_start(&apic->lapic_timer.timer,
|
||
|
apic->lapic_timer.target_expiration,
|
||
|
HRTIMER_MODE_ABS_HARD);
|
||
|
}
|
||
|
|
||
|
bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
if (!lapic_in_kernel(vcpu))
|
||
|
return false;
|
||
|
|
||
|
return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
|
||
|
}
|
||
|
|
||
|
static void cancel_hv_timer(struct kvm_lapic *apic)
|
||
|
{
|
||
|
WARN_ON(preemptible());
|
||
|
WARN_ON(!apic->lapic_timer.hv_timer_in_use);
|
||
|
static_call(kvm_x86_cancel_hv_timer)(apic->vcpu);
|
||
|
apic->lapic_timer.hv_timer_in_use = false;
|
||
|
}
|
||
|
|
||
|
static bool start_hv_timer(struct kvm_lapic *apic)
|
||
|
{
|
||
|
struct kvm_timer *ktimer = &apic->lapic_timer;
|
||
|
struct kvm_vcpu *vcpu = apic->vcpu;
|
||
|
bool expired;
|
||
|
|
||
|
WARN_ON(preemptible());
|
||
|
if (!kvm_can_use_hv_timer(vcpu))
|
||
|
return false;
|
||
|
|
||
|
if (!ktimer->tscdeadline)
|
||
|
return false;
|
||
|
|
||
|
if (static_call(kvm_x86_set_hv_timer)(vcpu, ktimer->tscdeadline, &expired))
|
||
|
return false;
|
||
|
|
||
|
ktimer->hv_timer_in_use = true;
|
||
|
hrtimer_cancel(&ktimer->timer);
|
||
|
|
||
|
/*
|
||
|
* To simplify handling the periodic timer, leave the hv timer running
|
||
|
* even if the deadline timer has expired, i.e. rely on the resulting
|
||
|
* VM-Exit to recompute the periodic timer's target expiration.
|
||
|
*/
|
||
|
if (!apic_lvtt_period(apic)) {
|
||
|
/*
|
||
|
* Cancel the hv timer if the sw timer fired while the hv timer
|
||
|
* was being programmed, or if the hv timer itself expired.
|
||
|
*/
|
||
|
if (atomic_read(&ktimer->pending)) {
|
||
|
cancel_hv_timer(apic);
|
||
|
} else if (expired) {
|
||
|
apic_timer_expired(apic, false);
|
||
|
cancel_hv_timer(apic);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use);
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static void start_sw_timer(struct kvm_lapic *apic)
|
||
|
{
|
||
|
struct kvm_timer *ktimer = &apic->lapic_timer;
|
||
|
|
||
|
WARN_ON(preemptible());
|
||
|
if (apic->lapic_timer.hv_timer_in_use)
|
||
|
cancel_hv_timer(apic);
|
||
|
if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
|
||
|
return;
|
||
|
|
||
|
if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
|
||
|
start_sw_period(apic);
|
||
|
else if (apic_lvtt_tscdeadline(apic))
|
||
|
start_sw_tscdeadline(apic);
|
||
|
trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
|
||
|
}
|
||
|
|
||
|
static void restart_apic_timer(struct kvm_lapic *apic)
|
||
|
{
|
||
|
preempt_disable();
|
||
|
|
||
|
if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending))
|
||
|
goto out;
|
||
|
|
||
|
if (!start_hv_timer(apic))
|
||
|
start_sw_timer(apic);
|
||
|
out:
|
||
|
preempt_enable();
|
||
|
}
|
||
|
|
||
|
void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
|
||
|
preempt_disable();
|
||
|
/* If the preempt notifier has already run, it also called apic_timer_expired */
|
||
|
if (!apic->lapic_timer.hv_timer_in_use)
|
||
|
goto out;
|
||
|
WARN_ON(kvm_vcpu_is_blocking(vcpu));
|
||
|
apic_timer_expired(apic, false);
|
||
|
cancel_hv_timer(apic);
|
||
|
|
||
|
if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
|
||
|
advance_periodic_target_expiration(apic);
|
||
|
restart_apic_timer(apic);
|
||
|
}
|
||
|
out:
|
||
|
preempt_enable();
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
|
||
|
|
||
|
void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
restart_apic_timer(vcpu->arch.apic);
|
||
|
}
|
||
|
|
||
|
void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
|
||
|
preempt_disable();
|
||
|
/* Possibly the TSC deadline timer is not enabled yet */
|
||
|
if (apic->lapic_timer.hv_timer_in_use)
|
||
|
start_sw_timer(apic);
|
||
|
preempt_enable();
|
||
|
}
|
||
|
|
||
|
void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
|
||
|
WARN_ON(!apic->lapic_timer.hv_timer_in_use);
|
||
|
restart_apic_timer(apic);
|
||
|
}
|
||
|
|
||
|
static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg)
|
||
|
{
|
||
|
atomic_set(&apic->lapic_timer.pending, 0);
|
||
|
|
||
|
if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
|
||
|
&& !set_target_expiration(apic, count_reg))
|
||
|
return;
|
||
|
|
||
|
restart_apic_timer(apic);
|
||
|
}
|
||
|
|
||
|
static void start_apic_timer(struct kvm_lapic *apic)
|
||
|
{
|
||
|
__start_apic_timer(apic, APIC_TMICT);
|
||
|
}
|
||
|
|
||
|
static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
|
||
|
{
|
||
|
bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
|
||
|
|
||
|
if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
|
||
|
apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
|
||
|
if (lvt0_in_nmi_mode) {
|
||
|
atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
|
||
|
} else
|
||
|
atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int get_lvt_index(u32 reg)
|
||
|
{
|
||
|
if (reg == APIC_LVTCMCI)
|
||
|
return LVT_CMCI;
|
||
|
if (reg < APIC_LVTT || reg > APIC_LVTERR)
|
||
|
return -1;
|
||
|
return array_index_nospec(
|
||
|
(reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES);
|
||
|
}
|
||
|
|
||
|
static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
|
||
|
trace_kvm_apic_write(reg, val);
|
||
|
|
||
|
switch (reg) {
|
||
|
case APIC_ID: /* Local APIC ID */
|
||
|
if (!apic_x2apic_mode(apic)) {
|
||
|
kvm_apic_set_xapic_id(apic, val >> 24);
|
||
|
} else {
|
||
|
ret = 1;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case APIC_TASKPRI:
|
||
|
report_tpr_access(apic, true);
|
||
|
apic_set_tpr(apic, val & 0xff);
|
||
|
break;
|
||
|
|
||
|
case APIC_EOI:
|
||
|
apic_set_eoi(apic);
|
||
|
break;
|
||
|
|
||
|
case APIC_LDR:
|
||
|
if (!apic_x2apic_mode(apic))
|
||
|
kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
|
||
|
else
|
||
|
ret = 1;
|
||
|
break;
|
||
|
|
||
|
case APIC_DFR:
|
||
|
if (!apic_x2apic_mode(apic))
|
||
|
kvm_apic_set_dfr(apic, val | 0x0FFFFFFF);
|
||
|
else
|
||
|
ret = 1;
|
||
|
break;
|
||
|
|
||
|
case APIC_SPIV: {
|
||
|
u32 mask = 0x3ff;
|
||
|
if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
|
||
|
mask |= APIC_SPIV_DIRECTED_EOI;
|
||
|
apic_set_spiv(apic, val & mask);
|
||
|
if (!(val & APIC_SPIV_APIC_ENABLED)) {
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < apic->nr_lvt_entries; i++) {
|
||
|
kvm_lapic_set_reg(apic, APIC_LVTx(i),
|
||
|
kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED);
|
||
|
}
|
||
|
apic_update_lvtt(apic);
|
||
|
atomic_set(&apic->lapic_timer.pending, 0);
|
||
|
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
case APIC_ICR:
|
||
|
WARN_ON_ONCE(apic_x2apic_mode(apic));
|
||
|
|
||
|
/* No delay here, so we always clear the pending bit */
|
||
|
val &= ~APIC_ICR_BUSY;
|
||
|
kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2));
|
||
|
kvm_lapic_set_reg(apic, APIC_ICR, val);
|
||
|
break;
|
||
|
case APIC_ICR2:
|
||
|
if (apic_x2apic_mode(apic))
|
||
|
ret = 1;
|
||
|
else
|
||
|
kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000);
|
||
|
break;
|
||
|
|
||
|
case APIC_LVT0:
|
||
|
apic_manage_nmi_watchdog(apic, val);
|
||
|
fallthrough;
|
||
|
case APIC_LVTTHMR:
|
||
|
case APIC_LVTPC:
|
||
|
case APIC_LVT1:
|
||
|
case APIC_LVTERR:
|
||
|
case APIC_LVTCMCI: {
|
||
|
u32 index = get_lvt_index(reg);
|
||
|
if (!kvm_lapic_lvt_supported(apic, index)) {
|
||
|
ret = 1;
|
||
|
break;
|
||
|
}
|
||
|
if (!kvm_apic_sw_enabled(apic))
|
||
|
val |= APIC_LVT_MASKED;
|
||
|
val &= apic_lvt_mask[index];
|
||
|
kvm_lapic_set_reg(apic, reg, val);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
case APIC_LVTT:
|
||
|
if (!kvm_apic_sw_enabled(apic))
|
||
|
val |= APIC_LVT_MASKED;
|
||
|
val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask);
|
||
|
kvm_lapic_set_reg(apic, APIC_LVTT, val);
|
||
|
apic_update_lvtt(apic);
|
||
|
break;
|
||
|
|
||
|
case APIC_TMICT:
|
||
|
if (apic_lvtt_tscdeadline(apic))
|
||
|
break;
|
||
|
|
||
|
cancel_apic_timer(apic);
|
||
|
kvm_lapic_set_reg(apic, APIC_TMICT, val);
|
||
|
start_apic_timer(apic);
|
||
|
break;
|
||
|
|
||
|
case APIC_TDCR: {
|
||
|
uint32_t old_divisor = apic->divide_count;
|
||
|
|
||
|
kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb);
|
||
|
update_divide_count(apic);
|
||
|
if (apic->divide_count != old_divisor &&
|
||
|
apic->lapic_timer.period) {
|
||
|
hrtimer_cancel(&apic->lapic_timer.timer);
|
||
|
update_target_expiration(apic, old_divisor);
|
||
|
restart_apic_timer(apic);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
case APIC_ESR:
|
||
|
if (apic_x2apic_mode(apic) && val != 0)
|
||
|
ret = 1;
|
||
|
break;
|
||
|
|
||
|
case APIC_SELF_IPI:
|
||
|
/*
|
||
|
* Self-IPI exists only when x2APIC is enabled. Bits 7:0 hold
|
||
|
* the vector, everything else is reserved.
|
||
|
*/
|
||
|
if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK))
|
||
|
ret = 1;
|
||
|
else
|
||
|
kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0);
|
||
|
break;
|
||
|
default:
|
||
|
ret = 1;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Recalculate APIC maps if necessary, e.g. if the software enable bit
|
||
|
* was toggled, the APIC ID changed, etc... The maps are marked dirty
|
||
|
* on relevant changes, i.e. this is a nop for most writes.
|
||
|
*/
|
||
|
kvm_recalculate_apic_map(apic->vcpu->kvm);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
|
||
|
gpa_t address, int len, const void *data)
|
||
|
{
|
||
|
struct kvm_lapic *apic = to_lapic(this);
|
||
|
unsigned int offset = address - apic->base_address;
|
||
|
u32 val;
|
||
|
|
||
|
if (!apic_mmio_in_range(apic, address))
|
||
|
return -EOPNOTSUPP;
|
||
|
|
||
|
if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
|
||
|
if (!kvm_check_has_quirk(vcpu->kvm,
|
||
|
KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
|
||
|
return -EOPNOTSUPP;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* APIC register must be aligned on 128-bits boundary.
|
||
|
* 32/64/128 bits registers must be accessed thru 32 bits.
|
||
|
* Refer SDM 8.4.1
|
||
|
*/
|
||
|
if (len != 4 || (offset & 0xf))
|
||
|
return 0;
|
||
|
|
||
|
val = *(u32*)data;
|
||
|
|
||
|
kvm_lapic_reg_write(apic, offset & 0xff0, val);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
|
||
|
|
||
|
/* emulate APIC access in a trap manner */
|
||
|
void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
|
||
|
{
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
|
||
|
/*
|
||
|
* ICR is a single 64-bit register when x2APIC is enabled, all others
|
||
|
* registers hold 32-bit values. For legacy xAPIC, ICR writes need to
|
||
|
* go down the common path to get the upper half from ICR2.
|
||
|
*
|
||
|
* Note, using the write helpers may incur an unnecessary write to the
|
||
|
* virtual APIC state, but KVM needs to conditionally modify the value
|
||
|
* in certain cases, e.g. to clear the ICR busy bit. The cost of extra
|
||
|
* conditional branches is likely a wash relative to the cost of the
|
||
|
* maybe-unecessary write, and both are in the noise anyways.
|
||
|
*/
|
||
|
if (apic_x2apic_mode(apic) && offset == APIC_ICR)
|
||
|
kvm_x2apic_icr_write(apic, kvm_lapic_get_reg64(apic, APIC_ICR));
|
||
|
else
|
||
|
kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
|
||
|
|
||
|
void kvm_free_lapic(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
|
||
|
if (!vcpu->arch.apic)
|
||
|
return;
|
||
|
|
||
|
hrtimer_cancel(&apic->lapic_timer.timer);
|
||
|
|
||
|
if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
|
||
|
static_branch_slow_dec_deferred(&apic_hw_disabled);
|
||
|
|
||
|
if (!apic->sw_enabled)
|
||
|
static_branch_slow_dec_deferred(&apic_sw_disabled);
|
||
|
|
||
|
if (apic->regs)
|
||
|
free_page((unsigned long)apic->regs);
|
||
|
|
||
|
kfree(apic);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
*----------------------------------------------------------------------
|
||
|
* LAPIC interface
|
||
|
*----------------------------------------------------------------------
|
||
|
*/
|
||
|
u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
|
||
|
if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
|
||
|
return 0;
|
||
|
|
||
|
return apic->lapic_timer.tscdeadline;
|
||
|
}
|
||
|
|
||
|
void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
|
||
|
{
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
|
||
|
if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
|
||
|
return;
|
||
|
|
||
|
hrtimer_cancel(&apic->lapic_timer.timer);
|
||
|
apic->lapic_timer.tscdeadline = data;
|
||
|
start_apic_timer(apic);
|
||
|
}
|
||
|
|
||
|
void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
|
||
|
{
|
||
|
apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4);
|
||
|
}
|
||
|
|
||
|
u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
u64 tpr;
|
||
|
|
||
|
tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
|
||
|
|
||
|
return (tpr & 0xf0) >> 4;
|
||
|
}
|
||
|
|
||
|
void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value)
|
||
|
{
|
||
|
u64 old_value = vcpu->arch.apic_base;
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
|
||
|
vcpu->arch.apic_base = value;
|
||
|
|
||
|
if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
|
||
|
kvm_update_cpuid_runtime(vcpu);
|
||
|
|
||
|
if (!apic)
|
||
|
return;
|
||
|
|
||
|
/* update jump label if enable bit changes */
|
||
|
if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
|
||
|
if (value & MSR_IA32_APICBASE_ENABLE) {
|
||
|
kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
|
||
|
static_branch_slow_dec_deferred(&apic_hw_disabled);
|
||
|
/* Check if there are APF page ready requests pending */
|
||
|
kvm_make_request(KVM_REQ_APF_READY, vcpu);
|
||
|
} else {
|
||
|
static_branch_inc(&apic_hw_disabled.key);
|
||
|
atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ((old_value ^ value) & X2APIC_ENABLE) {
|
||
|
if (value & X2APIC_ENABLE)
|
||
|
kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
|
||
|
else if (value & MSR_IA32_APICBASE_ENABLE)
|
||
|
kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
|
||
|
}
|
||
|
|
||
|
if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) {
|
||
|
kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
|
||
|
static_call_cond(kvm_x86_set_virtual_apic_mode)(vcpu);
|
||
|
}
|
||
|
|
||
|
apic->base_address = apic->vcpu->arch.apic_base &
|
||
|
MSR_IA32_APICBASE_BASE;
|
||
|
|
||
|
if ((value & MSR_IA32_APICBASE_ENABLE) &&
|
||
|
apic->base_address != APIC_DEFAULT_PHYS_BASE) {
|
||
|
kvm_set_apicv_inhibit(apic->vcpu->kvm,
|
||
|
APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void kvm_apic_update_apicv(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
|
||
|
if (apic->apicv_active) {
|
||
|
/* irr_pending is always true when apicv is activated. */
|
||
|
apic->irr_pending = true;
|
||
|
apic->isr_count = 1;
|
||
|
} else {
|
||
|
/*
|
||
|
* Don't clear irr_pending, searching the IRR can race with
|
||
|
* updates from the CPU as APICv is still active from hardware's
|
||
|
* perspective. The flag will be cleared as appropriate when
|
||
|
* KVM injects the interrupt.
|
||
|
*/
|
||
|
apic->isr_count = count_vectors(apic->regs + APIC_ISR);
|
||
|
}
|
||
|
apic->highest_isr_cache = -1;
|
||
|
}
|
||
|
|
||
|
int kvm_alloc_apic_access_page(struct kvm *kvm)
|
||
|
{
|
||
|
struct page *page;
|
||
|
void __user *hva;
|
||
|
int ret = 0;
|
||
|
|
||
|
mutex_lock(&kvm->slots_lock);
|
||
|
if (kvm->arch.apic_access_memslot_enabled ||
|
||
|
kvm->arch.apic_access_memslot_inhibited)
|
||
|
goto out;
|
||
|
|
||
|
hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
|
||
|
APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
|
||
|
if (IS_ERR(hva)) {
|
||
|
ret = PTR_ERR(hva);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
|
||
|
if (is_error_page(page)) {
|
||
|
ret = -EFAULT;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Do not pin the page in memory, so that memory hot-unplug
|
||
|
* is able to migrate it.
|
||
|
*/
|
||
|
put_page(page);
|
||
|
kvm->arch.apic_access_memslot_enabled = true;
|
||
|
out:
|
||
|
mutex_unlock(&kvm->slots_lock);
|
||
|
return ret;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page);
|
||
|
|
||
|
void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
struct kvm *kvm = vcpu->kvm;
|
||
|
|
||
|
if (!kvm->arch.apic_access_memslot_enabled)
|
||
|
return;
|
||
|
|
||
|
kvm_vcpu_srcu_read_unlock(vcpu);
|
||
|
|
||
|
mutex_lock(&kvm->slots_lock);
|
||
|
|
||
|
if (kvm->arch.apic_access_memslot_enabled) {
|
||
|
__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
|
||
|
/*
|
||
|
* Clear "enabled" after the memslot is deleted so that a
|
||
|
* different vCPU doesn't get a false negative when checking
|
||
|
* the flag out of slots_lock. No additional memory barrier is
|
||
|
* needed as modifying memslots requires waiting other vCPUs to
|
||
|
* drop SRCU (see above), and false positives are ok as the
|
||
|
* flag is rechecked after acquiring slots_lock.
|
||
|
*/
|
||
|
kvm->arch.apic_access_memslot_enabled = false;
|
||
|
|
||
|
/*
|
||
|
* Mark the memslot as inhibited to prevent reallocating the
|
||
|
* memslot during vCPU creation, e.g. if a vCPU is hotplugged.
|
||
|
*/
|
||
|
kvm->arch.apic_access_memslot_inhibited = true;
|
||
|
}
|
||
|
|
||
|
mutex_unlock(&kvm->slots_lock);
|
||
|
|
||
|
kvm_vcpu_srcu_read_lock(vcpu);
|
||
|
}
|
||
|
|
||
|
void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
|
||
|
{
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
u64 msr_val;
|
||
|
int i;
|
||
|
|
||
|
static_call_cond(kvm_x86_apicv_pre_state_restore)(vcpu);
|
||
|
|
||
|
if (!init_event) {
|
||
|
msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
|
||
|
if (kvm_vcpu_is_reset_bsp(vcpu))
|
||
|
msr_val |= MSR_IA32_APICBASE_BSP;
|
||
|
kvm_lapic_set_base(vcpu, msr_val);
|
||
|
}
|
||
|
|
||
|
if (!apic)
|
||
|
return;
|
||
|
|
||
|
/* Stop the timer in case it's a reset to an active apic */
|
||
|
hrtimer_cancel(&apic->lapic_timer.timer);
|
||
|
|
||
|
/* The xAPIC ID is set at RESET even if the APIC was already enabled. */
|
||
|
if (!init_event)
|
||
|
kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
|
||
|
kvm_apic_set_version(apic->vcpu);
|
||
|
|
||
|
for (i = 0; i < apic->nr_lvt_entries; i++)
|
||
|
kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
|
||
|
apic_update_lvtt(apic);
|
||
|
if (kvm_vcpu_is_reset_bsp(vcpu) &&
|
||
|
kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
|
||
|
kvm_lapic_set_reg(apic, APIC_LVT0,
|
||
|
SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
|
||
|
apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
|
||
|
|
||
|
kvm_apic_set_dfr(apic, 0xffffffffU);
|
||
|
apic_set_spiv(apic, 0xff);
|
||
|
kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
|
||
|
if (!apic_x2apic_mode(apic))
|
||
|
kvm_apic_set_ldr(apic, 0);
|
||
|
kvm_lapic_set_reg(apic, APIC_ESR, 0);
|
||
|
if (!apic_x2apic_mode(apic)) {
|
||
|
kvm_lapic_set_reg(apic, APIC_ICR, 0);
|
||
|
kvm_lapic_set_reg(apic, APIC_ICR2, 0);
|
||
|
} else {
|
||
|
kvm_lapic_set_reg64(apic, APIC_ICR, 0);
|
||
|
}
|
||
|
kvm_lapic_set_reg(apic, APIC_TDCR, 0);
|
||
|
kvm_lapic_set_reg(apic, APIC_TMICT, 0);
|
||
|
for (i = 0; i < 8; i++) {
|
||
|
kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
|
||
|
kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
|
||
|
kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
|
||
|
}
|
||
|
kvm_apic_update_apicv(vcpu);
|
||
|
update_divide_count(apic);
|
||
|
atomic_set(&apic->lapic_timer.pending, 0);
|
||
|
|
||
|
vcpu->arch.pv_eoi.msr_val = 0;
|
||
|
apic_update_ppr(apic);
|
||
|
if (apic->apicv_active) {
|
||
|
static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu);
|
||
|
static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, -1);
|
||
|
static_call_cond(kvm_x86_hwapic_isr_update)(-1);
|
||
|
}
|
||
|
|
||
|
vcpu->arch.apic_arb_prio = 0;
|
||
|
vcpu->arch.apic_attention = 0;
|
||
|
|
||
|
kvm_recalculate_apic_map(vcpu->kvm);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
*----------------------------------------------------------------------
|
||
|
* timer interface
|
||
|
*----------------------------------------------------------------------
|
||
|
*/
|
||
|
|
||
|
static bool lapic_is_periodic(struct kvm_lapic *apic)
|
||
|
{
|
||
|
return apic_lvtt_period(apic);
|
||
|
}
|
||
|
|
||
|
int apic_has_pending_timer(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
|
||
|
if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
|
||
|
return atomic_read(&apic->lapic_timer.pending);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
|
||
|
{
|
||
|
u32 reg = kvm_lapic_get_reg(apic, lvt_type);
|
||
|
int vector, mode, trig_mode;
|
||
|
int r;
|
||
|
|
||
|
if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
|
||
|
vector = reg & APIC_VECTOR_MASK;
|
||
|
mode = reg & APIC_MODE_MASK;
|
||
|
trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
|
||
|
|
||
|
r = __apic_accept_irq(apic, mode, vector, 1, trig_mode, NULL);
|
||
|
if (r && lvt_type == APIC_LVTPC &&
|
||
|
guest_cpuid_is_intel_compatible(apic->vcpu))
|
||
|
kvm_lapic_set_reg(apic, APIC_LVTPC, reg | APIC_LVT_MASKED);
|
||
|
return r;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
|
||
|
if (apic)
|
||
|
kvm_apic_local_deliver(apic, APIC_LVT0);
|
||
|
}
|
||
|
|
||
|
static const struct kvm_io_device_ops apic_mmio_ops = {
|
||
|
.read = apic_mmio_read,
|
||
|
.write = apic_mmio_write,
|
||
|
};
|
||
|
|
||
|
static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
|
||
|
{
|
||
|
struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
|
||
|
struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
|
||
|
|
||
|
apic_timer_expired(apic, true);
|
||
|
|
||
|
if (lapic_is_periodic(apic)) {
|
||
|
advance_periodic_target_expiration(apic);
|
||
|
hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
|
||
|
return HRTIMER_RESTART;
|
||
|
} else
|
||
|
return HRTIMER_NORESTART;
|
||
|
}
|
||
|
|
||
|
int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns)
|
||
|
{
|
||
|
struct kvm_lapic *apic;
|
||
|
|
||
|
ASSERT(vcpu != NULL);
|
||
|
|
||
|
apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT);
|
||
|
if (!apic)
|
||
|
goto nomem;
|
||
|
|
||
|
vcpu->arch.apic = apic;
|
||
|
|
||
|
apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
|
||
|
if (!apic->regs) {
|
||
|
printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
|
||
|
vcpu->vcpu_id);
|
||
|
goto nomem_free_apic;
|
||
|
}
|
||
|
apic->vcpu = vcpu;
|
||
|
|
||
|
apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
|
||
|
|
||
|
hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC,
|
||
|
HRTIMER_MODE_ABS_HARD);
|
||
|
apic->lapic_timer.timer.function = apic_timer_fn;
|
||
|
if (timer_advance_ns == -1) {
|
||
|
apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
|
||
|
lapic_timer_advance_dynamic = true;
|
||
|
} else {
|
||
|
apic->lapic_timer.timer_advance_ns = timer_advance_ns;
|
||
|
lapic_timer_advance_dynamic = false;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Stuff the APIC ENABLE bit in lieu of temporarily incrementing
|
||
|
* apic_hw_disabled; the full RESET value is set by kvm_lapic_reset().
|
||
|
*/
|
||
|
vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
|
||
|
static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */
|
||
|
kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
|
||
|
|
||
|
return 0;
|
||
|
nomem_free_apic:
|
||
|
kfree(apic);
|
||
|
vcpu->arch.apic = NULL;
|
||
|
nomem:
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
u32 ppr;
|
||
|
|
||
|
if (!kvm_apic_present(vcpu))
|
||
|
return -1;
|
||
|
|
||
|
__apic_update_ppr(apic, &ppr);
|
||
|
return apic_has_interrupt_for_ppr(apic, ppr);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt);
|
||
|
|
||
|
int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
|
||
|
|
||
|
if (!kvm_apic_hw_enabled(vcpu->arch.apic))
|
||
|
return 1;
|
||
|
if ((lvt0 & APIC_LVT_MASKED) == 0 &&
|
||
|
GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
|
||
|
return 1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
|
||
|
if (atomic_read(&apic->lapic_timer.pending) > 0) {
|
||
|
kvm_apic_inject_pending_timer_irqs(apic);
|
||
|
atomic_set(&apic->lapic_timer.pending, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
int vector = kvm_apic_has_interrupt(vcpu);
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
u32 ppr;
|
||
|
|
||
|
if (vector == -1)
|
||
|
return -1;
|
||
|
|
||
|
/*
|
||
|
* We get here even with APIC virtualization enabled, if doing
|
||
|
* nested virtualization and L1 runs with the "acknowledge interrupt
|
||
|
* on exit" mode. Then we cannot inject the interrupt via RVI,
|
||
|
* because the process would deliver it through the IDT.
|
||
|
*/
|
||
|
|
||
|
apic_clear_irr(vector, apic);
|
||
|
if (kvm_hv_synic_auto_eoi_set(vcpu, vector)) {
|
||
|
/*
|
||
|
* For auto-EOI interrupts, there might be another pending
|
||
|
* interrupt above PPR, so check whether to raise another
|
||
|
* KVM_REQ_EVENT.
|
||
|
*/
|
||
|
apic_update_ppr(apic);
|
||
|
} else {
|
||
|
/*
|
||
|
* For normal interrupts, PPR has been raised and there cannot
|
||
|
* be a higher-priority pending interrupt---except if there was
|
||
|
* a concurrent interrupt injection, but that would have
|
||
|
* triggered KVM_REQ_EVENT already.
|
||
|
*/
|
||
|
apic_set_isr(vector, apic);
|
||
|
__apic_update_ppr(apic, &ppr);
|
||
|
}
|
||
|
|
||
|
return vector;
|
||
|
}
|
||
|
|
||
|
static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
|
||
|
struct kvm_lapic_state *s, bool set)
|
||
|
{
|
||
|
if (apic_x2apic_mode(vcpu->arch.apic)) {
|
||
|
u32 *id = (u32 *)(s->regs + APIC_ID);
|
||
|
u32 *ldr = (u32 *)(s->regs + APIC_LDR);
|
||
|
u64 icr;
|
||
|
|
||
|
if (vcpu->kvm->arch.x2apic_format) {
|
||
|
if (*id != vcpu->vcpu_id)
|
||
|
return -EINVAL;
|
||
|
} else {
|
||
|
if (set)
|
||
|
*id >>= 24;
|
||
|
else
|
||
|
*id <<= 24;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* In x2APIC mode, the LDR is fixed and based on the id. And
|
||
|
* ICR is internally a single 64-bit register, but needs to be
|
||
|
* split to ICR+ICR2 in userspace for backwards compatibility.
|
||
|
*/
|
||
|
if (set) {
|
||
|
*ldr = kvm_apic_calc_x2apic_ldr(*id);
|
||
|
|
||
|
icr = __kvm_lapic_get_reg(s->regs, APIC_ICR) |
|
||
|
(u64)__kvm_lapic_get_reg(s->regs, APIC_ICR2) << 32;
|
||
|
__kvm_lapic_set_reg64(s->regs, APIC_ICR, icr);
|
||
|
} else {
|
||
|
icr = __kvm_lapic_get_reg64(s->regs, APIC_ICR);
|
||
|
__kvm_lapic_set_reg(s->regs, APIC_ICR2, icr >> 32);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
|
||
|
{
|
||
|
memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
|
||
|
|
||
|
/*
|
||
|
* Get calculated timer current count for remaining timer period (if
|
||
|
* any) and store it in the returned register set.
|
||
|
*/
|
||
|
__kvm_lapic_set_reg(s->regs, APIC_TMCCT,
|
||
|
__apic_read(vcpu->arch.apic, APIC_TMCCT));
|
||
|
|
||
|
return kvm_apic_state_fixup(vcpu, s, false);
|
||
|
}
|
||
|
|
||
|
int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
|
||
|
{
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
int r;
|
||
|
|
||
|
static_call_cond(kvm_x86_apicv_pre_state_restore)(vcpu);
|
||
|
|
||
|
kvm_lapic_set_base(vcpu, vcpu->arch.apic_base);
|
||
|
/* set SPIV separately to get count of SW disabled APICs right */
|
||
|
apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
|
||
|
|
||
|
r = kvm_apic_state_fixup(vcpu, s, true);
|
||
|
if (r) {
|
||
|
kvm_recalculate_apic_map(vcpu->kvm);
|
||
|
return r;
|
||
|
}
|
||
|
memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s));
|
||
|
|
||
|
atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
|
||
|
kvm_recalculate_apic_map(vcpu->kvm);
|
||
|
kvm_apic_set_version(vcpu);
|
||
|
|
||
|
apic_update_ppr(apic);
|
||
|
cancel_apic_timer(apic);
|
||
|
apic->lapic_timer.expired_tscdeadline = 0;
|
||
|
apic_update_lvtt(apic);
|
||
|
apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
|
||
|
update_divide_count(apic);
|
||
|
__start_apic_timer(apic, APIC_TMCCT);
|
||
|
kvm_lapic_set_reg(apic, APIC_TMCCT, 0);
|
||
|
kvm_apic_update_apicv(vcpu);
|
||
|
if (apic->apicv_active) {
|
||
|
static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu);
|
||
|
static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, apic_find_highest_irr(apic));
|
||
|
static_call_cond(kvm_x86_hwapic_isr_update)(apic_find_highest_isr(apic));
|
||
|
}
|
||
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
||
|
if (ioapic_in_kernel(vcpu->kvm))
|
||
|
kvm_rtc_eoi_tracking_restore_one(vcpu);
|
||
|
|
||
|
vcpu->arch.apic_arb_prio = 0;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
struct hrtimer *timer;
|
||
|
|
||
|
if (!lapic_in_kernel(vcpu) ||
|
||
|
kvm_can_post_timer_interrupt(vcpu))
|
||
|
return;
|
||
|
|
||
|
timer = &vcpu->arch.apic->lapic_timer.timer;
|
||
|
if (hrtimer_cancel(timer))
|
||
|
hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
|
||
|
*
|
||
|
* Detect whether guest triggered PV EOI since the
|
||
|
* last entry. If yes, set EOI on guests's behalf.
|
||
|
* Clear PV EOI in guest memory in any case.
|
||
|
*/
|
||
|
static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
|
||
|
struct kvm_lapic *apic)
|
||
|
{
|
||
|
int vector;
|
||
|
/*
|
||
|
* PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
|
||
|
* and KVM_PV_EOI_ENABLED in guest memory as follows:
|
||
|
*
|
||
|
* KVM_APIC_PV_EOI_PENDING is unset:
|
||
|
* -> host disabled PV EOI.
|
||
|
* KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
|
||
|
* -> host enabled PV EOI, guest did not execute EOI yet.
|
||
|
* KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
|
||
|
* -> host enabled PV EOI, guest executed EOI.
|
||
|
*/
|
||
|
BUG_ON(!pv_eoi_enabled(vcpu));
|
||
|
|
||
|
if (pv_eoi_test_and_clr_pending(vcpu))
|
||
|
return;
|
||
|
vector = apic_set_eoi(apic);
|
||
|
trace_kvm_pv_eoi(apic, vector);
|
||
|
}
|
||
|
|
||
|
void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
u32 data;
|
||
|
|
||
|
if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
|
||
|
apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
|
||
|
|
||
|
if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
|
||
|
return;
|
||
|
|
||
|
if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
|
||
|
sizeof(u32)))
|
||
|
return;
|
||
|
|
||
|
apic_set_tpr(vcpu->arch.apic, data & 0xff);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* apic_sync_pv_eoi_to_guest - called before vmentry
|
||
|
*
|
||
|
* Detect whether it's safe to enable PV EOI and
|
||
|
* if yes do so.
|
||
|
*/
|
||
|
static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
|
||
|
struct kvm_lapic *apic)
|
||
|
{
|
||
|
if (!pv_eoi_enabled(vcpu) ||
|
||
|
/* IRR set or many bits in ISR: could be nested. */
|
||
|
apic->irr_pending ||
|
||
|
/* Cache not set: could be safe but we don't bother. */
|
||
|
apic->highest_isr_cache == -1 ||
|
||
|
/* Need EOI to update ioapic. */
|
||
|
kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
|
||
|
/*
|
||
|
* PV EOI was disabled by apic_sync_pv_eoi_from_guest
|
||
|
* so we need not do anything here.
|
||
|
*/
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
pv_eoi_set_pending(apic->vcpu);
|
||
|
}
|
||
|
|
||
|
void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
u32 data, tpr;
|
||
|
int max_irr, max_isr;
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
|
||
|
apic_sync_pv_eoi_to_guest(vcpu, apic);
|
||
|
|
||
|
if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
|
||
|
return;
|
||
|
|
||
|
tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
|
||
|
max_irr = apic_find_highest_irr(apic);
|
||
|
if (max_irr < 0)
|
||
|
max_irr = 0;
|
||
|
max_isr = apic_find_highest_isr(apic);
|
||
|
if (max_isr < 0)
|
||
|
max_isr = 0;
|
||
|
data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
|
||
|
|
||
|
kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
|
||
|
sizeof(u32));
|
||
|
}
|
||
|
|
||
|
int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
|
||
|
{
|
||
|
if (vapic_addr) {
|
||
|
if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
|
||
|
&vcpu->arch.apic->vapic_cache,
|
||
|
vapic_addr, sizeof(u32)))
|
||
|
return -EINVAL;
|
||
|
__set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
|
||
|
} else {
|
||
|
__clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
|
||
|
}
|
||
|
|
||
|
vcpu->arch.apic->vapic_addr = vapic_addr;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data)
|
||
|
{
|
||
|
data &= ~APIC_ICR_BUSY;
|
||
|
|
||
|
kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32));
|
||
|
kvm_lapic_set_reg64(apic, APIC_ICR, data);
|
||
|
trace_kvm_apic_write(APIC_ICR, data);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data)
|
||
|
{
|
||
|
u32 low;
|
||
|
|
||
|
if (reg == APIC_ICR) {
|
||
|
*data = kvm_lapic_get_reg64(apic, APIC_ICR);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (kvm_lapic_reg_read(apic, reg, 4, &low))
|
||
|
return 1;
|
||
|
|
||
|
*data = low;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data)
|
||
|
{
|
||
|
/*
|
||
|
* ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and
|
||
|
* can be written as such, all other registers remain accessible only
|
||
|
* through 32-bit reads/writes.
|
||
|
*/
|
||
|
if (reg == APIC_ICR)
|
||
|
return kvm_x2apic_icr_write(apic, data);
|
||
|
|
||
|
/* Bits 63:32 are reserved in all other registers. */
|
||
|
if (data >> 32)
|
||
|
return 1;
|
||
|
|
||
|
return kvm_lapic_reg_write(apic, reg, (u32)data);
|
||
|
}
|
||
|
|
||
|
int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
|
||
|
{
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
u32 reg = (msr - APIC_BASE_MSR) << 4;
|
||
|
|
||
|
if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
|
||
|
return 1;
|
||
|
|
||
|
return kvm_lapic_msr_write(apic, reg, data);
|
||
|
}
|
||
|
|
||
|
int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
|
||
|
{
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
u32 reg = (msr - APIC_BASE_MSR) << 4;
|
||
|
|
||
|
if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
|
||
|
return 1;
|
||
|
|
||
|
return kvm_lapic_msr_read(apic, reg, data);
|
||
|
}
|
||
|
|
||
|
int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
|
||
|
{
|
||
|
if (!lapic_in_kernel(vcpu))
|
||
|
return 1;
|
||
|
|
||
|
return kvm_lapic_msr_write(vcpu->arch.apic, reg, data);
|
||
|
}
|
||
|
|
||
|
int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
|
||
|
{
|
||
|
if (!lapic_in_kernel(vcpu))
|
||
|
return 1;
|
||
|
|
||
|
return kvm_lapic_msr_read(vcpu->arch.apic, reg, data);
|
||
|
}
|
||
|
|
||
|
int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
|
||
|
{
|
||
|
u64 addr = data & ~KVM_MSR_ENABLED;
|
||
|
struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
|
||
|
unsigned long new_len;
|
||
|
int ret;
|
||
|
|
||
|
if (!IS_ALIGNED(addr, 4))
|
||
|
return 1;
|
||
|
|
||
|
if (data & KVM_MSR_ENABLED) {
|
||
|
if (addr == ghc->gpa && len <= ghc->len)
|
||
|
new_len = ghc->len;
|
||
|
else
|
||
|
new_len = len;
|
||
|
|
||
|
ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
vcpu->arch.pv_eoi.msr_val = data;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int kvm_apic_accept_events(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
||
|
u8 sipi_vector;
|
||
|
int r;
|
||
|
|
||
|
if (!kvm_apic_has_pending_init_or_sipi(vcpu))
|
||
|
return 0;
|
||
|
|
||
|
if (is_guest_mode(vcpu)) {
|
||
|
r = kvm_check_nested_events(vcpu);
|
||
|
if (r < 0)
|
||
|
return r == -EBUSY ? 0 : r;
|
||
|
/*
|
||
|
* Continue processing INIT/SIPI even if a nested VM-Exit
|
||
|
* occurred, e.g. pending SIPIs should be dropped if INIT+SIPI
|
||
|
* are blocked as a result of transitioning to VMX root mode.
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* INITs are blocked while CPU is in specific states (SMM, VMX root
|
||
|
* mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in
|
||
|
* wait-for-SIPI (WFS).
|
||
|
*/
|
||
|
if (!kvm_apic_init_sipi_allowed(vcpu)) {
|
||
|
WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
|
||
|
clear_bit(KVM_APIC_SIPI, &apic->pending_events);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) {
|
||
|
kvm_vcpu_reset(vcpu, true);
|
||
|
if (kvm_vcpu_is_bsp(apic->vcpu))
|
||
|
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
|
||
|
else
|
||
|
vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
|
||
|
}
|
||
|
if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) {
|
||
|
if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
|
||
|
/* evaluate pending_events before reading the vector */
|
||
|
smp_rmb();
|
||
|
sipi_vector = apic->sipi_vector;
|
||
|
static_call(kvm_x86_vcpu_deliver_sipi_vector)(vcpu, sipi_vector);
|
||
|
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void kvm_lapic_exit(void)
|
||
|
{
|
||
|
static_key_deferred_flush(&apic_hw_disabled);
|
||
|
WARN_ON(static_branch_unlikely(&apic_hw_disabled.key));
|
||
|
static_key_deferred_flush(&apic_sw_disabled);
|
||
|
WARN_ON(static_branch_unlikely(&apic_sw_disabled.key));
|
||
|
}
|