mirror_ubuntu-kernels/arch/powerpc/net/bpf_jit_comp32.c

1303 lines
40 KiB
C
Raw Normal View History

2024-07-02 00:48:40 +03:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* eBPF JIT compiler for PPC32
*
* Copyright 2020 Christophe Leroy <christophe.leroy@csgroup.eu>
* CS GROUP France
*
* Based on PPC64 eBPF JIT compiler by Naveen N. Rao
*/
#include <linux/moduleloader.h>
#include <asm/cacheflush.h>
#include <asm/asm-compat.h>
#include <linux/netdevice.h>
#include <linux/filter.h>
#include <linux/if_vlan.h>
#include <asm/kprobes.h>
#include <linux/bpf.h>
#include "bpf_jit.h"
/*
* Stack layout:
*
* [ prev sp ] <-------------
* [ nv gpr save area ] 16 * 4 |
* fp (r31) --> [ ebpf stack space ] upto 512 |
* [ frame header ] 16 |
* sp (r1) ---> [ stack pointer ] --------------
*/
/* for gpr non volatile registers r17 to r31 (14) + tail call */
#define BPF_PPC_STACK_SAVE (15 * 4 + 4)
/* stack frame, ensure this is quadword aligned */
#define BPF_PPC_STACKFRAME(ctx) (STACK_FRAME_MIN_SIZE + BPF_PPC_STACK_SAVE + (ctx)->stack_size)
#define PPC_EX32(r, i) EMIT(PPC_RAW_LI((r), (i) < 0 ? -1 : 0))
/* PPC NVR range -- update this if we ever use NVRs below r17 */
#define BPF_PPC_NVR_MIN _R17
#define BPF_PPC_TC _R16
/* BPF register usage */
#define TMP_REG (MAX_BPF_JIT_REG + 0)
/* BPF to ppc register mappings */
void bpf_jit_init_reg_mapping(struct codegen_context *ctx)
{
/* function return value */
ctx->b2p[BPF_REG_0] = _R12;
/* function arguments */
ctx->b2p[BPF_REG_1] = _R4;
ctx->b2p[BPF_REG_2] = _R6;
ctx->b2p[BPF_REG_3] = _R8;
ctx->b2p[BPF_REG_4] = _R10;
ctx->b2p[BPF_REG_5] = _R22;
/* non volatile registers */
ctx->b2p[BPF_REG_6] = _R24;
ctx->b2p[BPF_REG_7] = _R26;
ctx->b2p[BPF_REG_8] = _R28;
ctx->b2p[BPF_REG_9] = _R30;
/* frame pointer aka BPF_REG_10 */
ctx->b2p[BPF_REG_FP] = _R18;
/* eBPF jit internal registers */
ctx->b2p[BPF_REG_AX] = _R20;
ctx->b2p[TMP_REG] = _R31; /* 32 bits */
}
static int bpf_jit_stack_offsetof(struct codegen_context *ctx, int reg)
{
if ((reg >= BPF_PPC_NVR_MIN && reg < 32) || reg == BPF_PPC_TC)
return BPF_PPC_STACKFRAME(ctx) - 4 * (32 - reg);
WARN(true, "BPF JIT is asking about unknown registers, will crash the stack");
/* Use the hole we have left for alignment */
return BPF_PPC_STACKFRAME(ctx) - 4;
}
#define SEEN_VREG_MASK 0x1ff80000 /* Volatile registers r3-r12 */
#define SEEN_NVREG_FULL_MASK 0x0003ffff /* Non volatile registers r14-r31 */
#define SEEN_NVREG_TEMP_MASK 0x00001e01 /* BPF_REG_5, BPF_REG_AX, TMP_REG */
static inline bool bpf_has_stack_frame(struct codegen_context *ctx)
{
/*
* We only need a stack frame if:
* - we call other functions (kernel helpers), or
* - we use non volatile registers, or
* - we use tail call counter
* - the bpf program uses its stack area
* The latter condition is deduced from the usage of BPF_REG_FP
*/
return ctx->seen & (SEEN_FUNC | SEEN_TAILCALL | SEEN_NVREG_FULL_MASK) ||
bpf_is_seen_register(ctx, bpf_to_ppc(BPF_REG_FP));
}
void bpf_jit_realloc_regs(struct codegen_context *ctx)
{
unsigned int nvreg_mask;
if (ctx->seen & SEEN_FUNC)
nvreg_mask = SEEN_NVREG_TEMP_MASK;
else
nvreg_mask = SEEN_NVREG_FULL_MASK;
while (ctx->seen & nvreg_mask &&
(ctx->seen & SEEN_VREG_MASK) != SEEN_VREG_MASK) {
int old = 32 - fls(ctx->seen & (nvreg_mask & 0xaaaaaaab));
int new = 32 - fls(~ctx->seen & (SEEN_VREG_MASK & 0xaaaaaaaa));
int i;
for (i = BPF_REG_0; i <= TMP_REG; i++) {
if (ctx->b2p[i] != old)
continue;
ctx->b2p[i] = new;
bpf_set_seen_register(ctx, new);
bpf_clear_seen_register(ctx, old);
if (i != TMP_REG) {
bpf_set_seen_register(ctx, new - 1);
bpf_clear_seen_register(ctx, old - 1);
}
break;
}
}
}
void bpf_jit_build_prologue(u32 *image, struct codegen_context *ctx)
{
int i;
/* Initialize tail_call_cnt, to be skipped if we do tail calls. */
if (ctx->seen & SEEN_TAILCALL)
EMIT(PPC_RAW_LI(_R4, 0));
else
EMIT(PPC_RAW_NOP());
#define BPF_TAILCALL_PROLOGUE_SIZE 4
if (bpf_has_stack_frame(ctx))
EMIT(PPC_RAW_STWU(_R1, _R1, -BPF_PPC_STACKFRAME(ctx)));
if (ctx->seen & SEEN_TAILCALL)
EMIT(PPC_RAW_STW(_R4, _R1, bpf_jit_stack_offsetof(ctx, BPF_PPC_TC)));
/* First arg comes in as a 32 bits pointer. */
EMIT(PPC_RAW_MR(bpf_to_ppc(BPF_REG_1), _R3));
EMIT(PPC_RAW_LI(bpf_to_ppc(BPF_REG_1) - 1, 0));
/*
* We need a stack frame, but we don't necessarily need to
* save/restore LR unless we call other functions
*/
if (ctx->seen & SEEN_FUNC)
EMIT(PPC_RAW_MFLR(_R0));
/*
* Back up non-volatile regs -- registers r18-r31
*/
for (i = BPF_PPC_NVR_MIN; i <= 31; i++)
if (bpf_is_seen_register(ctx, i))
EMIT(PPC_RAW_STW(i, _R1, bpf_jit_stack_offsetof(ctx, i)));
/* Setup frame pointer to point to the bpf stack area */
if (bpf_is_seen_register(ctx, bpf_to_ppc(BPF_REG_FP))) {
EMIT(PPC_RAW_LI(bpf_to_ppc(BPF_REG_FP) - 1, 0));
EMIT(PPC_RAW_ADDI(bpf_to_ppc(BPF_REG_FP), _R1,
STACK_FRAME_MIN_SIZE + ctx->stack_size));
}
if (ctx->seen & SEEN_FUNC)
EMIT(PPC_RAW_STW(_R0, _R1, BPF_PPC_STACKFRAME(ctx) + PPC_LR_STKOFF));
}
static void bpf_jit_emit_common_epilogue(u32 *image, struct codegen_context *ctx)
{
int i;
/* Restore NVRs */
for (i = BPF_PPC_NVR_MIN; i <= 31; i++)
if (bpf_is_seen_register(ctx, i))
EMIT(PPC_RAW_LWZ(i, _R1, bpf_jit_stack_offsetof(ctx, i)));
if (ctx->seen & SEEN_FUNC)
EMIT(PPC_RAW_LWZ(_R0, _R1, BPF_PPC_STACKFRAME(ctx) + PPC_LR_STKOFF));
/* Tear down our stack frame */
if (bpf_has_stack_frame(ctx))
EMIT(PPC_RAW_ADDI(_R1, _R1, BPF_PPC_STACKFRAME(ctx)));
if (ctx->seen & SEEN_FUNC)
EMIT(PPC_RAW_MTLR(_R0));
}
void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
{
EMIT(PPC_RAW_MR(_R3, bpf_to_ppc(BPF_REG_0)));
bpf_jit_emit_common_epilogue(image, ctx);
EMIT(PPC_RAW_BLR());
}
/* Relative offset needs to be calculated based on final image location */
int bpf_jit_emit_func_call_rel(u32 *image, u32 *fimage, struct codegen_context *ctx, u64 func)
{
s32 rel = (s32)func - (s32)(fimage + ctx->idx);
if (image && rel < 0x2000000 && rel >= -0x2000000) {
EMIT(PPC_RAW_BL(rel));
} else {
/* Load function address into r0 */
EMIT(PPC_RAW_LIS(_R0, IMM_H(func)));
EMIT(PPC_RAW_ORI(_R0, _R0, IMM_L(func)));
EMIT(PPC_RAW_MTCTR(_R0));
EMIT(PPC_RAW_BCTRL());
}
return 0;
}
static int bpf_jit_emit_tail_call(u32 *image, struct codegen_context *ctx, u32 out)
{
/*
* By now, the eBPF program has already setup parameters in r3-r6
* r3-r4/BPF_REG_1 - pointer to ctx -- passed as is to the next bpf program
* r5-r6/BPF_REG_2 - pointer to bpf_array
* r7-r8/BPF_REG_3 - index in bpf_array
*/
int b2p_bpf_array = bpf_to_ppc(BPF_REG_2);
int b2p_index = bpf_to_ppc(BPF_REG_3);
/*
* if (index >= array->map.max_entries)
* goto out;
*/
EMIT(PPC_RAW_LWZ(_R0, b2p_bpf_array, offsetof(struct bpf_array, map.max_entries)));
EMIT(PPC_RAW_CMPLW(b2p_index, _R0));
EMIT(PPC_RAW_LWZ(_R0, _R1, bpf_jit_stack_offsetof(ctx, BPF_PPC_TC)));
PPC_BCC_SHORT(COND_GE, out);
/*
* if (tail_call_cnt >= MAX_TAIL_CALL_CNT)
* goto out;
*/
EMIT(PPC_RAW_CMPLWI(_R0, MAX_TAIL_CALL_CNT));
/* tail_call_cnt++; */
EMIT(PPC_RAW_ADDIC(_R0, _R0, 1));
PPC_BCC_SHORT(COND_GE, out);
/* prog = array->ptrs[index]; */
EMIT(PPC_RAW_RLWINM(_R3, b2p_index, 2, 0, 29));
EMIT(PPC_RAW_ADD(_R3, _R3, b2p_bpf_array));
EMIT(PPC_RAW_LWZ(_R3, _R3, offsetof(struct bpf_array, ptrs)));
/*
* if (prog == NULL)
* goto out;
*/
EMIT(PPC_RAW_CMPLWI(_R3, 0));
PPC_BCC_SHORT(COND_EQ, out);
/* goto *(prog->bpf_func + prologue_size); */
EMIT(PPC_RAW_LWZ(_R3, _R3, offsetof(struct bpf_prog, bpf_func)));
EMIT(PPC_RAW_ADDIC(_R3, _R3, BPF_TAILCALL_PROLOGUE_SIZE));
EMIT(PPC_RAW_MTCTR(_R3));
EMIT(PPC_RAW_MR(_R3, bpf_to_ppc(BPF_REG_1)));
/* Put tail_call_cnt in r4 */
EMIT(PPC_RAW_MR(_R4, _R0));
/* tear restore NVRs, ... */
bpf_jit_emit_common_epilogue(image, ctx);
EMIT(PPC_RAW_BCTR());
/* out: */
return 0;
}
/* Assemble the body code between the prologue & epilogue */
int bpf_jit_build_body(struct bpf_prog *fp, u32 *image, u32 *fimage, struct codegen_context *ctx,
u32 *addrs, int pass, bool extra_pass)
{
const struct bpf_insn *insn = fp->insnsi;
int flen = fp->len;
int i, ret;
/* Start of epilogue code - will only be valid 2nd pass onwards */
u32 exit_addr = addrs[flen];
for (i = 0; i < flen; i++) {
u32 code = insn[i].code;
u32 prevcode = i ? insn[i - 1].code : 0;
u32 dst_reg = bpf_to_ppc(insn[i].dst_reg);
u32 dst_reg_h = dst_reg - 1;
u32 src_reg = bpf_to_ppc(insn[i].src_reg);
u32 src_reg_h = src_reg - 1;
u32 src2_reg = dst_reg;
u32 src2_reg_h = dst_reg_h;
u32 ax_reg = bpf_to_ppc(BPF_REG_AX);
u32 tmp_reg = bpf_to_ppc(TMP_REG);
u32 size = BPF_SIZE(code);
u32 save_reg, ret_reg;
s16 off = insn[i].off;
s32 imm = insn[i].imm;
bool func_addr_fixed;
u64 func_addr;
u32 true_cond;
u32 tmp_idx;
int j;
if (i && (BPF_CLASS(code) == BPF_ALU64 || BPF_CLASS(code) == BPF_ALU) &&
(BPF_CLASS(prevcode) == BPF_ALU64 || BPF_CLASS(prevcode) == BPF_ALU) &&
BPF_OP(prevcode) == BPF_MOV && BPF_SRC(prevcode) == BPF_X &&
insn[i - 1].dst_reg == insn[i].dst_reg && insn[i - 1].imm != 1) {
src2_reg = bpf_to_ppc(insn[i - 1].src_reg);
src2_reg_h = src2_reg - 1;
ctx->idx = addrs[i - 1] / 4;
}
/*
* addrs[] maps a BPF bytecode address into a real offset from
* the start of the body code.
*/
addrs[i] = ctx->idx * 4;
/*
* As an optimization, we note down which registers
* are used so that we can only save/restore those in our
* prologue and epilogue. We do this here regardless of whether
* the actual BPF instruction uses src/dst registers or not
* (for instance, BPF_CALL does not use them). The expectation
* is that those instructions will have src_reg/dst_reg set to
* 0. Even otherwise, we just lose some prologue/epilogue
* optimization but everything else should work without
* any issues.
*/
if (dst_reg >= 3 && dst_reg < 32) {
bpf_set_seen_register(ctx, dst_reg);
bpf_set_seen_register(ctx, dst_reg_h);
}
if (src_reg >= 3 && src_reg < 32) {
bpf_set_seen_register(ctx, src_reg);
bpf_set_seen_register(ctx, src_reg_h);
}
switch (code) {
/*
* Arithmetic operations: ADD/SUB/MUL/DIV/MOD/NEG
*/
case BPF_ALU | BPF_ADD | BPF_X: /* (u32) dst += (u32) src */
EMIT(PPC_RAW_ADD(dst_reg, src2_reg, src_reg));
break;
case BPF_ALU64 | BPF_ADD | BPF_X: /* dst += src */
EMIT(PPC_RAW_ADDC(dst_reg, src2_reg, src_reg));
EMIT(PPC_RAW_ADDE(dst_reg_h, src2_reg_h, src_reg_h));
break;
case BPF_ALU | BPF_SUB | BPF_X: /* (u32) dst -= (u32) src */
EMIT(PPC_RAW_SUB(dst_reg, src2_reg, src_reg));
break;
case BPF_ALU64 | BPF_SUB | BPF_X: /* dst -= src */
EMIT(PPC_RAW_SUBFC(dst_reg, src_reg, src2_reg));
EMIT(PPC_RAW_SUBFE(dst_reg_h, src_reg_h, src2_reg_h));
break;
case BPF_ALU | BPF_SUB | BPF_K: /* (u32) dst -= (u32) imm */
imm = -imm;
fallthrough;
case BPF_ALU | BPF_ADD | BPF_K: /* (u32) dst += (u32) imm */
if (!imm) {
EMIT(PPC_RAW_MR(dst_reg, src2_reg));
} else if (IMM_HA(imm) & 0xffff) {
EMIT(PPC_RAW_ADDIS(dst_reg, src2_reg, IMM_HA(imm)));
src2_reg = dst_reg;
}
if (IMM_L(imm))
EMIT(PPC_RAW_ADDI(dst_reg, src2_reg, IMM_L(imm)));
break;
case BPF_ALU64 | BPF_SUB | BPF_K: /* dst -= imm */
imm = -imm;
fallthrough;
case BPF_ALU64 | BPF_ADD | BPF_K: /* dst += imm */
if (!imm) {
EMIT(PPC_RAW_MR(dst_reg, src2_reg));
EMIT(PPC_RAW_MR(dst_reg_h, src2_reg_h));
break;
}
if (imm >= -32768 && imm < 32768) {
EMIT(PPC_RAW_ADDIC(dst_reg, src2_reg, imm));
} else {
PPC_LI32(_R0, imm);
EMIT(PPC_RAW_ADDC(dst_reg, src2_reg, _R0));
}
if (imm >= 0 || (BPF_OP(code) == BPF_SUB && imm == 0x80000000))
EMIT(PPC_RAW_ADDZE(dst_reg_h, src2_reg_h));
else
EMIT(PPC_RAW_ADDME(dst_reg_h, src2_reg_h));
break;
case BPF_ALU64 | BPF_MUL | BPF_X: /* dst *= src */
bpf_set_seen_register(ctx, tmp_reg);
EMIT(PPC_RAW_MULW(_R0, src2_reg, src_reg_h));
EMIT(PPC_RAW_MULW(dst_reg_h, src2_reg_h, src_reg));
EMIT(PPC_RAW_MULHWU(tmp_reg, src2_reg, src_reg));
EMIT(PPC_RAW_MULW(dst_reg, src2_reg, src_reg));
EMIT(PPC_RAW_ADD(dst_reg_h, dst_reg_h, _R0));
EMIT(PPC_RAW_ADD(dst_reg_h, dst_reg_h, tmp_reg));
break;
case BPF_ALU | BPF_MUL | BPF_X: /* (u32) dst *= (u32) src */
EMIT(PPC_RAW_MULW(dst_reg, src2_reg, src_reg));
break;
case BPF_ALU | BPF_MUL | BPF_K: /* (u32) dst *= (u32) imm */
if (imm == 1) {
EMIT(PPC_RAW_MR(dst_reg, src2_reg));
} else if (imm == -1) {
EMIT(PPC_RAW_SUBFIC(dst_reg, src2_reg, 0));
} else if (is_power_of_2((u32)imm)) {
EMIT(PPC_RAW_SLWI(dst_reg, src2_reg, ilog2(imm)));
} else if (imm >= -32768 && imm < 32768) {
EMIT(PPC_RAW_MULI(dst_reg, src2_reg, imm));
} else {
PPC_LI32(_R0, imm);
EMIT(PPC_RAW_MULW(dst_reg, src2_reg, _R0));
}
break;
case BPF_ALU64 | BPF_MUL | BPF_K: /* dst *= imm */
if (!imm) {
PPC_LI32(dst_reg, 0);
PPC_LI32(dst_reg_h, 0);
} else if (imm == 1) {
EMIT(PPC_RAW_MR(dst_reg, src2_reg));
EMIT(PPC_RAW_MR(dst_reg_h, src2_reg_h));
} else if (imm == -1) {
EMIT(PPC_RAW_SUBFIC(dst_reg, src2_reg, 0));
EMIT(PPC_RAW_SUBFZE(dst_reg_h, src2_reg_h));
} else if (imm > 0 && is_power_of_2(imm)) {
imm = ilog2(imm);
EMIT(PPC_RAW_RLWINM(dst_reg_h, src2_reg_h, imm, 0, 31 - imm));
EMIT(PPC_RAW_RLWIMI(dst_reg_h, dst_reg, imm, 32 - imm, 31));
EMIT(PPC_RAW_SLWI(dst_reg, src2_reg, imm));
} else {
bpf_set_seen_register(ctx, tmp_reg);
PPC_LI32(tmp_reg, imm);
EMIT(PPC_RAW_MULW(dst_reg_h, src2_reg_h, tmp_reg));
if (imm < 0)
EMIT(PPC_RAW_SUB(dst_reg_h, dst_reg_h, src2_reg));
EMIT(PPC_RAW_MULHWU(_R0, src2_reg, tmp_reg));
EMIT(PPC_RAW_MULW(dst_reg, src2_reg, tmp_reg));
EMIT(PPC_RAW_ADD(dst_reg_h, dst_reg_h, _R0));
}
break;
case BPF_ALU | BPF_DIV | BPF_X: /* (u32) dst /= (u32) src */
EMIT(PPC_RAW_DIVWU(dst_reg, src2_reg, src_reg));
break;
case BPF_ALU | BPF_MOD | BPF_X: /* (u32) dst %= (u32) src */
EMIT(PPC_RAW_DIVWU(_R0, src2_reg, src_reg));
EMIT(PPC_RAW_MULW(_R0, src_reg, _R0));
EMIT(PPC_RAW_SUB(dst_reg, src2_reg, _R0));
break;
case BPF_ALU64 | BPF_DIV | BPF_X: /* dst /= src */
return -EOPNOTSUPP;
case BPF_ALU64 | BPF_MOD | BPF_X: /* dst %= src */
return -EOPNOTSUPP;
case BPF_ALU | BPF_DIV | BPF_K: /* (u32) dst /= (u32) imm */
if (!imm)
return -EINVAL;
if (imm == 1) {
EMIT(PPC_RAW_MR(dst_reg, src2_reg));
} else if (is_power_of_2((u32)imm)) {
EMIT(PPC_RAW_SRWI(dst_reg, src2_reg, ilog2(imm)));
} else {
PPC_LI32(_R0, imm);
EMIT(PPC_RAW_DIVWU(dst_reg, src2_reg, _R0));
}
break;
case BPF_ALU | BPF_MOD | BPF_K: /* (u32) dst %= (u32) imm */
if (!imm)
return -EINVAL;
if (!is_power_of_2((u32)imm)) {
bpf_set_seen_register(ctx, tmp_reg);
PPC_LI32(tmp_reg, imm);
EMIT(PPC_RAW_DIVWU(_R0, src2_reg, tmp_reg));
EMIT(PPC_RAW_MULW(_R0, tmp_reg, _R0));
EMIT(PPC_RAW_SUB(dst_reg, src2_reg, _R0));
} else if (imm == 1) {
EMIT(PPC_RAW_LI(dst_reg, 0));
} else {
imm = ilog2((u32)imm);
EMIT(PPC_RAW_RLWINM(dst_reg, src2_reg, 0, 32 - imm, 31));
}
break;
case BPF_ALU64 | BPF_MOD | BPF_K: /* dst %= imm */
if (!imm)
return -EINVAL;
if (imm < 0)
imm = -imm;
if (!is_power_of_2(imm))
return -EOPNOTSUPP;
if (imm == 1)
EMIT(PPC_RAW_LI(dst_reg, 0));
else
EMIT(PPC_RAW_RLWINM(dst_reg, src2_reg, 0, 32 - ilog2(imm), 31));
EMIT(PPC_RAW_LI(dst_reg_h, 0));
break;
case BPF_ALU64 | BPF_DIV | BPF_K: /* dst /= imm */
if (!imm)
return -EINVAL;
if (!is_power_of_2(abs(imm)))
return -EOPNOTSUPP;
if (imm < 0) {
EMIT(PPC_RAW_SUBFIC(dst_reg, src2_reg, 0));
EMIT(PPC_RAW_SUBFZE(dst_reg_h, src2_reg_h));
imm = -imm;
src2_reg = dst_reg;
}
if (imm == 1) {
EMIT(PPC_RAW_MR(dst_reg, src2_reg));
EMIT(PPC_RAW_MR(dst_reg_h, src2_reg_h));
} else {
imm = ilog2(imm);
EMIT(PPC_RAW_RLWINM(dst_reg, src2_reg, 32 - imm, imm, 31));
EMIT(PPC_RAW_RLWIMI(dst_reg, src2_reg_h, 32 - imm, 0, imm - 1));
EMIT(PPC_RAW_SRAWI(dst_reg_h, src2_reg_h, imm));
}
break;
case BPF_ALU | BPF_NEG: /* (u32) dst = -dst */
EMIT(PPC_RAW_NEG(dst_reg, src2_reg));
break;
case BPF_ALU64 | BPF_NEG: /* dst = -dst */
EMIT(PPC_RAW_SUBFIC(dst_reg, src2_reg, 0));
EMIT(PPC_RAW_SUBFZE(dst_reg_h, src2_reg_h));
break;
/*
* Logical operations: AND/OR/XOR/[A]LSH/[A]RSH
*/
case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
EMIT(PPC_RAW_AND(dst_reg, src2_reg, src_reg));
EMIT(PPC_RAW_AND(dst_reg_h, src2_reg_h, src_reg_h));
break;
case BPF_ALU | BPF_AND | BPF_X: /* (u32) dst = dst & src */
EMIT(PPC_RAW_AND(dst_reg, src2_reg, src_reg));
break;
case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
if (imm >= 0)
EMIT(PPC_RAW_LI(dst_reg_h, 0));
fallthrough;
case BPF_ALU | BPF_AND | BPF_K: /* (u32) dst = dst & imm */
if (!IMM_H(imm)) {
EMIT(PPC_RAW_ANDI(dst_reg, src2_reg, IMM_L(imm)));
} else if (!IMM_L(imm)) {
EMIT(PPC_RAW_ANDIS(dst_reg, src2_reg, IMM_H(imm)));
} else if (imm == (((1 << fls(imm)) - 1) ^ ((1 << (ffs(i) - 1)) - 1))) {
EMIT(PPC_RAW_RLWINM(dst_reg, src2_reg, 0,
32 - fls(imm), 32 - ffs(imm)));
} else {
PPC_LI32(_R0, imm);
EMIT(PPC_RAW_AND(dst_reg, src2_reg, _R0));
}
break;
case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
EMIT(PPC_RAW_OR(dst_reg, src2_reg, src_reg));
EMIT(PPC_RAW_OR(dst_reg_h, src2_reg_h, src_reg_h));
break;
case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
EMIT(PPC_RAW_OR(dst_reg, src2_reg, src_reg));
break;
case BPF_ALU64 | BPF_OR | BPF_K:/* dst = dst | imm */
/* Sign-extended */
if (imm < 0)
EMIT(PPC_RAW_LI(dst_reg_h, -1));
fallthrough;
case BPF_ALU | BPF_OR | BPF_K:/* dst = (u32) dst | (u32) imm */
if (IMM_L(imm)) {
EMIT(PPC_RAW_ORI(dst_reg, src2_reg, IMM_L(imm)));
src2_reg = dst_reg;
}
if (IMM_H(imm))
EMIT(PPC_RAW_ORIS(dst_reg, src2_reg, IMM_H(imm)));
break;
case BPF_ALU64 | BPF_XOR | BPF_X: /* dst ^= src */
if (dst_reg == src_reg) {
EMIT(PPC_RAW_LI(dst_reg, 0));
EMIT(PPC_RAW_LI(dst_reg_h, 0));
} else {
EMIT(PPC_RAW_XOR(dst_reg, src2_reg, src_reg));
EMIT(PPC_RAW_XOR(dst_reg_h, src2_reg_h, src_reg_h));
}
break;
case BPF_ALU | BPF_XOR | BPF_X: /* (u32) dst ^= src */
if (dst_reg == src_reg)
EMIT(PPC_RAW_LI(dst_reg, 0));
else
EMIT(PPC_RAW_XOR(dst_reg, src2_reg, src_reg));
break;
case BPF_ALU64 | BPF_XOR | BPF_K: /* dst ^= imm */
if (imm < 0)
EMIT(PPC_RAW_NOR(dst_reg_h, src2_reg_h, src2_reg_h));
fallthrough;
case BPF_ALU | BPF_XOR | BPF_K: /* (u32) dst ^= (u32) imm */
if (IMM_L(imm)) {
EMIT(PPC_RAW_XORI(dst_reg, src2_reg, IMM_L(imm)));
src2_reg = dst_reg;
}
if (IMM_H(imm))
EMIT(PPC_RAW_XORIS(dst_reg, src2_reg, IMM_H(imm)));
break;
case BPF_ALU | BPF_LSH | BPF_X: /* (u32) dst <<= (u32) src */
EMIT(PPC_RAW_SLW(dst_reg, src2_reg, src_reg));
break;
case BPF_ALU64 | BPF_LSH | BPF_X: /* dst <<= src; */
bpf_set_seen_register(ctx, tmp_reg);
EMIT(PPC_RAW_SUBFIC(_R0, src_reg, 32));
EMIT(PPC_RAW_SLW(dst_reg_h, src2_reg_h, src_reg));
EMIT(PPC_RAW_ADDI(tmp_reg, src_reg, 32));
EMIT(PPC_RAW_SRW(_R0, src2_reg, _R0));
EMIT(PPC_RAW_SLW(tmp_reg, src2_reg, tmp_reg));
EMIT(PPC_RAW_OR(dst_reg_h, dst_reg_h, _R0));
EMIT(PPC_RAW_SLW(dst_reg, src2_reg, src_reg));
EMIT(PPC_RAW_OR(dst_reg_h, dst_reg_h, tmp_reg));
break;
case BPF_ALU | BPF_LSH | BPF_K: /* (u32) dst <<= (u32) imm */
if (imm)
EMIT(PPC_RAW_SLWI(dst_reg, src2_reg, imm));
else
EMIT(PPC_RAW_MR(dst_reg, src2_reg));
break;
case BPF_ALU64 | BPF_LSH | BPF_K: /* dst <<= imm */
if (imm < 0)
return -EINVAL;
if (!imm) {
EMIT(PPC_RAW_MR(dst_reg, src2_reg));
} else if (imm < 32) {
EMIT(PPC_RAW_RLWINM(dst_reg_h, src2_reg_h, imm, 0, 31 - imm));
EMIT(PPC_RAW_RLWIMI(dst_reg_h, src2_reg, imm, 32 - imm, 31));
EMIT(PPC_RAW_RLWINM(dst_reg, src2_reg, imm, 0, 31 - imm));
} else if (imm < 64) {
EMIT(PPC_RAW_RLWINM(dst_reg_h, src2_reg, imm, 0, 31 - imm));
EMIT(PPC_RAW_LI(dst_reg, 0));
} else {
EMIT(PPC_RAW_LI(dst_reg_h, 0));
EMIT(PPC_RAW_LI(dst_reg, 0));
}
break;
case BPF_ALU | BPF_RSH | BPF_X: /* (u32) dst >>= (u32) src */
EMIT(PPC_RAW_SRW(dst_reg, src2_reg, src_reg));
break;
case BPF_ALU64 | BPF_RSH | BPF_X: /* dst >>= src */
bpf_set_seen_register(ctx, tmp_reg);
EMIT(PPC_RAW_SUBFIC(_R0, src_reg, 32));
EMIT(PPC_RAW_SRW(dst_reg, src2_reg, src_reg));
EMIT(PPC_RAW_ADDI(tmp_reg, src_reg, 32));
EMIT(PPC_RAW_SLW(_R0, src2_reg_h, _R0));
EMIT(PPC_RAW_SRW(tmp_reg, dst_reg_h, tmp_reg));
EMIT(PPC_RAW_OR(dst_reg, dst_reg, _R0));
EMIT(PPC_RAW_SRW(dst_reg_h, src2_reg_h, src_reg));
EMIT(PPC_RAW_OR(dst_reg, dst_reg, tmp_reg));
break;
case BPF_ALU | BPF_RSH | BPF_K: /* (u32) dst >>= (u32) imm */
if (imm)
EMIT(PPC_RAW_SRWI(dst_reg, src2_reg, imm));
else
EMIT(PPC_RAW_MR(dst_reg, src2_reg));
break;
case BPF_ALU64 | BPF_RSH | BPF_K: /* dst >>= imm */
if (imm < 0)
return -EINVAL;
if (!imm) {
EMIT(PPC_RAW_MR(dst_reg, src2_reg));
EMIT(PPC_RAW_MR(dst_reg_h, src2_reg_h));
} else if (imm < 32) {
EMIT(PPC_RAW_RLWINM(dst_reg, src2_reg, 32 - imm, imm, 31));
EMIT(PPC_RAW_RLWIMI(dst_reg, src2_reg_h, 32 - imm, 0, imm - 1));
EMIT(PPC_RAW_RLWINM(dst_reg_h, src2_reg_h, 32 - imm, imm, 31));
} else if (imm < 64) {
EMIT(PPC_RAW_RLWINM(dst_reg, src2_reg_h, 64 - imm, imm - 32, 31));
EMIT(PPC_RAW_LI(dst_reg_h, 0));
} else {
EMIT(PPC_RAW_LI(dst_reg, 0));
EMIT(PPC_RAW_LI(dst_reg_h, 0));
}
break;
case BPF_ALU | BPF_ARSH | BPF_X: /* (s32) dst >>= src */
EMIT(PPC_RAW_SRAW(dst_reg, src2_reg, src_reg));
break;
case BPF_ALU64 | BPF_ARSH | BPF_X: /* (s64) dst >>= src */
bpf_set_seen_register(ctx, tmp_reg);
EMIT(PPC_RAW_SUBFIC(_R0, src_reg, 32));
EMIT(PPC_RAW_SRW(dst_reg, src2_reg, src_reg));
EMIT(PPC_RAW_SLW(_R0, src2_reg_h, _R0));
EMIT(PPC_RAW_ADDI(tmp_reg, src_reg, 32));
EMIT(PPC_RAW_OR(dst_reg, dst_reg, _R0));
EMIT(PPC_RAW_RLWINM(_R0, tmp_reg, 0, 26, 26));
EMIT(PPC_RAW_SRAW(tmp_reg, src2_reg_h, tmp_reg));
EMIT(PPC_RAW_SRAW(dst_reg_h, src2_reg_h, src_reg));
EMIT(PPC_RAW_SLW(tmp_reg, tmp_reg, _R0));
EMIT(PPC_RAW_OR(dst_reg, dst_reg, tmp_reg));
break;
case BPF_ALU | BPF_ARSH | BPF_K: /* (s32) dst >>= imm */
if (imm)
EMIT(PPC_RAW_SRAWI(dst_reg, src2_reg, imm));
else
EMIT(PPC_RAW_MR(dst_reg, src2_reg));
break;
case BPF_ALU64 | BPF_ARSH | BPF_K: /* (s64) dst >>= imm */
if (imm < 0)
return -EINVAL;
if (!imm) {
EMIT(PPC_RAW_MR(dst_reg, src2_reg));
EMIT(PPC_RAW_MR(dst_reg_h, src2_reg_h));
} else if (imm < 32) {
EMIT(PPC_RAW_RLWINM(dst_reg, src2_reg, 32 - imm, imm, 31));
EMIT(PPC_RAW_RLWIMI(dst_reg, src2_reg_h, 32 - imm, 0, imm - 1));
EMIT(PPC_RAW_SRAWI(dst_reg_h, src2_reg_h, imm));
} else if (imm < 64) {
EMIT(PPC_RAW_SRAWI(dst_reg, src2_reg_h, imm - 32));
EMIT(PPC_RAW_SRAWI(dst_reg_h, src2_reg_h, 31));
} else {
EMIT(PPC_RAW_SRAWI(dst_reg, src2_reg_h, 31));
EMIT(PPC_RAW_SRAWI(dst_reg_h, src2_reg_h, 31));
}
break;
/*
* MOV
*/
case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
if (dst_reg == src_reg)
break;
EMIT(PPC_RAW_MR(dst_reg, src_reg));
EMIT(PPC_RAW_MR(dst_reg_h, src_reg_h));
break;
case BPF_ALU | BPF_MOV | BPF_X: /* (u32) dst = src */
/* special mov32 for zext */
if (imm == 1)
EMIT(PPC_RAW_LI(dst_reg_h, 0));
else if (dst_reg != src_reg)
EMIT(PPC_RAW_MR(dst_reg, src_reg));
break;
case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = (s64) imm */
PPC_LI32(dst_reg, imm);
PPC_EX32(dst_reg_h, imm);
break;
case BPF_ALU | BPF_MOV | BPF_K: /* (u32) dst = imm */
PPC_LI32(dst_reg, imm);
break;
/*
* BPF_FROM_BE/LE
*/
case BPF_ALU | BPF_END | BPF_FROM_LE:
switch (imm) {
case 16:
/* Copy 16 bits to upper part */
EMIT(PPC_RAW_RLWIMI(dst_reg, src2_reg, 16, 0, 15));
/* Rotate 8 bits right & mask */
EMIT(PPC_RAW_RLWINM(dst_reg, dst_reg, 24, 16, 31));
break;
case 32:
/*
* Rotate word left by 8 bits:
* 2 bytes are already in their final position
* -- byte 2 and 4 (of bytes 1, 2, 3 and 4)
*/
EMIT(PPC_RAW_RLWINM(_R0, src2_reg, 8, 0, 31));
/* Rotate 24 bits and insert byte 1 */
EMIT(PPC_RAW_RLWIMI(_R0, src2_reg, 24, 0, 7));
/* Rotate 24 bits and insert byte 3 */
EMIT(PPC_RAW_RLWIMI(_R0, src2_reg, 24, 16, 23));
EMIT(PPC_RAW_MR(dst_reg, _R0));
break;
case 64:
bpf_set_seen_register(ctx, tmp_reg);
EMIT(PPC_RAW_RLWINM(tmp_reg, src2_reg, 8, 0, 31));
EMIT(PPC_RAW_RLWINM(_R0, src2_reg_h, 8, 0, 31));
/* Rotate 24 bits and insert byte 1 */
EMIT(PPC_RAW_RLWIMI(tmp_reg, src2_reg, 24, 0, 7));
EMIT(PPC_RAW_RLWIMI(_R0, src2_reg_h, 24, 0, 7));
/* Rotate 24 bits and insert byte 3 */
EMIT(PPC_RAW_RLWIMI(tmp_reg, src2_reg, 24, 16, 23));
EMIT(PPC_RAW_RLWIMI(_R0, src2_reg_h, 24, 16, 23));
EMIT(PPC_RAW_MR(dst_reg, _R0));
EMIT(PPC_RAW_MR(dst_reg_h, tmp_reg));
break;
}
break;
case BPF_ALU | BPF_END | BPF_FROM_BE:
switch (imm) {
case 16:
/* zero-extend 16 bits into 32 bits */
EMIT(PPC_RAW_RLWINM(dst_reg, src2_reg, 0, 16, 31));
break;
case 32:
case 64:
/* nop */
break;
}
break;
/*
* BPF_ST NOSPEC (speculation barrier)
*/
case BPF_ST | BPF_NOSPEC:
break;
/*
* BPF_ST(X)
*/
case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src */
EMIT(PPC_RAW_STB(src_reg, dst_reg, off));
break;
case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
PPC_LI32(_R0, imm);
EMIT(PPC_RAW_STB(_R0, dst_reg, off));
break;
case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
EMIT(PPC_RAW_STH(src_reg, dst_reg, off));
break;
case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
PPC_LI32(_R0, imm);
EMIT(PPC_RAW_STH(_R0, dst_reg, off));
break;
case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
EMIT(PPC_RAW_STW(src_reg, dst_reg, off));
break;
case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
PPC_LI32(_R0, imm);
EMIT(PPC_RAW_STW(_R0, dst_reg, off));
break;
case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
EMIT(PPC_RAW_STW(src_reg_h, dst_reg, off));
EMIT(PPC_RAW_STW(src_reg, dst_reg, off + 4));
break;
case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
PPC_LI32(_R0, imm);
EMIT(PPC_RAW_STW(_R0, dst_reg, off + 4));
PPC_EX32(_R0, imm);
EMIT(PPC_RAW_STW(_R0, dst_reg, off));
break;
/*
* BPF_STX ATOMIC (atomic ops)
*/
case BPF_STX | BPF_ATOMIC | BPF_W:
save_reg = _R0;
ret_reg = src_reg;
bpf_set_seen_register(ctx, tmp_reg);
bpf_set_seen_register(ctx, ax_reg);
/* Get offset into TMP_REG */
EMIT(PPC_RAW_LI(tmp_reg, off));
tmp_idx = ctx->idx * 4;
/* load value from memory into r0 */
EMIT(PPC_RAW_LWARX(_R0, tmp_reg, dst_reg, 0));
/* Save old value in BPF_REG_AX */
if (imm & BPF_FETCH)
EMIT(PPC_RAW_MR(ax_reg, _R0));
switch (imm) {
case BPF_ADD:
case BPF_ADD | BPF_FETCH:
EMIT(PPC_RAW_ADD(_R0, _R0, src_reg));
break;
case BPF_AND:
case BPF_AND | BPF_FETCH:
EMIT(PPC_RAW_AND(_R0, _R0, src_reg));
break;
case BPF_OR:
case BPF_OR | BPF_FETCH:
EMIT(PPC_RAW_OR(_R0, _R0, src_reg));
break;
case BPF_XOR:
case BPF_XOR | BPF_FETCH:
EMIT(PPC_RAW_XOR(_R0, _R0, src_reg));
break;
case BPF_CMPXCHG:
/*
* Return old value in BPF_REG_0 for BPF_CMPXCHG &
* in src_reg for other cases.
*/
ret_reg = bpf_to_ppc(BPF_REG_0);
/* Compare with old value in BPF_REG_0 */
EMIT(PPC_RAW_CMPW(bpf_to_ppc(BPF_REG_0), _R0));
/* Don't set if different from old value */
PPC_BCC_SHORT(COND_NE, (ctx->idx + 3) * 4);
fallthrough;
case BPF_XCHG:
save_reg = src_reg;
break;
default:
pr_err_ratelimited("eBPF filter atomic op code %02x (@%d) unsupported\n",
code, i);
return -EOPNOTSUPP;
}
/* store new value */
EMIT(PPC_RAW_STWCX(save_reg, tmp_reg, dst_reg));
/* we're done if this succeeded */
PPC_BCC_SHORT(COND_NE, tmp_idx);
/* For the BPF_FETCH variant, get old data into src_reg */
if (imm & BPF_FETCH) {
EMIT(PPC_RAW_MR(ret_reg, ax_reg));
if (!fp->aux->verifier_zext)
EMIT(PPC_RAW_LI(ret_reg - 1, 0)); /* higher 32-bit */
}
break;
case BPF_STX | BPF_ATOMIC | BPF_DW: /* *(u64 *)(dst + off) += src */
return -EOPNOTSUPP;
/*
* BPF_LDX
*/
case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
case BPF_LDX | BPF_PROBE_MEM | BPF_B:
case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
case BPF_LDX | BPF_PROBE_MEM | BPF_H:
case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
case BPF_LDX | BPF_PROBE_MEM | BPF_W:
case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
/*
* As PTR_TO_BTF_ID that uses BPF_PROBE_MEM mode could either be a valid
* kernel pointer or NULL but not a userspace address, execute BPF_PROBE_MEM
* load only if addr is kernel address (see is_kernel_addr()), otherwise
* set dst_reg=0 and move on.
*/
if (BPF_MODE(code) == BPF_PROBE_MEM) {
PPC_LI32(_R0, TASK_SIZE - off);
EMIT(PPC_RAW_CMPLW(src_reg, _R0));
PPC_BCC_SHORT(COND_GT, (ctx->idx + 4) * 4);
EMIT(PPC_RAW_LI(dst_reg, 0));
/*
* For BPF_DW case, "li reg_h,0" would be needed when
* !fp->aux->verifier_zext. Emit NOP otherwise.
*
* Note that "li reg_h,0" is emitted for BPF_B/H/W case,
* if necessary. So, jump there instead of emitting an
* additional "li reg_h,0" instruction.
*/
if (size == BPF_DW && !fp->aux->verifier_zext)
EMIT(PPC_RAW_LI(dst_reg_h, 0));
else
EMIT(PPC_RAW_NOP());
/*
* Need to jump two instructions instead of one for BPF_DW case
* as there are two load instructions for dst_reg_h & dst_reg
* respectively.
*/
if (size == BPF_DW)
PPC_JMP((ctx->idx + 3) * 4);
else
PPC_JMP((ctx->idx + 2) * 4);
}
switch (size) {
case BPF_B:
EMIT(PPC_RAW_LBZ(dst_reg, src_reg, off));
break;
case BPF_H:
EMIT(PPC_RAW_LHZ(dst_reg, src_reg, off));
break;
case BPF_W:
EMIT(PPC_RAW_LWZ(dst_reg, src_reg, off));
break;
case BPF_DW:
EMIT(PPC_RAW_LWZ(dst_reg_h, src_reg, off));
EMIT(PPC_RAW_LWZ(dst_reg, src_reg, off + 4));
break;
}
if (size != BPF_DW && !fp->aux->verifier_zext)
EMIT(PPC_RAW_LI(dst_reg_h, 0));
if (BPF_MODE(code) == BPF_PROBE_MEM) {
int insn_idx = ctx->idx - 1;
int jmp_off = 4;
/*
* In case of BPF_DW, two lwz instructions are emitted, one
* for higher 32-bit and another for lower 32-bit. So, set
* ex->insn to the first of the two and jump over both
* instructions in fixup.
*
* Similarly, with !verifier_zext, two instructions are
* emitted for BPF_B/H/W case. So, set ex->insn to the
* instruction that could fault and skip over both
* instructions.
*/
if (size == BPF_DW || !fp->aux->verifier_zext) {
insn_idx -= 1;
jmp_off += 4;
}
ret = bpf_add_extable_entry(fp, image, fimage, pass, ctx, insn_idx,
jmp_off, dst_reg);
if (ret)
return ret;
}
break;
/*
* Doubleword load
* 16 byte instruction that uses two 'struct bpf_insn'
*/
case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
tmp_idx = ctx->idx;
PPC_LI32(dst_reg_h, (u32)insn[i + 1].imm);
PPC_LI32(dst_reg, (u32)insn[i].imm);
/* padding to allow full 4 instructions for later patching */
if (!image)
for (j = ctx->idx - tmp_idx; j < 4; j++)
EMIT(PPC_RAW_NOP());
/* Adjust for two bpf instructions */
addrs[++i] = ctx->idx * 4;
break;
/*
* Return/Exit
*/
case BPF_JMP | BPF_EXIT:
/*
* If this isn't the very last instruction, branch to
* the epilogue. If we _are_ the last instruction,
* we'll just fall through to the epilogue.
*/
if (i != flen - 1) {
ret = bpf_jit_emit_exit_insn(image, ctx, _R0, exit_addr);
if (ret)
return ret;
}
/* else fall through to the epilogue */
break;
/*
* Call kernel helper or bpf function
*/
case BPF_JMP | BPF_CALL:
ctx->seen |= SEEN_FUNC;
ret = bpf_jit_get_func_addr(fp, &insn[i], extra_pass,
&func_addr, &func_addr_fixed);
if (ret < 0)
return ret;
if (bpf_is_seen_register(ctx, bpf_to_ppc(BPF_REG_5))) {
EMIT(PPC_RAW_STW(bpf_to_ppc(BPF_REG_5) - 1, _R1, 8));
EMIT(PPC_RAW_STW(bpf_to_ppc(BPF_REG_5), _R1, 12));
}
ret = bpf_jit_emit_func_call_rel(image, fimage, ctx, func_addr);
if (ret)
return ret;
EMIT(PPC_RAW_MR(bpf_to_ppc(BPF_REG_0) - 1, _R3));
EMIT(PPC_RAW_MR(bpf_to_ppc(BPF_REG_0), _R4));
break;
/*
* Jumps and branches
*/
case BPF_JMP | BPF_JA:
PPC_JMP(addrs[i + 1 + off]);
break;
case BPF_JMP | BPF_JGT | BPF_K:
case BPF_JMP | BPF_JGT | BPF_X:
case BPF_JMP | BPF_JSGT | BPF_K:
case BPF_JMP | BPF_JSGT | BPF_X:
case BPF_JMP32 | BPF_JGT | BPF_K:
case BPF_JMP32 | BPF_JGT | BPF_X:
case BPF_JMP32 | BPF_JSGT | BPF_K:
case BPF_JMP32 | BPF_JSGT | BPF_X:
true_cond = COND_GT;
goto cond_branch;
case BPF_JMP | BPF_JLT | BPF_K:
case BPF_JMP | BPF_JLT | BPF_X:
case BPF_JMP | BPF_JSLT | BPF_K:
case BPF_JMP | BPF_JSLT | BPF_X:
case BPF_JMP32 | BPF_JLT | BPF_K:
case BPF_JMP32 | BPF_JLT | BPF_X:
case BPF_JMP32 | BPF_JSLT | BPF_K:
case BPF_JMP32 | BPF_JSLT | BPF_X:
true_cond = COND_LT;
goto cond_branch;
case BPF_JMP | BPF_JGE | BPF_K:
case BPF_JMP | BPF_JGE | BPF_X:
case BPF_JMP | BPF_JSGE | BPF_K:
case BPF_JMP | BPF_JSGE | BPF_X:
case BPF_JMP32 | BPF_JGE | BPF_K:
case BPF_JMP32 | BPF_JGE | BPF_X:
case BPF_JMP32 | BPF_JSGE | BPF_K:
case BPF_JMP32 | BPF_JSGE | BPF_X:
true_cond = COND_GE;
goto cond_branch;
case BPF_JMP | BPF_JLE | BPF_K:
case BPF_JMP | BPF_JLE | BPF_X:
case BPF_JMP | BPF_JSLE | BPF_K:
case BPF_JMP | BPF_JSLE | BPF_X:
case BPF_JMP32 | BPF_JLE | BPF_K:
case BPF_JMP32 | BPF_JLE | BPF_X:
case BPF_JMP32 | BPF_JSLE | BPF_K:
case BPF_JMP32 | BPF_JSLE | BPF_X:
true_cond = COND_LE;
goto cond_branch;
case BPF_JMP | BPF_JEQ | BPF_K:
case BPF_JMP | BPF_JEQ | BPF_X:
case BPF_JMP32 | BPF_JEQ | BPF_K:
case BPF_JMP32 | BPF_JEQ | BPF_X:
true_cond = COND_EQ;
goto cond_branch;
case BPF_JMP | BPF_JNE | BPF_K:
case BPF_JMP | BPF_JNE | BPF_X:
case BPF_JMP32 | BPF_JNE | BPF_K:
case BPF_JMP32 | BPF_JNE | BPF_X:
true_cond = COND_NE;
goto cond_branch;
case BPF_JMP | BPF_JSET | BPF_K:
case BPF_JMP | BPF_JSET | BPF_X:
case BPF_JMP32 | BPF_JSET | BPF_K:
case BPF_JMP32 | BPF_JSET | BPF_X:
true_cond = COND_NE;
/* fallthrough; */
cond_branch:
switch (code) {
case BPF_JMP | BPF_JGT | BPF_X:
case BPF_JMP | BPF_JLT | BPF_X:
case BPF_JMP | BPF_JGE | BPF_X:
case BPF_JMP | BPF_JLE | BPF_X:
case BPF_JMP | BPF_JEQ | BPF_X:
case BPF_JMP | BPF_JNE | BPF_X:
/* unsigned comparison */
EMIT(PPC_RAW_CMPLW(dst_reg_h, src_reg_h));
PPC_BCC_SHORT(COND_NE, (ctx->idx + 2) * 4);
EMIT(PPC_RAW_CMPLW(dst_reg, src_reg));
break;
case BPF_JMP32 | BPF_JGT | BPF_X:
case BPF_JMP32 | BPF_JLT | BPF_X:
case BPF_JMP32 | BPF_JGE | BPF_X:
case BPF_JMP32 | BPF_JLE | BPF_X:
case BPF_JMP32 | BPF_JEQ | BPF_X:
case BPF_JMP32 | BPF_JNE | BPF_X:
/* unsigned comparison */
EMIT(PPC_RAW_CMPLW(dst_reg, src_reg));
break;
case BPF_JMP | BPF_JSGT | BPF_X:
case BPF_JMP | BPF_JSLT | BPF_X:
case BPF_JMP | BPF_JSGE | BPF_X:
case BPF_JMP | BPF_JSLE | BPF_X:
/* signed comparison */
EMIT(PPC_RAW_CMPW(dst_reg_h, src_reg_h));
PPC_BCC_SHORT(COND_NE, (ctx->idx + 2) * 4);
EMIT(PPC_RAW_CMPLW(dst_reg, src_reg));
break;
case BPF_JMP32 | BPF_JSGT | BPF_X:
case BPF_JMP32 | BPF_JSLT | BPF_X:
case BPF_JMP32 | BPF_JSGE | BPF_X:
case BPF_JMP32 | BPF_JSLE | BPF_X:
/* signed comparison */
EMIT(PPC_RAW_CMPW(dst_reg, src_reg));
break;
case BPF_JMP | BPF_JSET | BPF_X:
EMIT(PPC_RAW_AND_DOT(_R0, dst_reg_h, src_reg_h));
PPC_BCC_SHORT(COND_NE, (ctx->idx + 2) * 4);
EMIT(PPC_RAW_AND_DOT(_R0, dst_reg, src_reg));
break;
case BPF_JMP32 | BPF_JSET | BPF_X: {
EMIT(PPC_RAW_AND_DOT(_R0, dst_reg, src_reg));
break;
case BPF_JMP | BPF_JNE | BPF_K:
case BPF_JMP | BPF_JEQ | BPF_K:
case BPF_JMP | BPF_JGT | BPF_K:
case BPF_JMP | BPF_JLT | BPF_K:
case BPF_JMP | BPF_JGE | BPF_K:
case BPF_JMP | BPF_JLE | BPF_K:
/*
* Need sign-extended load, so only positive
* values can be used as imm in cmplwi
*/
if (imm >= 0 && imm < 32768) {
EMIT(PPC_RAW_CMPLWI(dst_reg_h, 0));
PPC_BCC_SHORT(COND_NE, (ctx->idx + 2) * 4);
EMIT(PPC_RAW_CMPLWI(dst_reg, imm));
} else {
/* sign-extending load ... but unsigned comparison */
PPC_EX32(_R0, imm);
EMIT(PPC_RAW_CMPLW(dst_reg_h, _R0));
PPC_LI32(_R0, imm);
PPC_BCC_SHORT(COND_NE, (ctx->idx + 2) * 4);
EMIT(PPC_RAW_CMPLW(dst_reg, _R0));
}
break;
case BPF_JMP32 | BPF_JNE | BPF_K:
case BPF_JMP32 | BPF_JEQ | BPF_K:
case BPF_JMP32 | BPF_JGT | BPF_K:
case BPF_JMP32 | BPF_JLT | BPF_K:
case BPF_JMP32 | BPF_JGE | BPF_K:
case BPF_JMP32 | BPF_JLE | BPF_K:
if (imm >= 0 && imm < 65536) {
EMIT(PPC_RAW_CMPLWI(dst_reg, imm));
} else {
PPC_LI32(_R0, imm);
EMIT(PPC_RAW_CMPLW(dst_reg, _R0));
}
break;
}
case BPF_JMP | BPF_JSGT | BPF_K:
case BPF_JMP | BPF_JSLT | BPF_K:
case BPF_JMP | BPF_JSGE | BPF_K:
case BPF_JMP | BPF_JSLE | BPF_K:
if (imm >= 0 && imm < 65536) {
EMIT(PPC_RAW_CMPWI(dst_reg_h, imm < 0 ? -1 : 0));
PPC_BCC_SHORT(COND_NE, (ctx->idx + 2) * 4);
EMIT(PPC_RAW_CMPLWI(dst_reg, imm));
} else {
/* sign-extending load */
EMIT(PPC_RAW_CMPWI(dst_reg_h, imm < 0 ? -1 : 0));
PPC_LI32(_R0, imm);
PPC_BCC_SHORT(COND_NE, (ctx->idx + 2) * 4);
EMIT(PPC_RAW_CMPLW(dst_reg, _R0));
}
break;
case BPF_JMP32 | BPF_JSGT | BPF_K:
case BPF_JMP32 | BPF_JSLT | BPF_K:
case BPF_JMP32 | BPF_JSGE | BPF_K:
case BPF_JMP32 | BPF_JSLE | BPF_K:
/*
* signed comparison, so any 16-bit value
* can be used in cmpwi
*/
if (imm >= -32768 && imm < 32768) {
EMIT(PPC_RAW_CMPWI(dst_reg, imm));
} else {
/* sign-extending load */
PPC_LI32(_R0, imm);
EMIT(PPC_RAW_CMPW(dst_reg, _R0));
}
break;
case BPF_JMP | BPF_JSET | BPF_K:
/* andi does not sign-extend the immediate */
if (imm >= 0 && imm < 32768) {
/* PPC_ANDI is _only/always_ dot-form */
EMIT(PPC_RAW_ANDI(_R0, dst_reg, imm));
} else {
PPC_LI32(_R0, imm);
if (imm < 0) {
EMIT(PPC_RAW_CMPWI(dst_reg_h, 0));
PPC_BCC_SHORT(COND_NE, (ctx->idx + 2) * 4);
}
EMIT(PPC_RAW_AND_DOT(_R0, dst_reg, _R0));
}
break;
case BPF_JMP32 | BPF_JSET | BPF_K:
/* andi does not sign-extend the immediate */
if (imm >= 0 && imm < 32768) {
/* PPC_ANDI is _only/always_ dot-form */
EMIT(PPC_RAW_ANDI(_R0, dst_reg, imm));
} else {
PPC_LI32(_R0, imm);
EMIT(PPC_RAW_AND_DOT(_R0, dst_reg, _R0));
}
break;
}
PPC_BCC(true_cond, addrs[i + 1 + off]);
break;
/*
* Tail call
*/
case BPF_JMP | BPF_TAIL_CALL:
ctx->seen |= SEEN_TAILCALL;
ret = bpf_jit_emit_tail_call(image, ctx, addrs[i + 1]);
if (ret < 0)
return ret;
break;
default:
/*
* The filter contains something cruel & unusual.
* We don't handle it, but also there shouldn't be
* anything missing from our list.
*/
pr_err_ratelimited("eBPF filter opcode %04x (@%d) unsupported\n", code, i);
return -EOPNOTSUPP;
}
if (BPF_CLASS(code) == BPF_ALU && !fp->aux->verifier_zext &&
!insn_is_zext(&insn[i + 1]) && !(BPF_OP(code) == BPF_END && imm == 64))
EMIT(PPC_RAW_LI(dst_reg_h, 0));
}
/* Set end-of-body-code address for exit. */
addrs[i] = ctx->idx * 4;
return 0;
}