892 lines
24 KiB
C
892 lines
24 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/lockdep.h>
|
||
|
#include <linux/sysfs.h>
|
||
|
#include <linux/kobject.h>
|
||
|
#include <linux/memory.h>
|
||
|
#include <linux/memory-tiers.h>
|
||
|
#include <linux/notifier.h>
|
||
|
|
||
|
#include "internal.h"
|
||
|
|
||
|
struct memory_tier {
|
||
|
/* hierarchy of memory tiers */
|
||
|
struct list_head list;
|
||
|
/* list of all memory types part of this tier */
|
||
|
struct list_head memory_types;
|
||
|
/*
|
||
|
* start value of abstract distance. memory tier maps
|
||
|
* an abstract distance range,
|
||
|
* adistance_start .. adistance_start + MEMTIER_CHUNK_SIZE
|
||
|
*/
|
||
|
int adistance_start;
|
||
|
struct device dev;
|
||
|
/* All the nodes that are part of all the lower memory tiers. */
|
||
|
nodemask_t lower_tier_mask;
|
||
|
};
|
||
|
|
||
|
struct demotion_nodes {
|
||
|
nodemask_t preferred;
|
||
|
};
|
||
|
|
||
|
struct node_memory_type_map {
|
||
|
struct memory_dev_type *memtype;
|
||
|
int map_count;
|
||
|
};
|
||
|
|
||
|
static DEFINE_MUTEX(memory_tier_lock);
|
||
|
static LIST_HEAD(memory_tiers);
|
||
|
static struct node_memory_type_map node_memory_types[MAX_NUMNODES];
|
||
|
struct memory_dev_type *default_dram_type;
|
||
|
|
||
|
static struct bus_type memory_tier_subsys = {
|
||
|
.name = "memory_tiering",
|
||
|
.dev_name = "memory_tier",
|
||
|
};
|
||
|
|
||
|
#ifdef CONFIG_MIGRATION
|
||
|
static int top_tier_adistance;
|
||
|
/*
|
||
|
* node_demotion[] examples:
|
||
|
*
|
||
|
* Example 1:
|
||
|
*
|
||
|
* Node 0 & 1 are CPU + DRAM nodes, node 2 & 3 are PMEM nodes.
|
||
|
*
|
||
|
* node distances:
|
||
|
* node 0 1 2 3
|
||
|
* 0 10 20 30 40
|
||
|
* 1 20 10 40 30
|
||
|
* 2 30 40 10 40
|
||
|
* 3 40 30 40 10
|
||
|
*
|
||
|
* memory_tiers0 = 0-1
|
||
|
* memory_tiers1 = 2-3
|
||
|
*
|
||
|
* node_demotion[0].preferred = 2
|
||
|
* node_demotion[1].preferred = 3
|
||
|
* node_demotion[2].preferred = <empty>
|
||
|
* node_demotion[3].preferred = <empty>
|
||
|
*
|
||
|
* Example 2:
|
||
|
*
|
||
|
* Node 0 & 1 are CPU + DRAM nodes, node 2 is memory-only DRAM node.
|
||
|
*
|
||
|
* node distances:
|
||
|
* node 0 1 2
|
||
|
* 0 10 20 30
|
||
|
* 1 20 10 30
|
||
|
* 2 30 30 10
|
||
|
*
|
||
|
* memory_tiers0 = 0-2
|
||
|
*
|
||
|
* node_demotion[0].preferred = <empty>
|
||
|
* node_demotion[1].preferred = <empty>
|
||
|
* node_demotion[2].preferred = <empty>
|
||
|
*
|
||
|
* Example 3:
|
||
|
*
|
||
|
* Node 0 is CPU + DRAM nodes, Node 1 is HBM node, node 2 is PMEM node.
|
||
|
*
|
||
|
* node distances:
|
||
|
* node 0 1 2
|
||
|
* 0 10 20 30
|
||
|
* 1 20 10 40
|
||
|
* 2 30 40 10
|
||
|
*
|
||
|
* memory_tiers0 = 1
|
||
|
* memory_tiers1 = 0
|
||
|
* memory_tiers2 = 2
|
||
|
*
|
||
|
* node_demotion[0].preferred = 2
|
||
|
* node_demotion[1].preferred = 0
|
||
|
* node_demotion[2].preferred = <empty>
|
||
|
*
|
||
|
*/
|
||
|
static struct demotion_nodes *node_demotion __read_mostly;
|
||
|
#endif /* CONFIG_MIGRATION */
|
||
|
|
||
|
static BLOCKING_NOTIFIER_HEAD(mt_adistance_algorithms);
|
||
|
|
||
|
static bool default_dram_perf_error;
|
||
|
static struct access_coordinate default_dram_perf;
|
||
|
static int default_dram_perf_ref_nid = NUMA_NO_NODE;
|
||
|
static const char *default_dram_perf_ref_source;
|
||
|
|
||
|
static inline struct memory_tier *to_memory_tier(struct device *device)
|
||
|
{
|
||
|
return container_of(device, struct memory_tier, dev);
|
||
|
}
|
||
|
|
||
|
static __always_inline nodemask_t get_memtier_nodemask(struct memory_tier *memtier)
|
||
|
{
|
||
|
nodemask_t nodes = NODE_MASK_NONE;
|
||
|
struct memory_dev_type *memtype;
|
||
|
|
||
|
list_for_each_entry(memtype, &memtier->memory_types, tier_sibling)
|
||
|
nodes_or(nodes, nodes, memtype->nodes);
|
||
|
|
||
|
return nodes;
|
||
|
}
|
||
|
|
||
|
static void memory_tier_device_release(struct device *dev)
|
||
|
{
|
||
|
struct memory_tier *tier = to_memory_tier(dev);
|
||
|
/*
|
||
|
* synchronize_rcu in clear_node_memory_tier makes sure
|
||
|
* we don't have rcu access to this memory tier.
|
||
|
*/
|
||
|
kfree(tier);
|
||
|
}
|
||
|
|
||
|
static ssize_t nodelist_show(struct device *dev,
|
||
|
struct device_attribute *attr, char *buf)
|
||
|
{
|
||
|
int ret;
|
||
|
nodemask_t nmask;
|
||
|
|
||
|
mutex_lock(&memory_tier_lock);
|
||
|
nmask = get_memtier_nodemask(to_memory_tier(dev));
|
||
|
ret = sysfs_emit(buf, "%*pbl\n", nodemask_pr_args(&nmask));
|
||
|
mutex_unlock(&memory_tier_lock);
|
||
|
return ret;
|
||
|
}
|
||
|
static DEVICE_ATTR_RO(nodelist);
|
||
|
|
||
|
static struct attribute *memtier_dev_attrs[] = {
|
||
|
&dev_attr_nodelist.attr,
|
||
|
NULL
|
||
|
};
|
||
|
|
||
|
static const struct attribute_group memtier_dev_group = {
|
||
|
.attrs = memtier_dev_attrs,
|
||
|
};
|
||
|
|
||
|
static const struct attribute_group *memtier_dev_groups[] = {
|
||
|
&memtier_dev_group,
|
||
|
NULL
|
||
|
};
|
||
|
|
||
|
static struct memory_tier *find_create_memory_tier(struct memory_dev_type *memtype)
|
||
|
{
|
||
|
int ret;
|
||
|
bool found_slot = false;
|
||
|
struct memory_tier *memtier, *new_memtier;
|
||
|
int adistance = memtype->adistance;
|
||
|
unsigned int memtier_adistance_chunk_size = MEMTIER_CHUNK_SIZE;
|
||
|
|
||
|
lockdep_assert_held_once(&memory_tier_lock);
|
||
|
|
||
|
adistance = round_down(adistance, memtier_adistance_chunk_size);
|
||
|
/*
|
||
|
* If the memtype is already part of a memory tier,
|
||
|
* just return that.
|
||
|
*/
|
||
|
if (!list_empty(&memtype->tier_sibling)) {
|
||
|
list_for_each_entry(memtier, &memory_tiers, list) {
|
||
|
if (adistance == memtier->adistance_start)
|
||
|
return memtier;
|
||
|
}
|
||
|
WARN_ON(1);
|
||
|
return ERR_PTR(-EINVAL);
|
||
|
}
|
||
|
|
||
|
list_for_each_entry(memtier, &memory_tiers, list) {
|
||
|
if (adistance == memtier->adistance_start) {
|
||
|
goto link_memtype;
|
||
|
} else if (adistance < memtier->adistance_start) {
|
||
|
found_slot = true;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
new_memtier = kzalloc(sizeof(struct memory_tier), GFP_KERNEL);
|
||
|
if (!new_memtier)
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
|
||
|
new_memtier->adistance_start = adistance;
|
||
|
INIT_LIST_HEAD(&new_memtier->list);
|
||
|
INIT_LIST_HEAD(&new_memtier->memory_types);
|
||
|
if (found_slot)
|
||
|
list_add_tail(&new_memtier->list, &memtier->list);
|
||
|
else
|
||
|
list_add_tail(&new_memtier->list, &memory_tiers);
|
||
|
|
||
|
new_memtier->dev.id = adistance >> MEMTIER_CHUNK_BITS;
|
||
|
new_memtier->dev.bus = &memory_tier_subsys;
|
||
|
new_memtier->dev.release = memory_tier_device_release;
|
||
|
new_memtier->dev.groups = memtier_dev_groups;
|
||
|
|
||
|
ret = device_register(&new_memtier->dev);
|
||
|
if (ret) {
|
||
|
list_del(&new_memtier->list);
|
||
|
put_device(&new_memtier->dev);
|
||
|
return ERR_PTR(ret);
|
||
|
}
|
||
|
memtier = new_memtier;
|
||
|
|
||
|
link_memtype:
|
||
|
list_add(&memtype->tier_sibling, &memtier->memory_types);
|
||
|
return memtier;
|
||
|
}
|
||
|
|
||
|
static struct memory_tier *__node_get_memory_tier(int node)
|
||
|
{
|
||
|
pg_data_t *pgdat;
|
||
|
|
||
|
pgdat = NODE_DATA(node);
|
||
|
if (!pgdat)
|
||
|
return NULL;
|
||
|
/*
|
||
|
* Since we hold memory_tier_lock, we can avoid
|
||
|
* RCU read locks when accessing the details. No
|
||
|
* parallel updates are possible here.
|
||
|
*/
|
||
|
return rcu_dereference_check(pgdat->memtier,
|
||
|
lockdep_is_held(&memory_tier_lock));
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_MIGRATION
|
||
|
bool node_is_toptier(int node)
|
||
|
{
|
||
|
bool toptier;
|
||
|
pg_data_t *pgdat;
|
||
|
struct memory_tier *memtier;
|
||
|
|
||
|
pgdat = NODE_DATA(node);
|
||
|
if (!pgdat)
|
||
|
return false;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
memtier = rcu_dereference(pgdat->memtier);
|
||
|
if (!memtier) {
|
||
|
toptier = true;
|
||
|
goto out;
|
||
|
}
|
||
|
if (memtier->adistance_start <= top_tier_adistance)
|
||
|
toptier = true;
|
||
|
else
|
||
|
toptier = false;
|
||
|
out:
|
||
|
rcu_read_unlock();
|
||
|
return toptier;
|
||
|
}
|
||
|
|
||
|
void node_get_allowed_targets(pg_data_t *pgdat, nodemask_t *targets)
|
||
|
{
|
||
|
struct memory_tier *memtier;
|
||
|
|
||
|
/*
|
||
|
* pg_data_t.memtier updates includes a synchronize_rcu()
|
||
|
* which ensures that we either find NULL or a valid memtier
|
||
|
* in NODE_DATA. protect the access via rcu_read_lock();
|
||
|
*/
|
||
|
rcu_read_lock();
|
||
|
memtier = rcu_dereference(pgdat->memtier);
|
||
|
if (memtier)
|
||
|
*targets = memtier->lower_tier_mask;
|
||
|
else
|
||
|
*targets = NODE_MASK_NONE;
|
||
|
rcu_read_unlock();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* next_demotion_node() - Get the next node in the demotion path
|
||
|
* @node: The starting node to lookup the next node
|
||
|
*
|
||
|
* Return: node id for next memory node in the demotion path hierarchy
|
||
|
* from @node; NUMA_NO_NODE if @node is terminal. This does not keep
|
||
|
* @node online or guarantee that it *continues* to be the next demotion
|
||
|
* target.
|
||
|
*/
|
||
|
int next_demotion_node(int node)
|
||
|
{
|
||
|
struct demotion_nodes *nd;
|
||
|
int target;
|
||
|
|
||
|
if (!node_demotion)
|
||
|
return NUMA_NO_NODE;
|
||
|
|
||
|
nd = &node_demotion[node];
|
||
|
|
||
|
/*
|
||
|
* node_demotion[] is updated without excluding this
|
||
|
* function from running.
|
||
|
*
|
||
|
* Make sure to use RCU over entire code blocks if
|
||
|
* node_demotion[] reads need to be consistent.
|
||
|
*/
|
||
|
rcu_read_lock();
|
||
|
/*
|
||
|
* If there are multiple target nodes, just select one
|
||
|
* target node randomly.
|
||
|
*
|
||
|
* In addition, we can also use round-robin to select
|
||
|
* target node, but we should introduce another variable
|
||
|
* for node_demotion[] to record last selected target node,
|
||
|
* that may cause cache ping-pong due to the changing of
|
||
|
* last target node. Or introducing per-cpu data to avoid
|
||
|
* caching issue, which seems more complicated. So selecting
|
||
|
* target node randomly seems better until now.
|
||
|
*/
|
||
|
target = node_random(&nd->preferred);
|
||
|
rcu_read_unlock();
|
||
|
|
||
|
return target;
|
||
|
}
|
||
|
|
||
|
static void disable_all_demotion_targets(void)
|
||
|
{
|
||
|
struct memory_tier *memtier;
|
||
|
int node;
|
||
|
|
||
|
for_each_node_state(node, N_MEMORY) {
|
||
|
node_demotion[node].preferred = NODE_MASK_NONE;
|
||
|
/*
|
||
|
* We are holding memory_tier_lock, it is safe
|
||
|
* to access pgda->memtier.
|
||
|
*/
|
||
|
memtier = __node_get_memory_tier(node);
|
||
|
if (memtier)
|
||
|
memtier->lower_tier_mask = NODE_MASK_NONE;
|
||
|
}
|
||
|
/*
|
||
|
* Ensure that the "disable" is visible across the system.
|
||
|
* Readers will see either a combination of before+disable
|
||
|
* state or disable+after. They will never see before and
|
||
|
* after state together.
|
||
|
*/
|
||
|
synchronize_rcu();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Find an automatic demotion target for all memory
|
||
|
* nodes. Failing here is OK. It might just indicate
|
||
|
* being at the end of a chain.
|
||
|
*/
|
||
|
static void establish_demotion_targets(void)
|
||
|
{
|
||
|
struct memory_tier *memtier;
|
||
|
struct demotion_nodes *nd;
|
||
|
int target = NUMA_NO_NODE, node;
|
||
|
int distance, best_distance;
|
||
|
nodemask_t tier_nodes, lower_tier;
|
||
|
|
||
|
lockdep_assert_held_once(&memory_tier_lock);
|
||
|
|
||
|
if (!node_demotion)
|
||
|
return;
|
||
|
|
||
|
disable_all_demotion_targets();
|
||
|
|
||
|
for_each_node_state(node, N_MEMORY) {
|
||
|
best_distance = -1;
|
||
|
nd = &node_demotion[node];
|
||
|
|
||
|
memtier = __node_get_memory_tier(node);
|
||
|
if (!memtier || list_is_last(&memtier->list, &memory_tiers))
|
||
|
continue;
|
||
|
/*
|
||
|
* Get the lower memtier to find the demotion node list.
|
||
|
*/
|
||
|
memtier = list_next_entry(memtier, list);
|
||
|
tier_nodes = get_memtier_nodemask(memtier);
|
||
|
/*
|
||
|
* find_next_best_node, use 'used' nodemask as a skip list.
|
||
|
* Add all memory nodes except the selected memory tier
|
||
|
* nodelist to skip list so that we find the best node from the
|
||
|
* memtier nodelist.
|
||
|
*/
|
||
|
nodes_andnot(tier_nodes, node_states[N_MEMORY], tier_nodes);
|
||
|
|
||
|
/*
|
||
|
* Find all the nodes in the memory tier node list of same best distance.
|
||
|
* add them to the preferred mask. We randomly select between nodes
|
||
|
* in the preferred mask when allocating pages during demotion.
|
||
|
*/
|
||
|
do {
|
||
|
target = find_next_best_node(node, &tier_nodes);
|
||
|
if (target == NUMA_NO_NODE)
|
||
|
break;
|
||
|
|
||
|
distance = node_distance(node, target);
|
||
|
if (distance == best_distance || best_distance == -1) {
|
||
|
best_distance = distance;
|
||
|
node_set(target, nd->preferred);
|
||
|
} else {
|
||
|
break;
|
||
|
}
|
||
|
} while (1);
|
||
|
}
|
||
|
/*
|
||
|
* Promotion is allowed from a memory tier to higher
|
||
|
* memory tier only if the memory tier doesn't include
|
||
|
* compute. We want to skip promotion from a memory tier,
|
||
|
* if any node that is part of the memory tier have CPUs.
|
||
|
* Once we detect such a memory tier, we consider that tier
|
||
|
* as top tiper from which promotion is not allowed.
|
||
|
*/
|
||
|
list_for_each_entry_reverse(memtier, &memory_tiers, list) {
|
||
|
tier_nodes = get_memtier_nodemask(memtier);
|
||
|
nodes_and(tier_nodes, node_states[N_CPU], tier_nodes);
|
||
|
if (!nodes_empty(tier_nodes)) {
|
||
|
/*
|
||
|
* abstract distance below the max value of this memtier
|
||
|
* is considered toptier.
|
||
|
*/
|
||
|
top_tier_adistance = memtier->adistance_start +
|
||
|
MEMTIER_CHUNK_SIZE - 1;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
/*
|
||
|
* Now build the lower_tier mask for each node collecting node mask from
|
||
|
* all memory tier below it. This allows us to fallback demotion page
|
||
|
* allocation to a set of nodes that is closer the above selected
|
||
|
* perferred node.
|
||
|
*/
|
||
|
lower_tier = node_states[N_MEMORY];
|
||
|
list_for_each_entry(memtier, &memory_tiers, list) {
|
||
|
/*
|
||
|
* Keep removing current tier from lower_tier nodes,
|
||
|
* This will remove all nodes in current and above
|
||
|
* memory tier from the lower_tier mask.
|
||
|
*/
|
||
|
tier_nodes = get_memtier_nodemask(memtier);
|
||
|
nodes_andnot(lower_tier, lower_tier, tier_nodes);
|
||
|
memtier->lower_tier_mask = lower_tier;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
static inline void establish_demotion_targets(void) {}
|
||
|
#endif /* CONFIG_MIGRATION */
|
||
|
|
||
|
static inline void __init_node_memory_type(int node, struct memory_dev_type *memtype)
|
||
|
{
|
||
|
if (!node_memory_types[node].memtype)
|
||
|
node_memory_types[node].memtype = memtype;
|
||
|
/*
|
||
|
* for each device getting added in the same NUMA node
|
||
|
* with this specific memtype, bump the map count. We
|
||
|
* Only take memtype device reference once, so that
|
||
|
* changing a node memtype can be done by droping the
|
||
|
* only reference count taken here.
|
||
|
*/
|
||
|
|
||
|
if (node_memory_types[node].memtype == memtype) {
|
||
|
if (!node_memory_types[node].map_count++)
|
||
|
kref_get(&memtype->kref);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static struct memory_tier *set_node_memory_tier(int node)
|
||
|
{
|
||
|
struct memory_tier *memtier;
|
||
|
struct memory_dev_type *memtype;
|
||
|
pg_data_t *pgdat = NODE_DATA(node);
|
||
|
|
||
|
|
||
|
lockdep_assert_held_once(&memory_tier_lock);
|
||
|
|
||
|
if (!node_state(node, N_MEMORY))
|
||
|
return ERR_PTR(-EINVAL);
|
||
|
|
||
|
__init_node_memory_type(node, default_dram_type);
|
||
|
|
||
|
memtype = node_memory_types[node].memtype;
|
||
|
node_set(node, memtype->nodes);
|
||
|
memtier = find_create_memory_tier(memtype);
|
||
|
if (!IS_ERR(memtier))
|
||
|
rcu_assign_pointer(pgdat->memtier, memtier);
|
||
|
return memtier;
|
||
|
}
|
||
|
|
||
|
static void destroy_memory_tier(struct memory_tier *memtier)
|
||
|
{
|
||
|
list_del(&memtier->list);
|
||
|
device_unregister(&memtier->dev);
|
||
|
}
|
||
|
|
||
|
static bool clear_node_memory_tier(int node)
|
||
|
{
|
||
|
bool cleared = false;
|
||
|
pg_data_t *pgdat;
|
||
|
struct memory_tier *memtier;
|
||
|
|
||
|
pgdat = NODE_DATA(node);
|
||
|
if (!pgdat)
|
||
|
return false;
|
||
|
|
||
|
/*
|
||
|
* Make sure that anybody looking at NODE_DATA who finds
|
||
|
* a valid memtier finds memory_dev_types with nodes still
|
||
|
* linked to the memtier. We achieve this by waiting for
|
||
|
* rcu read section to finish using synchronize_rcu.
|
||
|
* This also enables us to free the destroyed memory tier
|
||
|
* with kfree instead of kfree_rcu
|
||
|
*/
|
||
|
memtier = __node_get_memory_tier(node);
|
||
|
if (memtier) {
|
||
|
struct memory_dev_type *memtype;
|
||
|
|
||
|
rcu_assign_pointer(pgdat->memtier, NULL);
|
||
|
synchronize_rcu();
|
||
|
memtype = node_memory_types[node].memtype;
|
||
|
node_clear(node, memtype->nodes);
|
||
|
if (nodes_empty(memtype->nodes)) {
|
||
|
list_del_init(&memtype->tier_sibling);
|
||
|
if (list_empty(&memtier->memory_types))
|
||
|
destroy_memory_tier(memtier);
|
||
|
}
|
||
|
cleared = true;
|
||
|
}
|
||
|
return cleared;
|
||
|
}
|
||
|
|
||
|
static void release_memtype(struct kref *kref)
|
||
|
{
|
||
|
struct memory_dev_type *memtype;
|
||
|
|
||
|
memtype = container_of(kref, struct memory_dev_type, kref);
|
||
|
kfree(memtype);
|
||
|
}
|
||
|
|
||
|
struct memory_dev_type *alloc_memory_type(int adistance)
|
||
|
{
|
||
|
struct memory_dev_type *memtype;
|
||
|
|
||
|
memtype = kmalloc(sizeof(*memtype), GFP_KERNEL);
|
||
|
if (!memtype)
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
|
||
|
memtype->adistance = adistance;
|
||
|
INIT_LIST_HEAD(&memtype->tier_sibling);
|
||
|
memtype->nodes = NODE_MASK_NONE;
|
||
|
kref_init(&memtype->kref);
|
||
|
return memtype;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(alloc_memory_type);
|
||
|
|
||
|
void put_memory_type(struct memory_dev_type *memtype)
|
||
|
{
|
||
|
kref_put(&memtype->kref, release_memtype);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(put_memory_type);
|
||
|
|
||
|
void init_node_memory_type(int node, struct memory_dev_type *memtype)
|
||
|
{
|
||
|
|
||
|
mutex_lock(&memory_tier_lock);
|
||
|
__init_node_memory_type(node, memtype);
|
||
|
mutex_unlock(&memory_tier_lock);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(init_node_memory_type);
|
||
|
|
||
|
void clear_node_memory_type(int node, struct memory_dev_type *memtype)
|
||
|
{
|
||
|
mutex_lock(&memory_tier_lock);
|
||
|
if (node_memory_types[node].memtype == memtype || !memtype)
|
||
|
node_memory_types[node].map_count--;
|
||
|
/*
|
||
|
* If we umapped all the attached devices to this node,
|
||
|
* clear the node memory type.
|
||
|
*/
|
||
|
if (!node_memory_types[node].map_count) {
|
||
|
memtype = node_memory_types[node].memtype;
|
||
|
node_memory_types[node].memtype = NULL;
|
||
|
put_memory_type(memtype);
|
||
|
}
|
||
|
mutex_unlock(&memory_tier_lock);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(clear_node_memory_type);
|
||
|
|
||
|
static void dump_hmem_attrs(struct access_coordinate *coord, const char *prefix)
|
||
|
{
|
||
|
pr_info(
|
||
|
"%sread_latency: %u, write_latency: %u, read_bandwidth: %u, write_bandwidth: %u\n",
|
||
|
prefix, coord->read_latency, coord->write_latency,
|
||
|
coord->read_bandwidth, coord->write_bandwidth);
|
||
|
}
|
||
|
|
||
|
int mt_set_default_dram_perf(int nid, struct access_coordinate *perf,
|
||
|
const char *source)
|
||
|
{
|
||
|
int rc = 0;
|
||
|
|
||
|
mutex_lock(&memory_tier_lock);
|
||
|
if (default_dram_perf_error) {
|
||
|
rc = -EIO;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (perf->read_latency + perf->write_latency == 0 ||
|
||
|
perf->read_bandwidth + perf->write_bandwidth == 0) {
|
||
|
rc = -EINVAL;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (default_dram_perf_ref_nid == NUMA_NO_NODE) {
|
||
|
default_dram_perf = *perf;
|
||
|
default_dram_perf_ref_nid = nid;
|
||
|
default_dram_perf_ref_source = kstrdup(source, GFP_KERNEL);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The performance of all default DRAM nodes is expected to be
|
||
|
* same (that is, the variation is less than 10%). And it
|
||
|
* will be used as base to calculate the abstract distance of
|
||
|
* other memory nodes.
|
||
|
*/
|
||
|
if (abs(perf->read_latency - default_dram_perf.read_latency) * 10 >
|
||
|
default_dram_perf.read_latency ||
|
||
|
abs(perf->write_latency - default_dram_perf.write_latency) * 10 >
|
||
|
default_dram_perf.write_latency ||
|
||
|
abs(perf->read_bandwidth - default_dram_perf.read_bandwidth) * 10 >
|
||
|
default_dram_perf.read_bandwidth ||
|
||
|
abs(perf->write_bandwidth - default_dram_perf.write_bandwidth) * 10 >
|
||
|
default_dram_perf.write_bandwidth) {
|
||
|
pr_info(
|
||
|
"memory-tiers: the performance of DRAM node %d mismatches that of the reference\n"
|
||
|
"DRAM node %d.\n", nid, default_dram_perf_ref_nid);
|
||
|
pr_info(" performance of reference DRAM node %d:\n",
|
||
|
default_dram_perf_ref_nid);
|
||
|
dump_hmem_attrs(&default_dram_perf, " ");
|
||
|
pr_info(" performance of DRAM node %d:\n", nid);
|
||
|
dump_hmem_attrs(perf, " ");
|
||
|
pr_info(
|
||
|
" disable default DRAM node performance based abstract distance algorithm.\n");
|
||
|
default_dram_perf_error = true;
|
||
|
rc = -EINVAL;
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
mutex_unlock(&memory_tier_lock);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
int mt_perf_to_adistance(struct access_coordinate *perf, int *adist)
|
||
|
{
|
||
|
if (default_dram_perf_error)
|
||
|
return -EIO;
|
||
|
|
||
|
if (default_dram_perf_ref_nid == NUMA_NO_NODE)
|
||
|
return -ENOENT;
|
||
|
|
||
|
if (perf->read_latency + perf->write_latency == 0 ||
|
||
|
perf->read_bandwidth + perf->write_bandwidth == 0)
|
||
|
return -EINVAL;
|
||
|
|
||
|
mutex_lock(&memory_tier_lock);
|
||
|
/*
|
||
|
* The abstract distance of a memory node is in direct proportion to
|
||
|
* its memory latency (read + write) and inversely proportional to its
|
||
|
* memory bandwidth (read + write). The abstract distance, memory
|
||
|
* latency, and memory bandwidth of the default DRAM nodes are used as
|
||
|
* the base.
|
||
|
*/
|
||
|
*adist = MEMTIER_ADISTANCE_DRAM *
|
||
|
(perf->read_latency + perf->write_latency) /
|
||
|
(default_dram_perf.read_latency + default_dram_perf.write_latency) *
|
||
|
(default_dram_perf.read_bandwidth + default_dram_perf.write_bandwidth) /
|
||
|
(perf->read_bandwidth + perf->write_bandwidth);
|
||
|
mutex_unlock(&memory_tier_lock);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(mt_perf_to_adistance);
|
||
|
|
||
|
/**
|
||
|
* register_mt_adistance_algorithm() - Register memory tiering abstract distance algorithm
|
||
|
* @nb: The notifier block which describe the algorithm
|
||
|
*
|
||
|
* Return: 0 on success, errno on error.
|
||
|
*
|
||
|
* Every memory tiering abstract distance algorithm provider needs to
|
||
|
* register the algorithm with register_mt_adistance_algorithm(). To
|
||
|
* calculate the abstract distance for a specified memory node, the
|
||
|
* notifier function will be called unless some high priority
|
||
|
* algorithm has provided result. The prototype of the notifier
|
||
|
* function is as follows,
|
||
|
*
|
||
|
* int (*algorithm_notifier)(struct notifier_block *nb,
|
||
|
* unsigned long nid, void *data);
|
||
|
*
|
||
|
* Where "nid" specifies the memory node, "data" is the pointer to the
|
||
|
* returned abstract distance (that is, "int *adist"). If the
|
||
|
* algorithm provides the result, NOTIFY_STOP should be returned.
|
||
|
* Otherwise, return_value & %NOTIFY_STOP_MASK == 0 to allow the next
|
||
|
* algorithm in the chain to provide the result.
|
||
|
*/
|
||
|
int register_mt_adistance_algorithm(struct notifier_block *nb)
|
||
|
{
|
||
|
return blocking_notifier_chain_register(&mt_adistance_algorithms, nb);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(register_mt_adistance_algorithm);
|
||
|
|
||
|
/**
|
||
|
* unregister_mt_adistance_algorithm() - Unregister memory tiering abstract distance algorithm
|
||
|
* @nb: the notifier block which describe the algorithm
|
||
|
*
|
||
|
* Return: 0 on success, errno on error.
|
||
|
*/
|
||
|
int unregister_mt_adistance_algorithm(struct notifier_block *nb)
|
||
|
{
|
||
|
return blocking_notifier_chain_unregister(&mt_adistance_algorithms, nb);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(unregister_mt_adistance_algorithm);
|
||
|
|
||
|
/**
|
||
|
* mt_calc_adistance() - Calculate abstract distance with registered algorithms
|
||
|
* @node: the node to calculate abstract distance for
|
||
|
* @adist: the returned abstract distance
|
||
|
*
|
||
|
* Return: if return_value & %NOTIFY_STOP_MASK != 0, then some
|
||
|
* abstract distance algorithm provides the result, and return it via
|
||
|
* @adist. Otherwise, no algorithm can provide the result and @adist
|
||
|
* will be kept as it is.
|
||
|
*/
|
||
|
int mt_calc_adistance(int node, int *adist)
|
||
|
{
|
||
|
return blocking_notifier_call_chain(&mt_adistance_algorithms, node, adist);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(mt_calc_adistance);
|
||
|
|
||
|
static int __meminit memtier_hotplug_callback(struct notifier_block *self,
|
||
|
unsigned long action, void *_arg)
|
||
|
{
|
||
|
struct memory_tier *memtier;
|
||
|
struct memory_notify *arg = _arg;
|
||
|
|
||
|
/*
|
||
|
* Only update the node migration order when a node is
|
||
|
* changing status, like online->offline.
|
||
|
*/
|
||
|
if (arg->status_change_nid < 0)
|
||
|
return notifier_from_errno(0);
|
||
|
|
||
|
switch (action) {
|
||
|
case MEM_OFFLINE:
|
||
|
mutex_lock(&memory_tier_lock);
|
||
|
if (clear_node_memory_tier(arg->status_change_nid))
|
||
|
establish_demotion_targets();
|
||
|
mutex_unlock(&memory_tier_lock);
|
||
|
break;
|
||
|
case MEM_ONLINE:
|
||
|
mutex_lock(&memory_tier_lock);
|
||
|
memtier = set_node_memory_tier(arg->status_change_nid);
|
||
|
if (!IS_ERR(memtier))
|
||
|
establish_demotion_targets();
|
||
|
mutex_unlock(&memory_tier_lock);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return notifier_from_errno(0);
|
||
|
}
|
||
|
|
||
|
static int __init memory_tier_init(void)
|
||
|
{
|
||
|
int ret, node;
|
||
|
struct memory_tier *memtier;
|
||
|
|
||
|
ret = subsys_virtual_register(&memory_tier_subsys, NULL);
|
||
|
if (ret)
|
||
|
panic("%s() failed to register memory tier subsystem\n", __func__);
|
||
|
|
||
|
#ifdef CONFIG_MIGRATION
|
||
|
node_demotion = kcalloc(nr_node_ids, sizeof(struct demotion_nodes),
|
||
|
GFP_KERNEL);
|
||
|
WARN_ON(!node_demotion);
|
||
|
#endif
|
||
|
mutex_lock(&memory_tier_lock);
|
||
|
/*
|
||
|
* For now we can have 4 faster memory tiers with smaller adistance
|
||
|
* than default DRAM tier.
|
||
|
*/
|
||
|
default_dram_type = alloc_memory_type(MEMTIER_ADISTANCE_DRAM);
|
||
|
if (IS_ERR(default_dram_type))
|
||
|
panic("%s() failed to allocate default DRAM tier\n", __func__);
|
||
|
|
||
|
/*
|
||
|
* Look at all the existing N_MEMORY nodes and add them to
|
||
|
* default memory tier or to a tier if we already have memory
|
||
|
* types assigned.
|
||
|
*/
|
||
|
for_each_node_state(node, N_MEMORY) {
|
||
|
memtier = set_node_memory_tier(node);
|
||
|
if (IS_ERR(memtier))
|
||
|
/*
|
||
|
* Continue with memtiers we are able to setup
|
||
|
*/
|
||
|
break;
|
||
|
}
|
||
|
establish_demotion_targets();
|
||
|
mutex_unlock(&memory_tier_lock);
|
||
|
|
||
|
hotplug_memory_notifier(memtier_hotplug_callback, MEMTIER_HOTPLUG_PRI);
|
||
|
return 0;
|
||
|
}
|
||
|
subsys_initcall(memory_tier_init);
|
||
|
|
||
|
bool numa_demotion_enabled = false;
|
||
|
|
||
|
#ifdef CONFIG_MIGRATION
|
||
|
#ifdef CONFIG_SYSFS
|
||
|
static ssize_t demotion_enabled_show(struct kobject *kobj,
|
||
|
struct kobj_attribute *attr, char *buf)
|
||
|
{
|
||
|
return sysfs_emit(buf, "%s\n",
|
||
|
numa_demotion_enabled ? "true" : "false");
|
||
|
}
|
||
|
|
||
|
static ssize_t demotion_enabled_store(struct kobject *kobj,
|
||
|
struct kobj_attribute *attr,
|
||
|
const char *buf, size_t count)
|
||
|
{
|
||
|
ssize_t ret;
|
||
|
|
||
|
ret = kstrtobool(buf, &numa_demotion_enabled);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
static struct kobj_attribute numa_demotion_enabled_attr =
|
||
|
__ATTR_RW(demotion_enabled);
|
||
|
|
||
|
static struct attribute *numa_attrs[] = {
|
||
|
&numa_demotion_enabled_attr.attr,
|
||
|
NULL,
|
||
|
};
|
||
|
|
||
|
static const struct attribute_group numa_attr_group = {
|
||
|
.attrs = numa_attrs,
|
||
|
};
|
||
|
|
||
|
static int __init numa_init_sysfs(void)
|
||
|
{
|
||
|
int err;
|
||
|
struct kobject *numa_kobj;
|
||
|
|
||
|
numa_kobj = kobject_create_and_add("numa", mm_kobj);
|
||
|
if (!numa_kobj) {
|
||
|
pr_err("failed to create numa kobject\n");
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
err = sysfs_create_group(numa_kobj, &numa_attr_group);
|
||
|
if (err) {
|
||
|
pr_err("failed to register numa group\n");
|
||
|
goto delete_obj;
|
||
|
}
|
||
|
return 0;
|
||
|
|
||
|
delete_obj:
|
||
|
kobject_put(numa_kobj);
|
||
|
return err;
|
||
|
}
|
||
|
subsys_initcall(numa_init_sysfs);
|
||
|
#endif /* CONFIG_SYSFS */
|
||
|
#endif
|