749 lines
18 KiB
C
749 lines
18 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
||
|
/*
|
||
|
* Copyright (C) 2017 Free Electrons
|
||
|
* Copyright (C) 2017 NextThing Co
|
||
|
*
|
||
|
* Author: Boris Brezillon <boris.brezillon@free-electrons.com>
|
||
|
*/
|
||
|
|
||
|
#include <linux/sizes.h>
|
||
|
#include <linux/slab.h>
|
||
|
|
||
|
#include "internals.h"
|
||
|
|
||
|
#define NAND_HYNIX_CMD_SET_PARAMS 0x36
|
||
|
#define NAND_HYNIX_CMD_APPLY_PARAMS 0x16
|
||
|
|
||
|
#define NAND_HYNIX_1XNM_RR_REPEAT 8
|
||
|
|
||
|
/**
|
||
|
* struct hynix_read_retry - read-retry data
|
||
|
* @nregs: number of register to set when applying a new read-retry mode
|
||
|
* @regs: register offsets (NAND chip dependent)
|
||
|
* @values: array of values to set in registers. The array size is equal to
|
||
|
* (nregs * nmodes)
|
||
|
*/
|
||
|
struct hynix_read_retry {
|
||
|
int nregs;
|
||
|
const u8 *regs;
|
||
|
u8 values[];
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* struct hynix_nand - private Hynix NAND struct
|
||
|
* @nand_technology: manufacturing process expressed in picometer
|
||
|
* @read_retry: read-retry information
|
||
|
*/
|
||
|
struct hynix_nand {
|
||
|
const struct hynix_read_retry *read_retry;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* struct hynix_read_retry_otp - structure describing how the read-retry OTP
|
||
|
* area
|
||
|
* @nregs: number of hynix private registers to set before reading the reading
|
||
|
* the OTP area
|
||
|
* @regs: registers that should be configured
|
||
|
* @values: values that should be set in regs
|
||
|
* @page: the address to pass to the READ_PAGE command. Depends on the NAND
|
||
|
* chip
|
||
|
* @size: size of the read-retry OTP section
|
||
|
*/
|
||
|
struct hynix_read_retry_otp {
|
||
|
int nregs;
|
||
|
const u8 *regs;
|
||
|
const u8 *values;
|
||
|
int page;
|
||
|
int size;
|
||
|
};
|
||
|
|
||
|
static bool hynix_nand_has_valid_jedecid(struct nand_chip *chip)
|
||
|
{
|
||
|
u8 jedecid[5] = { };
|
||
|
int ret;
|
||
|
|
||
|
ret = nand_readid_op(chip, 0x40, jedecid, sizeof(jedecid));
|
||
|
if (ret)
|
||
|
return false;
|
||
|
|
||
|
return !strncmp("JEDEC", jedecid, sizeof(jedecid));
|
||
|
}
|
||
|
|
||
|
static int hynix_nand_cmd_op(struct nand_chip *chip, u8 cmd)
|
||
|
{
|
||
|
if (nand_has_exec_op(chip)) {
|
||
|
struct nand_op_instr instrs[] = {
|
||
|
NAND_OP_CMD(cmd, 0),
|
||
|
};
|
||
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
||
|
|
||
|
return nand_exec_op(chip, &op);
|
||
|
}
|
||
|
|
||
|
chip->legacy.cmdfunc(chip, cmd, -1, -1);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int hynix_nand_reg_write_op(struct nand_chip *chip, u8 addr, u8 val)
|
||
|
{
|
||
|
u16 column = ((u16)addr << 8) | addr;
|
||
|
|
||
|
if (nand_has_exec_op(chip)) {
|
||
|
struct nand_op_instr instrs[] = {
|
||
|
NAND_OP_ADDR(1, &addr, 0),
|
||
|
NAND_OP_8BIT_DATA_OUT(1, &val, 0),
|
||
|
};
|
||
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
||
|
|
||
|
return nand_exec_op(chip, &op);
|
||
|
}
|
||
|
|
||
|
chip->legacy.cmdfunc(chip, NAND_CMD_NONE, column, -1);
|
||
|
chip->legacy.write_byte(chip, val);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int hynix_nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
|
||
|
{
|
||
|
struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
|
||
|
const u8 *values;
|
||
|
int i, ret;
|
||
|
|
||
|
values = hynix->read_retry->values +
|
||
|
(retry_mode * hynix->read_retry->nregs);
|
||
|
|
||
|
/* Enter 'Set Hynix Parameters' mode */
|
||
|
ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
/*
|
||
|
* Configure the NAND in the requested read-retry mode.
|
||
|
* This is done by setting pre-defined values in internal NAND
|
||
|
* registers.
|
||
|
*
|
||
|
* The set of registers is NAND specific, and the values are either
|
||
|
* predefined or extracted from an OTP area on the NAND (values are
|
||
|
* probably tweaked at production in this case).
|
||
|
*/
|
||
|
for (i = 0; i < hynix->read_retry->nregs; i++) {
|
||
|
ret = hynix_nand_reg_write_op(chip, hynix->read_retry->regs[i],
|
||
|
values[i]);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* Apply the new settings. */
|
||
|
return hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* hynix_get_majority - get the value that is occurring the most in a given
|
||
|
* set of values
|
||
|
* @in: the array of values to test
|
||
|
* @repeat: the size of the in array
|
||
|
* @out: pointer used to store the output value
|
||
|
*
|
||
|
* This function implements the 'majority check' logic that is supposed to
|
||
|
* overcome the unreliability of MLC NANDs when reading the OTP area storing
|
||
|
* the read-retry parameters.
|
||
|
*
|
||
|
* It's based on a pretty simple assumption: if we repeat the same value
|
||
|
* several times and then take the one that is occurring the most, we should
|
||
|
* find the correct value.
|
||
|
* Let's hope this dummy algorithm prevents us from losing the read-retry
|
||
|
* parameters.
|
||
|
*/
|
||
|
static int hynix_get_majority(const u8 *in, int repeat, u8 *out)
|
||
|
{
|
||
|
int i, j, half = repeat / 2;
|
||
|
|
||
|
/*
|
||
|
* We only test the first half of the in array because we must ensure
|
||
|
* that the value is at least occurring repeat / 2 times.
|
||
|
*
|
||
|
* This loop is suboptimal since we may count the occurrences of the
|
||
|
* same value several time, but we are doing that on small sets, which
|
||
|
* makes it acceptable.
|
||
|
*/
|
||
|
for (i = 0; i < half; i++) {
|
||
|
int cnt = 0;
|
||
|
u8 val = in[i];
|
||
|
|
||
|
/* Count all values that are matching the one at index i. */
|
||
|
for (j = i + 1; j < repeat; j++) {
|
||
|
if (in[j] == val)
|
||
|
cnt++;
|
||
|
}
|
||
|
|
||
|
/* We found a value occurring more than repeat / 2. */
|
||
|
if (cnt > half) {
|
||
|
*out = val;
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
static int hynix_read_rr_otp(struct nand_chip *chip,
|
||
|
const struct hynix_read_retry_otp *info,
|
||
|
void *buf)
|
||
|
{
|
||
|
int i, ret;
|
||
|
|
||
|
ret = nand_reset_op(chip);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
for (i = 0; i < info->nregs; i++) {
|
||
|
ret = hynix_nand_reg_write_op(chip, info->regs[i],
|
||
|
info->values[i]);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
/* Sequence to enter OTP mode? */
|
||
|
ret = hynix_nand_cmd_op(chip, 0x17);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
ret = hynix_nand_cmd_op(chip, 0x4);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
ret = hynix_nand_cmd_op(chip, 0x19);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
/* Now read the page */
|
||
|
ret = nand_read_page_op(chip, info->page, 0, buf, info->size);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
/* Put everything back to normal */
|
||
|
ret = nand_reset_op(chip);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
ret = hynix_nand_reg_write_op(chip, 0x38, 0);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
return nand_read_page_op(chip, 0, 0, NULL, 0);
|
||
|
}
|
||
|
|
||
|
#define NAND_HYNIX_1XNM_RR_COUNT_OFFS 0
|
||
|
#define NAND_HYNIX_1XNM_RR_REG_COUNT_OFFS 8
|
||
|
#define NAND_HYNIX_1XNM_RR_SET_OFFS(x, setsize, inv) \
|
||
|
(16 + ((((x) * 2) + ((inv) ? 1 : 0)) * (setsize)))
|
||
|
|
||
|
static int hynix_mlc_1xnm_rr_value(const u8 *buf, int nmodes, int nregs,
|
||
|
int mode, int reg, bool inv, u8 *val)
|
||
|
{
|
||
|
u8 tmp[NAND_HYNIX_1XNM_RR_REPEAT];
|
||
|
int val_offs = (mode * nregs) + reg;
|
||
|
int set_size = nmodes * nregs;
|
||
|
int i, ret;
|
||
|
|
||
|
for (i = 0; i < NAND_HYNIX_1XNM_RR_REPEAT; i++) {
|
||
|
int set_offs = NAND_HYNIX_1XNM_RR_SET_OFFS(i, set_size, inv);
|
||
|
|
||
|
tmp[i] = buf[val_offs + set_offs];
|
||
|
}
|
||
|
|
||
|
ret = hynix_get_majority(tmp, NAND_HYNIX_1XNM_RR_REPEAT, val);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
if (inv)
|
||
|
*val = ~*val;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static u8 hynix_1xnm_mlc_read_retry_regs[] = {
|
||
|
0xcc, 0xbf, 0xaa, 0xab, 0xcd, 0xad, 0xae, 0xaf
|
||
|
};
|
||
|
|
||
|
static int hynix_mlc_1xnm_rr_init(struct nand_chip *chip,
|
||
|
const struct hynix_read_retry_otp *info)
|
||
|
{
|
||
|
struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
|
||
|
struct hynix_read_retry *rr = NULL;
|
||
|
int ret, i, j;
|
||
|
u8 nregs, nmodes;
|
||
|
u8 *buf;
|
||
|
|
||
|
buf = kmalloc(info->size, GFP_KERNEL);
|
||
|
if (!buf)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
ret = hynix_read_rr_otp(chip, info, buf);
|
||
|
if (ret)
|
||
|
goto out;
|
||
|
|
||
|
ret = hynix_get_majority(buf, NAND_HYNIX_1XNM_RR_REPEAT,
|
||
|
&nmodes);
|
||
|
if (ret)
|
||
|
goto out;
|
||
|
|
||
|
ret = hynix_get_majority(buf + NAND_HYNIX_1XNM_RR_REPEAT,
|
||
|
NAND_HYNIX_1XNM_RR_REPEAT,
|
||
|
&nregs);
|
||
|
if (ret)
|
||
|
goto out;
|
||
|
|
||
|
rr = kzalloc(sizeof(*rr) + (nregs * nmodes), GFP_KERNEL);
|
||
|
if (!rr) {
|
||
|
ret = -ENOMEM;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < nmodes; i++) {
|
||
|
for (j = 0; j < nregs; j++) {
|
||
|
u8 *val = rr->values + (i * nregs);
|
||
|
|
||
|
ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
|
||
|
false, val);
|
||
|
if (!ret)
|
||
|
continue;
|
||
|
|
||
|
ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
|
||
|
true, val);
|
||
|
if (ret)
|
||
|
goto out;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
rr->nregs = nregs;
|
||
|
rr->regs = hynix_1xnm_mlc_read_retry_regs;
|
||
|
hynix->read_retry = rr;
|
||
|
chip->ops.setup_read_retry = hynix_nand_setup_read_retry;
|
||
|
chip->read_retries = nmodes;
|
||
|
|
||
|
out:
|
||
|
kfree(buf);
|
||
|
|
||
|
if (ret)
|
||
|
kfree(rr);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static const u8 hynix_mlc_1xnm_rr_otp_regs[] = { 0x38 };
|
||
|
static const u8 hynix_mlc_1xnm_rr_otp_values[] = { 0x52 };
|
||
|
|
||
|
static const struct hynix_read_retry_otp hynix_mlc_1xnm_rr_otps[] = {
|
||
|
{
|
||
|
.nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
|
||
|
.regs = hynix_mlc_1xnm_rr_otp_regs,
|
||
|
.values = hynix_mlc_1xnm_rr_otp_values,
|
||
|
.page = 0x21f,
|
||
|
.size = 784
|
||
|
},
|
||
|
{
|
||
|
.nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
|
||
|
.regs = hynix_mlc_1xnm_rr_otp_regs,
|
||
|
.values = hynix_mlc_1xnm_rr_otp_values,
|
||
|
.page = 0x200,
|
||
|
.size = 528,
|
||
|
},
|
||
|
};
|
||
|
|
||
|
static int hynix_nand_rr_init(struct nand_chip *chip)
|
||
|
{
|
||
|
int i, ret = 0;
|
||
|
bool valid_jedecid;
|
||
|
|
||
|
valid_jedecid = hynix_nand_has_valid_jedecid(chip);
|
||
|
|
||
|
/*
|
||
|
* We only support read-retry for 1xnm NANDs, and those NANDs all
|
||
|
* expose a valid JEDEC ID.
|
||
|
*/
|
||
|
if (valid_jedecid) {
|
||
|
u8 nand_tech = chip->id.data[5] >> 4;
|
||
|
|
||
|
/* 1xnm technology */
|
||
|
if (nand_tech == 4) {
|
||
|
for (i = 0; i < ARRAY_SIZE(hynix_mlc_1xnm_rr_otps);
|
||
|
i++) {
|
||
|
/*
|
||
|
* FIXME: Hynix recommend to copy the
|
||
|
* read-retry OTP area into a normal page.
|
||
|
*/
|
||
|
ret = hynix_mlc_1xnm_rr_init(chip,
|
||
|
hynix_mlc_1xnm_rr_otps);
|
||
|
if (!ret)
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (ret)
|
||
|
pr_warn("failed to initialize read-retry infrastructure");
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void hynix_nand_extract_oobsize(struct nand_chip *chip,
|
||
|
bool valid_jedecid)
|
||
|
{
|
||
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
||
|
struct nand_memory_organization *memorg;
|
||
|
u8 oobsize;
|
||
|
|
||
|
memorg = nanddev_get_memorg(&chip->base);
|
||
|
|
||
|
oobsize = ((chip->id.data[3] >> 2) & 0x3) |
|
||
|
((chip->id.data[3] >> 4) & 0x4);
|
||
|
|
||
|
if (valid_jedecid) {
|
||
|
switch (oobsize) {
|
||
|
case 0:
|
||
|
memorg->oobsize = 2048;
|
||
|
break;
|
||
|
case 1:
|
||
|
memorg->oobsize = 1664;
|
||
|
break;
|
||
|
case 2:
|
||
|
memorg->oobsize = 1024;
|
||
|
break;
|
||
|
case 3:
|
||
|
memorg->oobsize = 640;
|
||
|
break;
|
||
|
default:
|
||
|
/*
|
||
|
* We should never reach this case, but if that
|
||
|
* happens, this probably means Hynix decided to use
|
||
|
* a different extended ID format, and we should find
|
||
|
* a way to support it.
|
||
|
*/
|
||
|
WARN(1, "Invalid OOB size");
|
||
|
break;
|
||
|
}
|
||
|
} else {
|
||
|
switch (oobsize) {
|
||
|
case 0:
|
||
|
memorg->oobsize = 128;
|
||
|
break;
|
||
|
case 1:
|
||
|
memorg->oobsize = 224;
|
||
|
break;
|
||
|
case 2:
|
||
|
memorg->oobsize = 448;
|
||
|
break;
|
||
|
case 3:
|
||
|
memorg->oobsize = 64;
|
||
|
break;
|
||
|
case 4:
|
||
|
memorg->oobsize = 32;
|
||
|
break;
|
||
|
case 5:
|
||
|
memorg->oobsize = 16;
|
||
|
break;
|
||
|
case 6:
|
||
|
memorg->oobsize = 640;
|
||
|
break;
|
||
|
default:
|
||
|
/*
|
||
|
* We should never reach this case, but if that
|
||
|
* happens, this probably means Hynix decided to use
|
||
|
* a different extended ID format, and we should find
|
||
|
* a way to support it.
|
||
|
*/
|
||
|
WARN(1, "Invalid OOB size");
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The datasheet of H27UCG8T2BTR mentions that the "Redundant
|
||
|
* Area Size" is encoded "per 8KB" (page size). This chip uses
|
||
|
* a page size of 16KiB. The datasheet mentions an OOB size of
|
||
|
* 1.280 bytes, but the OOB size encoded in the ID bytes (using
|
||
|
* the existing logic above) is 640 bytes.
|
||
|
* Update the OOB size for this chip by taking the value
|
||
|
* determined above and scaling it to the actual page size (so
|
||
|
* the actual OOB size for this chip is: 640 * 16k / 8k).
|
||
|
*/
|
||
|
if (chip->id.data[1] == 0xde)
|
||
|
memorg->oobsize *= memorg->pagesize / SZ_8K;
|
||
|
}
|
||
|
|
||
|
mtd->oobsize = memorg->oobsize;
|
||
|
}
|
||
|
|
||
|
static void hynix_nand_extract_ecc_requirements(struct nand_chip *chip,
|
||
|
bool valid_jedecid)
|
||
|
{
|
||
|
struct nand_device *base = &chip->base;
|
||
|
struct nand_ecc_props requirements = {};
|
||
|
u8 ecc_level = (chip->id.data[4] >> 4) & 0x7;
|
||
|
|
||
|
if (valid_jedecid) {
|
||
|
/* Reference: H27UCG8T2E datasheet */
|
||
|
requirements.step_size = 1024;
|
||
|
|
||
|
switch (ecc_level) {
|
||
|
case 0:
|
||
|
requirements.step_size = 0;
|
||
|
requirements.strength = 0;
|
||
|
break;
|
||
|
case 1:
|
||
|
requirements.strength = 4;
|
||
|
break;
|
||
|
case 2:
|
||
|
requirements.strength = 24;
|
||
|
break;
|
||
|
case 3:
|
||
|
requirements.strength = 32;
|
||
|
break;
|
||
|
case 4:
|
||
|
requirements.strength = 40;
|
||
|
break;
|
||
|
case 5:
|
||
|
requirements.strength = 50;
|
||
|
break;
|
||
|
case 6:
|
||
|
requirements.strength = 60;
|
||
|
break;
|
||
|
default:
|
||
|
/*
|
||
|
* We should never reach this case, but if that
|
||
|
* happens, this probably means Hynix decided to use
|
||
|
* a different extended ID format, and we should find
|
||
|
* a way to support it.
|
||
|
*/
|
||
|
WARN(1, "Invalid ECC requirements");
|
||
|
}
|
||
|
} else {
|
||
|
/*
|
||
|
* The ECC requirements field meaning depends on the
|
||
|
* NAND technology.
|
||
|
*/
|
||
|
u8 nand_tech = chip->id.data[5] & 0x7;
|
||
|
|
||
|
if (nand_tech < 3) {
|
||
|
/* > 26nm, reference: H27UBG8T2A datasheet */
|
||
|
if (ecc_level < 5) {
|
||
|
requirements.step_size = 512;
|
||
|
requirements.strength = 1 << ecc_level;
|
||
|
} else if (ecc_level < 7) {
|
||
|
if (ecc_level == 5)
|
||
|
requirements.step_size = 2048;
|
||
|
else
|
||
|
requirements.step_size = 1024;
|
||
|
requirements.strength = 24;
|
||
|
} else {
|
||
|
/*
|
||
|
* We should never reach this case, but if that
|
||
|
* happens, this probably means Hynix decided
|
||
|
* to use a different extended ID format, and
|
||
|
* we should find a way to support it.
|
||
|
*/
|
||
|
WARN(1, "Invalid ECC requirements");
|
||
|
}
|
||
|
} else {
|
||
|
/* <= 26nm, reference: H27UBG8T2B datasheet */
|
||
|
if (!ecc_level) {
|
||
|
requirements.step_size = 0;
|
||
|
requirements.strength = 0;
|
||
|
} else if (ecc_level < 5) {
|
||
|
requirements.step_size = 512;
|
||
|
requirements.strength = 1 << (ecc_level - 1);
|
||
|
} else {
|
||
|
requirements.step_size = 1024;
|
||
|
requirements.strength = 24 +
|
||
|
(8 * (ecc_level - 5));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
nanddev_set_ecc_requirements(base, &requirements);
|
||
|
}
|
||
|
|
||
|
static void hynix_nand_extract_scrambling_requirements(struct nand_chip *chip,
|
||
|
bool valid_jedecid)
|
||
|
{
|
||
|
u8 nand_tech;
|
||
|
|
||
|
/* We need scrambling on all TLC NANDs*/
|
||
|
if (nanddev_bits_per_cell(&chip->base) > 2)
|
||
|
chip->options |= NAND_NEED_SCRAMBLING;
|
||
|
|
||
|
/* And on MLC NANDs with sub-3xnm process */
|
||
|
if (valid_jedecid) {
|
||
|
nand_tech = chip->id.data[5] >> 4;
|
||
|
|
||
|
/* < 3xnm */
|
||
|
if (nand_tech > 0)
|
||
|
chip->options |= NAND_NEED_SCRAMBLING;
|
||
|
} else {
|
||
|
nand_tech = chip->id.data[5] & 0x7;
|
||
|
|
||
|
/* < 32nm */
|
||
|
if (nand_tech > 2)
|
||
|
chip->options |= NAND_NEED_SCRAMBLING;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void hynix_nand_decode_id(struct nand_chip *chip)
|
||
|
{
|
||
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
||
|
struct nand_memory_organization *memorg;
|
||
|
bool valid_jedecid;
|
||
|
u8 tmp;
|
||
|
|
||
|
memorg = nanddev_get_memorg(&chip->base);
|
||
|
|
||
|
/*
|
||
|
* Exclude all SLC NANDs from this advanced detection scheme.
|
||
|
* According to the ranges defined in several datasheets, it might
|
||
|
* appear that even SLC NANDs could fall in this extended ID scheme.
|
||
|
* If that the case rework the test to let SLC NANDs go through the
|
||
|
* detection process.
|
||
|
*/
|
||
|
if (chip->id.len < 6 || nand_is_slc(chip)) {
|
||
|
nand_decode_ext_id(chip);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Extract pagesize */
|
||
|
memorg->pagesize = 2048 << (chip->id.data[3] & 0x03);
|
||
|
mtd->writesize = memorg->pagesize;
|
||
|
|
||
|
tmp = (chip->id.data[3] >> 4) & 0x3;
|
||
|
/*
|
||
|
* When bit7 is set that means we start counting at 1MiB, otherwise
|
||
|
* we start counting at 128KiB and shift this value the content of
|
||
|
* ID[3][4:5].
|
||
|
* The only exception is when ID[3][4:5] == 3 and ID[3][7] == 0, in
|
||
|
* this case the erasesize is set to 768KiB.
|
||
|
*/
|
||
|
if (chip->id.data[3] & 0x80) {
|
||
|
memorg->pages_per_eraseblock = (SZ_1M << tmp) /
|
||
|
memorg->pagesize;
|
||
|
mtd->erasesize = SZ_1M << tmp;
|
||
|
} else if (tmp == 3) {
|
||
|
memorg->pages_per_eraseblock = (SZ_512K + SZ_256K) /
|
||
|
memorg->pagesize;
|
||
|
mtd->erasesize = SZ_512K + SZ_256K;
|
||
|
} else {
|
||
|
memorg->pages_per_eraseblock = (SZ_128K << tmp) /
|
||
|
memorg->pagesize;
|
||
|
mtd->erasesize = SZ_128K << tmp;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Modern Toggle DDR NANDs have a valid JEDECID even though they are
|
||
|
* not exposing a valid JEDEC parameter table.
|
||
|
* These NANDs use a different NAND ID scheme.
|
||
|
*/
|
||
|
valid_jedecid = hynix_nand_has_valid_jedecid(chip);
|
||
|
|
||
|
hynix_nand_extract_oobsize(chip, valid_jedecid);
|
||
|
hynix_nand_extract_ecc_requirements(chip, valid_jedecid);
|
||
|
hynix_nand_extract_scrambling_requirements(chip, valid_jedecid);
|
||
|
}
|
||
|
|
||
|
static void hynix_nand_cleanup(struct nand_chip *chip)
|
||
|
{
|
||
|
struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
|
||
|
|
||
|
if (!hynix)
|
||
|
return;
|
||
|
|
||
|
kfree(hynix->read_retry);
|
||
|
kfree(hynix);
|
||
|
nand_set_manufacturer_data(chip, NULL);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
h27ucg8t2atrbc_choose_interface_config(struct nand_chip *chip,
|
||
|
struct nand_interface_config *iface)
|
||
|
{
|
||
|
onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, 4);
|
||
|
|
||
|
return nand_choose_best_sdr_timings(chip, iface, NULL);
|
||
|
}
|
||
|
|
||
|
static int h27ucg8t2etrbc_init(struct nand_chip *chip)
|
||
|
{
|
||
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
||
|
|
||
|
chip->options |= NAND_NEED_SCRAMBLING;
|
||
|
mtd_set_pairing_scheme(mtd, &dist3_pairing_scheme);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int hynix_nand_init(struct nand_chip *chip)
|
||
|
{
|
||
|
struct hynix_nand *hynix;
|
||
|
int ret;
|
||
|
|
||
|
if (!nand_is_slc(chip))
|
||
|
chip->options |= NAND_BBM_LASTPAGE;
|
||
|
else
|
||
|
chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
|
||
|
|
||
|
hynix = kzalloc(sizeof(*hynix), GFP_KERNEL);
|
||
|
if (!hynix)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
nand_set_manufacturer_data(chip, hynix);
|
||
|
|
||
|
if (!strncmp("H27UCG8T2ATR-BC", chip->parameters.model,
|
||
|
sizeof("H27UCG8T2ATR-BC") - 1))
|
||
|
chip->ops.choose_interface_config =
|
||
|
h27ucg8t2atrbc_choose_interface_config;
|
||
|
|
||
|
if (!strncmp("H27UCG8T2ETR-BC", chip->parameters.model,
|
||
|
sizeof("H27UCG8T2ETR-BC") - 1))
|
||
|
h27ucg8t2etrbc_init(chip);
|
||
|
|
||
|
ret = hynix_nand_rr_init(chip);
|
||
|
if (ret)
|
||
|
hynix_nand_cleanup(chip);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void hynix_fixup_onfi_param_page(struct nand_chip *chip,
|
||
|
struct nand_onfi_params *p)
|
||
|
{
|
||
|
/*
|
||
|
* Certain chips might report a 0 on sdr_timing_mode field
|
||
|
* (bytes 129-130). This has been seen on H27U4G8F2GDA-BI.
|
||
|
* According to ONFI specification, bit 0 of this field "shall be 1".
|
||
|
* Forcibly set this bit.
|
||
|
*/
|
||
|
p->sdr_timing_modes |= cpu_to_le16(BIT(0));
|
||
|
}
|
||
|
|
||
|
const struct nand_manufacturer_ops hynix_nand_manuf_ops = {
|
||
|
.detect = hynix_nand_decode_id,
|
||
|
.init = hynix_nand_init,
|
||
|
.cleanup = hynix_nand_cleanup,
|
||
|
.fixup_onfi_param_page = hynix_fixup_onfi_param_page,
|
||
|
};
|