1082 lines
26 KiB
C
1082 lines
26 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
||
|
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/smp.h>
|
||
|
#include <linux/cpu.h>
|
||
|
#include <linux/prctl.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/sched/idle.h>
|
||
|
#include <linux/sched/debug.h>
|
||
|
#include <linux/sched/task.h>
|
||
|
#include <linux/sched/task_stack.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/export.h>
|
||
|
#include <linux/pm.h>
|
||
|
#include <linux/tick.h>
|
||
|
#include <linux/random.h>
|
||
|
#include <linux/user-return-notifier.h>
|
||
|
#include <linux/dmi.h>
|
||
|
#include <linux/utsname.h>
|
||
|
#include <linux/stackprotector.h>
|
||
|
#include <linux/cpuidle.h>
|
||
|
#include <linux/acpi.h>
|
||
|
#include <linux/elf-randomize.h>
|
||
|
#include <linux/static_call.h>
|
||
|
#include <trace/events/power.h>
|
||
|
#include <linux/hw_breakpoint.h>
|
||
|
#include <linux/entry-common.h>
|
||
|
#include <asm/cpu.h>
|
||
|
#include <asm/apic.h>
|
||
|
#include <linux/uaccess.h>
|
||
|
#include <asm/mwait.h>
|
||
|
#include <asm/fpu/api.h>
|
||
|
#include <asm/fpu/sched.h>
|
||
|
#include <asm/fpu/xstate.h>
|
||
|
#include <asm/debugreg.h>
|
||
|
#include <asm/nmi.h>
|
||
|
#include <asm/tlbflush.h>
|
||
|
#include <asm/mce.h>
|
||
|
#include <asm/vm86.h>
|
||
|
#include <asm/switch_to.h>
|
||
|
#include <asm/desc.h>
|
||
|
#include <asm/prctl.h>
|
||
|
#include <asm/spec-ctrl.h>
|
||
|
#include <asm/io_bitmap.h>
|
||
|
#include <asm/proto.h>
|
||
|
#include <asm/frame.h>
|
||
|
#include <asm/unwind.h>
|
||
|
#include <asm/tdx.h>
|
||
|
#include <asm/mmu_context.h>
|
||
|
#include <asm/shstk.h>
|
||
|
|
||
|
#include "process.h"
|
||
|
|
||
|
/*
|
||
|
* per-CPU TSS segments. Threads are completely 'soft' on Linux,
|
||
|
* no more per-task TSS's. The TSS size is kept cacheline-aligned
|
||
|
* so they are allowed to end up in the .data..cacheline_aligned
|
||
|
* section. Since TSS's are completely CPU-local, we want them
|
||
|
* on exact cacheline boundaries, to eliminate cacheline ping-pong.
|
||
|
*/
|
||
|
__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
|
||
|
.x86_tss = {
|
||
|
/*
|
||
|
* .sp0 is only used when entering ring 0 from a lower
|
||
|
* privilege level. Since the init task never runs anything
|
||
|
* but ring 0 code, there is no need for a valid value here.
|
||
|
* Poison it.
|
||
|
*/
|
||
|
.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
|
||
|
|
||
|
#ifdef CONFIG_X86_32
|
||
|
.sp1 = TOP_OF_INIT_STACK,
|
||
|
|
||
|
.ss0 = __KERNEL_DS,
|
||
|
.ss1 = __KERNEL_CS,
|
||
|
#endif
|
||
|
.io_bitmap_base = IO_BITMAP_OFFSET_INVALID,
|
||
|
},
|
||
|
};
|
||
|
EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
|
||
|
|
||
|
DEFINE_PER_CPU(bool, __tss_limit_invalid);
|
||
|
EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
|
||
|
|
||
|
/*
|
||
|
* this gets called so that we can store lazy state into memory and copy the
|
||
|
* current task into the new thread.
|
||
|
*/
|
||
|
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
|
||
|
{
|
||
|
memcpy(dst, src, arch_task_struct_size);
|
||
|
#ifdef CONFIG_VM86
|
||
|
dst->thread.vm86 = NULL;
|
||
|
#endif
|
||
|
/* Drop the copied pointer to current's fpstate */
|
||
|
dst->thread.fpu.fpstate = NULL;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_X86_64
|
||
|
void arch_release_task_struct(struct task_struct *tsk)
|
||
|
{
|
||
|
if (fpu_state_size_dynamic())
|
||
|
fpstate_free(&tsk->thread.fpu);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Free thread data structures etc..
|
||
|
*/
|
||
|
void exit_thread(struct task_struct *tsk)
|
||
|
{
|
||
|
struct thread_struct *t = &tsk->thread;
|
||
|
struct fpu *fpu = &t->fpu;
|
||
|
|
||
|
if (test_thread_flag(TIF_IO_BITMAP))
|
||
|
io_bitmap_exit(tsk);
|
||
|
|
||
|
free_vm86(t);
|
||
|
|
||
|
shstk_free(tsk);
|
||
|
fpu__drop(fpu);
|
||
|
}
|
||
|
|
||
|
static int set_new_tls(struct task_struct *p, unsigned long tls)
|
||
|
{
|
||
|
struct user_desc __user *utls = (struct user_desc __user *)tls;
|
||
|
|
||
|
if (in_ia32_syscall())
|
||
|
return do_set_thread_area(p, -1, utls, 0);
|
||
|
else
|
||
|
return do_set_thread_area_64(p, ARCH_SET_FS, tls);
|
||
|
}
|
||
|
|
||
|
__visible void ret_from_fork(struct task_struct *prev, struct pt_regs *regs,
|
||
|
int (*fn)(void *), void *fn_arg)
|
||
|
{
|
||
|
schedule_tail(prev);
|
||
|
|
||
|
/* Is this a kernel thread? */
|
||
|
if (unlikely(fn)) {
|
||
|
fn(fn_arg);
|
||
|
/*
|
||
|
* A kernel thread is allowed to return here after successfully
|
||
|
* calling kernel_execve(). Exit to userspace to complete the
|
||
|
* execve() syscall.
|
||
|
*/
|
||
|
regs->ax = 0;
|
||
|
}
|
||
|
|
||
|
syscall_exit_to_user_mode(regs);
|
||
|
}
|
||
|
|
||
|
int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
|
||
|
{
|
||
|
unsigned long clone_flags = args->flags;
|
||
|
unsigned long sp = args->stack;
|
||
|
unsigned long tls = args->tls;
|
||
|
struct inactive_task_frame *frame;
|
||
|
struct fork_frame *fork_frame;
|
||
|
struct pt_regs *childregs;
|
||
|
unsigned long new_ssp;
|
||
|
int ret = 0;
|
||
|
|
||
|
childregs = task_pt_regs(p);
|
||
|
fork_frame = container_of(childregs, struct fork_frame, regs);
|
||
|
frame = &fork_frame->frame;
|
||
|
|
||
|
frame->bp = encode_frame_pointer(childregs);
|
||
|
frame->ret_addr = (unsigned long) ret_from_fork_asm;
|
||
|
p->thread.sp = (unsigned long) fork_frame;
|
||
|
p->thread.io_bitmap = NULL;
|
||
|
p->thread.iopl_warn = 0;
|
||
|
memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
|
||
|
|
||
|
#ifdef CONFIG_X86_64
|
||
|
current_save_fsgs();
|
||
|
p->thread.fsindex = current->thread.fsindex;
|
||
|
p->thread.fsbase = current->thread.fsbase;
|
||
|
p->thread.gsindex = current->thread.gsindex;
|
||
|
p->thread.gsbase = current->thread.gsbase;
|
||
|
|
||
|
savesegment(es, p->thread.es);
|
||
|
savesegment(ds, p->thread.ds);
|
||
|
|
||
|
if (p->mm && (clone_flags & (CLONE_VM | CLONE_VFORK)) == CLONE_VM)
|
||
|
set_bit(MM_CONTEXT_LOCK_LAM, &p->mm->context.flags);
|
||
|
#else
|
||
|
p->thread.sp0 = (unsigned long) (childregs + 1);
|
||
|
savesegment(gs, p->thread.gs);
|
||
|
/*
|
||
|
* Clear all status flags including IF and set fixed bit. 64bit
|
||
|
* does not have this initialization as the frame does not contain
|
||
|
* flags. The flags consistency (especially vs. AC) is there
|
||
|
* ensured via objtool, which lacks 32bit support.
|
||
|
*/
|
||
|
frame->flags = X86_EFLAGS_FIXED;
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Allocate a new shadow stack for thread if needed. If shadow stack,
|
||
|
* is disabled, new_ssp will remain 0, and fpu_clone() will know not to
|
||
|
* update it.
|
||
|
*/
|
||
|
new_ssp = shstk_alloc_thread_stack(p, clone_flags, args->stack_size);
|
||
|
if (IS_ERR_VALUE(new_ssp))
|
||
|
return PTR_ERR((void *)new_ssp);
|
||
|
|
||
|
fpu_clone(p, clone_flags, args->fn, new_ssp);
|
||
|
|
||
|
/* Kernel thread ? */
|
||
|
if (unlikely(p->flags & PF_KTHREAD)) {
|
||
|
p->thread.pkru = pkru_get_init_value();
|
||
|
memset(childregs, 0, sizeof(struct pt_regs));
|
||
|
kthread_frame_init(frame, args->fn, args->fn_arg);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Clone current's PKRU value from hardware. tsk->thread.pkru
|
||
|
* is only valid when scheduled out.
|
||
|
*/
|
||
|
p->thread.pkru = read_pkru();
|
||
|
|
||
|
frame->bx = 0;
|
||
|
*childregs = *current_pt_regs();
|
||
|
childregs->ax = 0;
|
||
|
if (sp)
|
||
|
childregs->sp = sp;
|
||
|
|
||
|
if (unlikely(args->fn)) {
|
||
|
/*
|
||
|
* A user space thread, but it doesn't return to
|
||
|
* ret_after_fork().
|
||
|
*
|
||
|
* In order to indicate that to tools like gdb,
|
||
|
* we reset the stack and instruction pointers.
|
||
|
*
|
||
|
* It does the same kernel frame setup to return to a kernel
|
||
|
* function that a kernel thread does.
|
||
|
*/
|
||
|
childregs->sp = 0;
|
||
|
childregs->ip = 0;
|
||
|
kthread_frame_init(frame, args->fn, args->fn_arg);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Set a new TLS for the child thread? */
|
||
|
if (clone_flags & CLONE_SETTLS)
|
||
|
ret = set_new_tls(p, tls);
|
||
|
|
||
|
if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
|
||
|
io_bitmap_share(p);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void pkru_flush_thread(void)
|
||
|
{
|
||
|
/*
|
||
|
* If PKRU is enabled the default PKRU value has to be loaded into
|
||
|
* the hardware right here (similar to context switch).
|
||
|
*/
|
||
|
pkru_write_default();
|
||
|
}
|
||
|
|
||
|
void flush_thread(void)
|
||
|
{
|
||
|
struct task_struct *tsk = current;
|
||
|
|
||
|
flush_ptrace_hw_breakpoint(tsk);
|
||
|
memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
|
||
|
|
||
|
fpu_flush_thread();
|
||
|
pkru_flush_thread();
|
||
|
}
|
||
|
|
||
|
void disable_TSC(void)
|
||
|
{
|
||
|
preempt_disable();
|
||
|
if (!test_and_set_thread_flag(TIF_NOTSC))
|
||
|
/*
|
||
|
* Must flip the CPU state synchronously with
|
||
|
* TIF_NOTSC in the current running context.
|
||
|
*/
|
||
|
cr4_set_bits(X86_CR4_TSD);
|
||
|
preempt_enable();
|
||
|
}
|
||
|
|
||
|
static void enable_TSC(void)
|
||
|
{
|
||
|
preempt_disable();
|
||
|
if (test_and_clear_thread_flag(TIF_NOTSC))
|
||
|
/*
|
||
|
* Must flip the CPU state synchronously with
|
||
|
* TIF_NOTSC in the current running context.
|
||
|
*/
|
||
|
cr4_clear_bits(X86_CR4_TSD);
|
||
|
preempt_enable();
|
||
|
}
|
||
|
|
||
|
int get_tsc_mode(unsigned long adr)
|
||
|
{
|
||
|
unsigned int val;
|
||
|
|
||
|
if (test_thread_flag(TIF_NOTSC))
|
||
|
val = PR_TSC_SIGSEGV;
|
||
|
else
|
||
|
val = PR_TSC_ENABLE;
|
||
|
|
||
|
return put_user(val, (unsigned int __user *)adr);
|
||
|
}
|
||
|
|
||
|
int set_tsc_mode(unsigned int val)
|
||
|
{
|
||
|
if (val == PR_TSC_SIGSEGV)
|
||
|
disable_TSC();
|
||
|
else if (val == PR_TSC_ENABLE)
|
||
|
enable_TSC();
|
||
|
else
|
||
|
return -EINVAL;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
DEFINE_PER_CPU(u64, msr_misc_features_shadow);
|
||
|
|
||
|
static void set_cpuid_faulting(bool on)
|
||
|
{
|
||
|
u64 msrval;
|
||
|
|
||
|
msrval = this_cpu_read(msr_misc_features_shadow);
|
||
|
msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
|
||
|
msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
|
||
|
this_cpu_write(msr_misc_features_shadow, msrval);
|
||
|
wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
|
||
|
}
|
||
|
|
||
|
static void disable_cpuid(void)
|
||
|
{
|
||
|
preempt_disable();
|
||
|
if (!test_and_set_thread_flag(TIF_NOCPUID)) {
|
||
|
/*
|
||
|
* Must flip the CPU state synchronously with
|
||
|
* TIF_NOCPUID in the current running context.
|
||
|
*/
|
||
|
set_cpuid_faulting(true);
|
||
|
}
|
||
|
preempt_enable();
|
||
|
}
|
||
|
|
||
|
static void enable_cpuid(void)
|
||
|
{
|
||
|
preempt_disable();
|
||
|
if (test_and_clear_thread_flag(TIF_NOCPUID)) {
|
||
|
/*
|
||
|
* Must flip the CPU state synchronously with
|
||
|
* TIF_NOCPUID in the current running context.
|
||
|
*/
|
||
|
set_cpuid_faulting(false);
|
||
|
}
|
||
|
preempt_enable();
|
||
|
}
|
||
|
|
||
|
static int get_cpuid_mode(void)
|
||
|
{
|
||
|
return !test_thread_flag(TIF_NOCPUID);
|
||
|
}
|
||
|
|
||
|
static int set_cpuid_mode(unsigned long cpuid_enabled)
|
||
|
{
|
||
|
if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
|
||
|
return -ENODEV;
|
||
|
|
||
|
if (cpuid_enabled)
|
||
|
enable_cpuid();
|
||
|
else
|
||
|
disable_cpuid();
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Called immediately after a successful exec.
|
||
|
*/
|
||
|
void arch_setup_new_exec(void)
|
||
|
{
|
||
|
/* If cpuid was previously disabled for this task, re-enable it. */
|
||
|
if (test_thread_flag(TIF_NOCPUID))
|
||
|
enable_cpuid();
|
||
|
|
||
|
/*
|
||
|
* Don't inherit TIF_SSBD across exec boundary when
|
||
|
* PR_SPEC_DISABLE_NOEXEC is used.
|
||
|
*/
|
||
|
if (test_thread_flag(TIF_SSBD) &&
|
||
|
task_spec_ssb_noexec(current)) {
|
||
|
clear_thread_flag(TIF_SSBD);
|
||
|
task_clear_spec_ssb_disable(current);
|
||
|
task_clear_spec_ssb_noexec(current);
|
||
|
speculation_ctrl_update(read_thread_flags());
|
||
|
}
|
||
|
|
||
|
mm_reset_untag_mask(current->mm);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_X86_IOPL_IOPERM
|
||
|
static inline void switch_to_bitmap(unsigned long tifp)
|
||
|
{
|
||
|
/*
|
||
|
* Invalidate I/O bitmap if the previous task used it. This prevents
|
||
|
* any possible leakage of an active I/O bitmap.
|
||
|
*
|
||
|
* If the next task has an I/O bitmap it will handle it on exit to
|
||
|
* user mode.
|
||
|
*/
|
||
|
if (tifp & _TIF_IO_BITMAP)
|
||
|
tss_invalidate_io_bitmap();
|
||
|
}
|
||
|
|
||
|
static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
|
||
|
{
|
||
|
/*
|
||
|
* Copy at least the byte range of the incoming tasks bitmap which
|
||
|
* covers the permitted I/O ports.
|
||
|
*
|
||
|
* If the previous task which used an I/O bitmap had more bits
|
||
|
* permitted, then the copy needs to cover those as well so they
|
||
|
* get turned off.
|
||
|
*/
|
||
|
memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
|
||
|
max(tss->io_bitmap.prev_max, iobm->max));
|
||
|
|
||
|
/*
|
||
|
* Store the new max and the sequence number of this bitmap
|
||
|
* and a pointer to the bitmap itself.
|
||
|
*/
|
||
|
tss->io_bitmap.prev_max = iobm->max;
|
||
|
tss->io_bitmap.prev_sequence = iobm->sequence;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode
|
||
|
*/
|
||
|
void native_tss_update_io_bitmap(void)
|
||
|
{
|
||
|
struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
|
||
|
struct thread_struct *t = ¤t->thread;
|
||
|
u16 *base = &tss->x86_tss.io_bitmap_base;
|
||
|
|
||
|
if (!test_thread_flag(TIF_IO_BITMAP)) {
|
||
|
native_tss_invalidate_io_bitmap();
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
|
||
|
*base = IO_BITMAP_OFFSET_VALID_ALL;
|
||
|
} else {
|
||
|
struct io_bitmap *iobm = t->io_bitmap;
|
||
|
|
||
|
/*
|
||
|
* Only copy bitmap data when the sequence number differs. The
|
||
|
* update time is accounted to the incoming task.
|
||
|
*/
|
||
|
if (tss->io_bitmap.prev_sequence != iobm->sequence)
|
||
|
tss_copy_io_bitmap(tss, iobm);
|
||
|
|
||
|
/* Enable the bitmap */
|
||
|
*base = IO_BITMAP_OFFSET_VALID_MAP;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Make sure that the TSS limit is covering the IO bitmap. It might have
|
||
|
* been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
|
||
|
* access from user space to trigger a #GP because the bitmap is outside
|
||
|
* the TSS limit.
|
||
|
*/
|
||
|
refresh_tss_limit();
|
||
|
}
|
||
|
#else /* CONFIG_X86_IOPL_IOPERM */
|
||
|
static inline void switch_to_bitmap(unsigned long tifp) { }
|
||
|
#endif
|
||
|
|
||
|
#ifdef CONFIG_SMP
|
||
|
|
||
|
struct ssb_state {
|
||
|
struct ssb_state *shared_state;
|
||
|
raw_spinlock_t lock;
|
||
|
unsigned int disable_state;
|
||
|
unsigned long local_state;
|
||
|
};
|
||
|
|
||
|
#define LSTATE_SSB 0
|
||
|
|
||
|
static DEFINE_PER_CPU(struct ssb_state, ssb_state);
|
||
|
|
||
|
void speculative_store_bypass_ht_init(void)
|
||
|
{
|
||
|
struct ssb_state *st = this_cpu_ptr(&ssb_state);
|
||
|
unsigned int this_cpu = smp_processor_id();
|
||
|
unsigned int cpu;
|
||
|
|
||
|
st->local_state = 0;
|
||
|
|
||
|
/*
|
||
|
* Shared state setup happens once on the first bringup
|
||
|
* of the CPU. It's not destroyed on CPU hotunplug.
|
||
|
*/
|
||
|
if (st->shared_state)
|
||
|
return;
|
||
|
|
||
|
raw_spin_lock_init(&st->lock);
|
||
|
|
||
|
/*
|
||
|
* Go over HT siblings and check whether one of them has set up the
|
||
|
* shared state pointer already.
|
||
|
*/
|
||
|
for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
|
||
|
if (cpu == this_cpu)
|
||
|
continue;
|
||
|
|
||
|
if (!per_cpu(ssb_state, cpu).shared_state)
|
||
|
continue;
|
||
|
|
||
|
/* Link it to the state of the sibling: */
|
||
|
st->shared_state = per_cpu(ssb_state, cpu).shared_state;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* First HT sibling to come up on the core. Link shared state of
|
||
|
* the first HT sibling to itself. The siblings on the same core
|
||
|
* which come up later will see the shared state pointer and link
|
||
|
* themselves to the state of this CPU.
|
||
|
*/
|
||
|
st->shared_state = st;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Logic is: First HT sibling enables SSBD for both siblings in the core
|
||
|
* and last sibling to disable it, disables it for the whole core. This how
|
||
|
* MSR_SPEC_CTRL works in "hardware":
|
||
|
*
|
||
|
* CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
|
||
|
*/
|
||
|
static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
|
||
|
{
|
||
|
struct ssb_state *st = this_cpu_ptr(&ssb_state);
|
||
|
u64 msr = x86_amd_ls_cfg_base;
|
||
|
|
||
|
if (!static_cpu_has(X86_FEATURE_ZEN)) {
|
||
|
msr |= ssbd_tif_to_amd_ls_cfg(tifn);
|
||
|
wrmsrl(MSR_AMD64_LS_CFG, msr);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (tifn & _TIF_SSBD) {
|
||
|
/*
|
||
|
* Since this can race with prctl(), block reentry on the
|
||
|
* same CPU.
|
||
|
*/
|
||
|
if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
|
||
|
return;
|
||
|
|
||
|
msr |= x86_amd_ls_cfg_ssbd_mask;
|
||
|
|
||
|
raw_spin_lock(&st->shared_state->lock);
|
||
|
/* First sibling enables SSBD: */
|
||
|
if (!st->shared_state->disable_state)
|
||
|
wrmsrl(MSR_AMD64_LS_CFG, msr);
|
||
|
st->shared_state->disable_state++;
|
||
|
raw_spin_unlock(&st->shared_state->lock);
|
||
|
} else {
|
||
|
if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
|
||
|
return;
|
||
|
|
||
|
raw_spin_lock(&st->shared_state->lock);
|
||
|
st->shared_state->disable_state--;
|
||
|
if (!st->shared_state->disable_state)
|
||
|
wrmsrl(MSR_AMD64_LS_CFG, msr);
|
||
|
raw_spin_unlock(&st->shared_state->lock);
|
||
|
}
|
||
|
}
|
||
|
#else
|
||
|
static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
|
||
|
{
|
||
|
u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
|
||
|
|
||
|
wrmsrl(MSR_AMD64_LS_CFG, msr);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
|
||
|
{
|
||
|
/*
|
||
|
* SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
|
||
|
* so ssbd_tif_to_spec_ctrl() just works.
|
||
|
*/
|
||
|
wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Update the MSRs managing speculation control, during context switch.
|
||
|
*
|
||
|
* tifp: Previous task's thread flags
|
||
|
* tifn: Next task's thread flags
|
||
|
*/
|
||
|
static __always_inline void __speculation_ctrl_update(unsigned long tifp,
|
||
|
unsigned long tifn)
|
||
|
{
|
||
|
unsigned long tif_diff = tifp ^ tifn;
|
||
|
u64 msr = x86_spec_ctrl_base;
|
||
|
bool updmsr = false;
|
||
|
|
||
|
lockdep_assert_irqs_disabled();
|
||
|
|
||
|
/* Handle change of TIF_SSBD depending on the mitigation method. */
|
||
|
if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
|
||
|
if (tif_diff & _TIF_SSBD)
|
||
|
amd_set_ssb_virt_state(tifn);
|
||
|
} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
|
||
|
if (tif_diff & _TIF_SSBD)
|
||
|
amd_set_core_ssb_state(tifn);
|
||
|
} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
|
||
|
static_cpu_has(X86_FEATURE_AMD_SSBD)) {
|
||
|
updmsr |= !!(tif_diff & _TIF_SSBD);
|
||
|
msr |= ssbd_tif_to_spec_ctrl(tifn);
|
||
|
}
|
||
|
|
||
|
/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
|
||
|
if (IS_ENABLED(CONFIG_SMP) &&
|
||
|
static_branch_unlikely(&switch_to_cond_stibp)) {
|
||
|
updmsr |= !!(tif_diff & _TIF_SPEC_IB);
|
||
|
msr |= stibp_tif_to_spec_ctrl(tifn);
|
||
|
}
|
||
|
|
||
|
if (updmsr)
|
||
|
update_spec_ctrl_cond(msr);
|
||
|
}
|
||
|
|
||
|
static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
|
||
|
{
|
||
|
if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
|
||
|
if (task_spec_ssb_disable(tsk))
|
||
|
set_tsk_thread_flag(tsk, TIF_SSBD);
|
||
|
else
|
||
|
clear_tsk_thread_flag(tsk, TIF_SSBD);
|
||
|
|
||
|
if (task_spec_ib_disable(tsk))
|
||
|
set_tsk_thread_flag(tsk, TIF_SPEC_IB);
|
||
|
else
|
||
|
clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
|
||
|
}
|
||
|
/* Return the updated threadinfo flags*/
|
||
|
return read_task_thread_flags(tsk);
|
||
|
}
|
||
|
|
||
|
void speculation_ctrl_update(unsigned long tif)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
|
||
|
/* Forced update. Make sure all relevant TIF flags are different */
|
||
|
local_irq_save(flags);
|
||
|
__speculation_ctrl_update(~tif, tif);
|
||
|
local_irq_restore(flags);
|
||
|
}
|
||
|
|
||
|
/* Called from seccomp/prctl update */
|
||
|
void speculation_ctrl_update_current(void)
|
||
|
{
|
||
|
preempt_disable();
|
||
|
speculation_ctrl_update(speculation_ctrl_update_tif(current));
|
||
|
preempt_enable();
|
||
|
}
|
||
|
|
||
|
static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
|
||
|
{
|
||
|
unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
|
||
|
|
||
|
newval = cr4 ^ mask;
|
||
|
if (newval != cr4) {
|
||
|
this_cpu_write(cpu_tlbstate.cr4, newval);
|
||
|
__write_cr4(newval);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
|
||
|
{
|
||
|
unsigned long tifp, tifn;
|
||
|
|
||
|
tifn = read_task_thread_flags(next_p);
|
||
|
tifp = read_task_thread_flags(prev_p);
|
||
|
|
||
|
switch_to_bitmap(tifp);
|
||
|
|
||
|
propagate_user_return_notify(prev_p, next_p);
|
||
|
|
||
|
if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
|
||
|
arch_has_block_step()) {
|
||
|
unsigned long debugctl, msk;
|
||
|
|
||
|
rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
|
||
|
debugctl &= ~DEBUGCTLMSR_BTF;
|
||
|
msk = tifn & _TIF_BLOCKSTEP;
|
||
|
debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
|
||
|
wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
|
||
|
}
|
||
|
|
||
|
if ((tifp ^ tifn) & _TIF_NOTSC)
|
||
|
cr4_toggle_bits_irqsoff(X86_CR4_TSD);
|
||
|
|
||
|
if ((tifp ^ tifn) & _TIF_NOCPUID)
|
||
|
set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
|
||
|
|
||
|
if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
|
||
|
__speculation_ctrl_update(tifp, tifn);
|
||
|
} else {
|
||
|
speculation_ctrl_update_tif(prev_p);
|
||
|
tifn = speculation_ctrl_update_tif(next_p);
|
||
|
|
||
|
/* Enforce MSR update to ensure consistent state */
|
||
|
__speculation_ctrl_update(~tifn, tifn);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Idle related variables and functions
|
||
|
*/
|
||
|
unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
|
||
|
EXPORT_SYMBOL(boot_option_idle_override);
|
||
|
|
||
|
/*
|
||
|
* We use this if we don't have any better idle routine..
|
||
|
*/
|
||
|
void __cpuidle default_idle(void)
|
||
|
{
|
||
|
raw_safe_halt();
|
||
|
raw_local_irq_disable();
|
||
|
}
|
||
|
#if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
|
||
|
EXPORT_SYMBOL(default_idle);
|
||
|
#endif
|
||
|
|
||
|
DEFINE_STATIC_CALL_NULL(x86_idle, default_idle);
|
||
|
|
||
|
static bool x86_idle_set(void)
|
||
|
{
|
||
|
return !!static_call_query(x86_idle);
|
||
|
}
|
||
|
|
||
|
#ifndef CONFIG_SMP
|
||
|
static inline void __noreturn play_dead(void)
|
||
|
{
|
||
|
BUG();
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
void arch_cpu_idle_enter(void)
|
||
|
{
|
||
|
tsc_verify_tsc_adjust(false);
|
||
|
local_touch_nmi();
|
||
|
}
|
||
|
|
||
|
void __noreturn arch_cpu_idle_dead(void)
|
||
|
{
|
||
|
play_dead();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Called from the generic idle code.
|
||
|
*/
|
||
|
void __cpuidle arch_cpu_idle(void)
|
||
|
{
|
||
|
static_call(x86_idle)();
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(arch_cpu_idle);
|
||
|
|
||
|
#ifdef CONFIG_XEN
|
||
|
bool xen_set_default_idle(void)
|
||
|
{
|
||
|
bool ret = x86_idle_set();
|
||
|
|
||
|
static_call_update(x86_idle, default_idle);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
struct cpumask cpus_stop_mask;
|
||
|
|
||
|
void __noreturn stop_this_cpu(void *dummy)
|
||
|
{
|
||
|
struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
|
||
|
unsigned int cpu = smp_processor_id();
|
||
|
|
||
|
local_irq_disable();
|
||
|
|
||
|
/*
|
||
|
* Remove this CPU from the online mask and disable it
|
||
|
* unconditionally. This might be redundant in case that the reboot
|
||
|
* vector was handled late and stop_other_cpus() sent an NMI.
|
||
|
*
|
||
|
* According to SDM and APM NMIs can be accepted even after soft
|
||
|
* disabling the local APIC.
|
||
|
*/
|
||
|
set_cpu_online(cpu, false);
|
||
|
disable_local_APIC();
|
||
|
mcheck_cpu_clear(c);
|
||
|
|
||
|
/*
|
||
|
* Use wbinvd on processors that support SME. This provides support
|
||
|
* for performing a successful kexec when going from SME inactive
|
||
|
* to SME active (or vice-versa). The cache must be cleared so that
|
||
|
* if there are entries with the same physical address, both with and
|
||
|
* without the encryption bit, they don't race each other when flushed
|
||
|
* and potentially end up with the wrong entry being committed to
|
||
|
* memory.
|
||
|
*
|
||
|
* Test the CPUID bit directly because the machine might've cleared
|
||
|
* X86_FEATURE_SME due to cmdline options.
|
||
|
*/
|
||
|
if (c->extended_cpuid_level >= 0x8000001f && (cpuid_eax(0x8000001f) & BIT(0)))
|
||
|
native_wbinvd();
|
||
|
|
||
|
/*
|
||
|
* This brings a cache line back and dirties it, but
|
||
|
* native_stop_other_cpus() will overwrite cpus_stop_mask after it
|
||
|
* observed that all CPUs reported stop. This write will invalidate
|
||
|
* the related cache line on this CPU.
|
||
|
*/
|
||
|
cpumask_clear_cpu(cpu, &cpus_stop_mask);
|
||
|
|
||
|
for (;;) {
|
||
|
/*
|
||
|
* Use native_halt() so that memory contents don't change
|
||
|
* (stack usage and variables) after possibly issuing the
|
||
|
* native_wbinvd() above.
|
||
|
*/
|
||
|
native_halt();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
|
||
|
* states (local apic timer and TSC stop).
|
||
|
*
|
||
|
* XXX this function is completely buggered vs RCU and tracing.
|
||
|
*/
|
||
|
static void amd_e400_idle(void)
|
||
|
{
|
||
|
/*
|
||
|
* We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
|
||
|
* gets set after static_cpu_has() places have been converted via
|
||
|
* alternatives.
|
||
|
*/
|
||
|
if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
|
||
|
default_idle();
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
tick_broadcast_enter();
|
||
|
|
||
|
default_idle();
|
||
|
|
||
|
tick_broadcast_exit();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf
|
||
|
* exists and whenever MONITOR/MWAIT extensions are present there is at
|
||
|
* least one C1 substate.
|
||
|
*
|
||
|
* Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait
|
||
|
* is passed to kernel commandline parameter.
|
||
|
*/
|
||
|
static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
|
||
|
{
|
||
|
u32 eax, ebx, ecx, edx;
|
||
|
|
||
|
/* User has disallowed the use of MWAIT. Fallback to HALT */
|
||
|
if (boot_option_idle_override == IDLE_NOMWAIT)
|
||
|
return 0;
|
||
|
|
||
|
/* MWAIT is not supported on this platform. Fallback to HALT */
|
||
|
if (!cpu_has(c, X86_FEATURE_MWAIT))
|
||
|
return 0;
|
||
|
|
||
|
/* Monitor has a bug. Fallback to HALT */
|
||
|
if (boot_cpu_has_bug(X86_BUG_MONITOR))
|
||
|
return 0;
|
||
|
|
||
|
cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
|
||
|
|
||
|
/*
|
||
|
* If MWAIT extensions are not available, it is safe to use MWAIT
|
||
|
* with EAX=0, ECX=0.
|
||
|
*/
|
||
|
if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED))
|
||
|
return 1;
|
||
|
|
||
|
/*
|
||
|
* If MWAIT extensions are available, there should be at least one
|
||
|
* MWAIT C1 substate present.
|
||
|
*/
|
||
|
return (edx & MWAIT_C1_SUBSTATE_MASK);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
|
||
|
* with interrupts enabled and no flags, which is backwards compatible with the
|
||
|
* original MWAIT implementation.
|
||
|
*/
|
||
|
static __cpuidle void mwait_idle(void)
|
||
|
{
|
||
|
if (!current_set_polling_and_test()) {
|
||
|
if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
|
||
|
mb(); /* quirk */
|
||
|
clflush((void *)¤t_thread_info()->flags);
|
||
|
mb(); /* quirk */
|
||
|
}
|
||
|
|
||
|
__monitor((void *)¤t_thread_info()->flags, 0, 0);
|
||
|
if (!need_resched()) {
|
||
|
__sti_mwait(0, 0);
|
||
|
raw_local_irq_disable();
|
||
|
}
|
||
|
}
|
||
|
__current_clr_polling();
|
||
|
}
|
||
|
|
||
|
void select_idle_routine(const struct cpuinfo_x86 *c)
|
||
|
{
|
||
|
#ifdef CONFIG_SMP
|
||
|
if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
|
||
|
pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
|
||
|
#endif
|
||
|
if (x86_idle_set() || boot_option_idle_override == IDLE_POLL)
|
||
|
return;
|
||
|
|
||
|
if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
|
||
|
pr_info("using AMD E400 aware idle routine\n");
|
||
|
static_call_update(x86_idle, amd_e400_idle);
|
||
|
} else if (prefer_mwait_c1_over_halt(c)) {
|
||
|
pr_info("using mwait in idle threads\n");
|
||
|
static_call_update(x86_idle, mwait_idle);
|
||
|
} else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
|
||
|
pr_info("using TDX aware idle routine\n");
|
||
|
static_call_update(x86_idle, tdx_safe_halt);
|
||
|
} else
|
||
|
static_call_update(x86_idle, default_idle);
|
||
|
}
|
||
|
|
||
|
void amd_e400_c1e_apic_setup(void)
|
||
|
{
|
||
|
if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
|
||
|
pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
|
||
|
local_irq_disable();
|
||
|
tick_broadcast_force();
|
||
|
local_irq_enable();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void __init arch_post_acpi_subsys_init(void)
|
||
|
{
|
||
|
u32 lo, hi;
|
||
|
|
||
|
if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* AMD E400 detection needs to happen after ACPI has been enabled. If
|
||
|
* the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
|
||
|
* MSR_K8_INT_PENDING_MSG.
|
||
|
*/
|
||
|
rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
|
||
|
if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
|
||
|
return;
|
||
|
|
||
|
boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
|
||
|
|
||
|
if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
|
||
|
mark_tsc_unstable("TSC halt in AMD C1E");
|
||
|
pr_info("System has AMD C1E enabled\n");
|
||
|
}
|
||
|
|
||
|
static int __init idle_setup(char *str)
|
||
|
{
|
||
|
if (!str)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (!strcmp(str, "poll")) {
|
||
|
pr_info("using polling idle threads\n");
|
||
|
boot_option_idle_override = IDLE_POLL;
|
||
|
cpu_idle_poll_ctrl(true);
|
||
|
} else if (!strcmp(str, "halt")) {
|
||
|
/*
|
||
|
* When the boot option of idle=halt is added, halt is
|
||
|
* forced to be used for CPU idle. In such case CPU C2/C3
|
||
|
* won't be used again.
|
||
|
* To continue to load the CPU idle driver, don't touch
|
||
|
* the boot_option_idle_override.
|
||
|
*/
|
||
|
static_call_update(x86_idle, default_idle);
|
||
|
boot_option_idle_override = IDLE_HALT;
|
||
|
} else if (!strcmp(str, "nomwait")) {
|
||
|
/*
|
||
|
* If the boot option of "idle=nomwait" is added,
|
||
|
* it means that mwait will be disabled for CPU C1/C2/C3
|
||
|
* states.
|
||
|
*/
|
||
|
boot_option_idle_override = IDLE_NOMWAIT;
|
||
|
} else
|
||
|
return -1;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
early_param("idle", idle_setup);
|
||
|
|
||
|
unsigned long arch_align_stack(unsigned long sp)
|
||
|
{
|
||
|
if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
|
||
|
sp -= get_random_u32_below(8192);
|
||
|
return sp & ~0xf;
|
||
|
}
|
||
|
|
||
|
unsigned long arch_randomize_brk(struct mm_struct *mm)
|
||
|
{
|
||
|
return randomize_page(mm->brk, 0x02000000);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Called from fs/proc with a reference on @p to find the function
|
||
|
* which called into schedule(). This needs to be done carefully
|
||
|
* because the task might wake up and we might look at a stack
|
||
|
* changing under us.
|
||
|
*/
|
||
|
unsigned long __get_wchan(struct task_struct *p)
|
||
|
{
|
||
|
struct unwind_state state;
|
||
|
unsigned long addr = 0;
|
||
|
|
||
|
if (!try_get_task_stack(p))
|
||
|
return 0;
|
||
|
|
||
|
for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
|
||
|
unwind_next_frame(&state)) {
|
||
|
addr = unwind_get_return_address(&state);
|
||
|
if (!addr)
|
||
|
break;
|
||
|
if (in_sched_functions(addr))
|
||
|
continue;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
put_task_stack(p);
|
||
|
|
||
|
return addr;
|
||
|
}
|
||
|
|
||
|
long do_arch_prctl_common(int option, unsigned long arg2)
|
||
|
{
|
||
|
switch (option) {
|
||
|
case ARCH_GET_CPUID:
|
||
|
return get_cpuid_mode();
|
||
|
case ARCH_SET_CPUID:
|
||
|
return set_cpuid_mode(arg2);
|
||
|
case ARCH_GET_XCOMP_SUPP:
|
||
|
case ARCH_GET_XCOMP_PERM:
|
||
|
case ARCH_REQ_XCOMP_PERM:
|
||
|
case ARCH_GET_XCOMP_GUEST_PERM:
|
||
|
case ARCH_REQ_XCOMP_GUEST_PERM:
|
||
|
return fpu_xstate_prctl(option, arg2);
|
||
|
}
|
||
|
|
||
|
return -EINVAL;
|
||
|
}
|